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ABSTRACT The acquisition of accurate channel state information is critical for enhancing the transmission
quality and energy efficiency of reconfigurable intelligent surface-aided millimeter wave systems with
multiple-input multiple-output antenna arrays at the transceiver ends. Due to the cascaded doubly sparse
channel property in angular and delay domains, it is difficult to acquire nonzero angular gains sampled
by overcomplete dictionaries with low pilot overhead. In this work, a channel-estimation method based on
the sparse Kalman filter (SKF) framework is proposed, in which a state-space model is established for a
sparse complex angular gain vector in both static and dynamic scenarios, and a zero-padding block-diagonal
pilot pattern is designed. A linear l1-norm subdifferential pseudo-measurement equation is deduced. The
on-grid angular gain vector, along with the corresponding support, is recovered by the sequential processing
of multiple pilot tone observations. To enhance the l1-norm convergence and thus reduce the pilot overhead,
an accelerated algorithm is developed, which incorporates an exponential factor to accelerate the gradient
descent procedure. The simulation results demonstrate that the method can capture the angular support using
a few pilot blocks. The normalized mean square error performance for the angular gain vector was better
than that for the orthogonal matching pursuit. The accelerated SKF algorithm achieves faster convergence
and higher accuracy compared with the ordinary SKF algorithm, and it is easy to implement online.

INDEX TERMS Channel estimation, compressed sensing, Kalman filters, millimeter-wave communication,
reconfigurable intelligent surfaces.

I. INTRODUCTION
Low-cost and low-power reconfigurable intelligent surfaces
(RISs) are promising candidates for future sensing, comput-
ing, and communication applications. They can be employed
to adjust wireless environments between the transmitter and
receiver, such as user equipment (UE) and base stations (BS).
An RIS typically comprises numerous reflective elements
that introduce additional phase shifts into the incident sig-
nals and passively reflect the signals without processing or
energy consumption. The phase shifts of RIS elements can
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be adjusted to maximize spectral and energy efficiencies [1],
[2].

Efficient channel estimation (CE) with low pilot over-
head for the RIS auxiliary link is essential. The methods
for achieving efficient CE include tensor decomposition and
sparse recovery [3]. In the former category, e.g., in a multiple
user multiple-input single-output (MISO) millimeter wave
(mmWave) uplink system, the parallel factorization model
is utilized to unfold the cascaded channel. By designing
a specific structured spatiotemporal pilot pattern, the CE
can be performed using a bilinear alternating least square
(LS) algorithm and the approximate message passing (AMP)
method [4], [5], [6]. The Cramer–Rao bound was derived
to evaluate the normalized mean square error (NMSE) [7].
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The time-scale channel separation and estimation were cov-
ered in [8]. Typically, an alternating two-stage method is
adopted for cascaded CE. A decomposition and comple-
tion method for sparse channel matrices is proposed by
exploring slowly changing channel components and hidden
sparsity [9]. Considering the similar sparse channel character-
istics in the angular domain, the bilinear general AMPmethod
was investigated for passive RIS-aided systems [10]. The
CE problem is interpreted as a sparse matrix decomposition
problem solved using an AMP algorithm based on Bayesian
inference [11]. In [12], RIS auxiliary and direct links were
simultaneously considered. The CE was performed for each
subsurface channel, and the entire channel was estimated by
adjusting the RIS phase shift.

The latter category is based on compressed sensing. The
inherent sparse characteristics of RIS-aided mmWave chan-
nels are fully modeled. When considering the sparsity in
the angular domain, the cascaded gain matrix can be vec-
tored using the Khatri–Rao and Kronecker product formulas.
Orthogonal matching pursuit (OMP) and AMP have been
used for recovery [13]. For a doubly sparse channel matrix
with common nonzero rows and partially common nonzero
columns, the dual OMP algorithm was utilized to jointly
estimate the support and gains [14]. To achieve improved
recovery, an iterative method was conducted to solve a non-
convex optimization problem [15]. The problemwasmodeled
as an l1-norm regularization problem with a fixed rank con-
straint [16]. By establishing a block-sparse structure for all
users, alternating minimization and manifold optimization
were implemented to determine the optimum solution.

Detailed channel-state information in the angular domain
is desired for cascaded CE. By considering the broad-
band model, including the angle of departure (AoD), angle
of arrival (AoA), complex gain, and delay, a five-step
Newtonized OMP was introduced. Angle parameters were
obtained through an oversampled grid search. The cascaded
gain was updated using LS [17]. Notably, the two-stage
OMP algorithm improves performance using the mutual
correlation function between spatial steering vectors [18].
The high-dimensional broadband channels of the downlink
BS-RIS and RIS-UE were jointly estimated using a dis-
tributed OMP [19]. These channels can also be acquired using
an iterative reweighting algorithm [20]. In [21], the atomic
norm minimization method is used to estimate AoAs/AoDs.
The alternating direction multiplier method could restore the
cascaded angular gains [22]. A two-stage CE was designed
based on partial knowledge of the RIS-BS channel, and it
estimated the direct links of UE-BS and UE-RIS in Stage
1. Subsequently, RIS phase shifts were designed to form an
initial estimate of the global channel. In Stage 2, additional
pilots were utilized to refine the estimation [23]. In addition,
data-transmission protocols for practical applications were
designed using limited feedback channel information [24].
To solve the cascaded CE problem, it is necessary to design

a pilot pattern to reduce the pilot overhead and improve accu-

racy. A hybrid RIS with a few active elements was obtained
for a CE solution [25], [26]. Nonuniformly spaced comb-type
pilots for compressed CE inMISO orthogonal frequency divi-
sion multiplexing systems are presented in [27]. It is possible
to accurately estimate many channel coefficients using only a
few three-phase pilots [28]. The reflection coefficient of the
RIS element can be adjusted in advance for CE [29].

Other CE studies on RIS-aided systems have also been
conducted. In intelligent-learning CE, an enhanced limit
learning machine network is constructed to improve per-
formance [30], in addition to deep reinforcement learning
networks [31] and convolutional neural networks combined
with long short-term memory [32]. In terahertz RIS-aided,
large-scale multiple-input multiple-output (MIMO) systems,
the CE procedure includes coarse-grained and fine-grained
stages for downlink and uplink, respectively [33]. In mobility
scenarios, the channel is modeled as a state-space model and
estimated using a Kalman filter (KF) [34], [35], an extended
KF, and a particle filter [36]. The best reflection coefficient
is obtained using the minimum mean-squared error criterion.
Additionally, the KF is utilized to estimate off-grid AoAs in
MIMO radar systems [37].
This paper focuses on the CE for a RIS-aided mmWave

channel that is sparse in both the angular and delay domains.
This type of doubly sparse channel model has been explored
for single-hop mmWave and RIS-aided systems [38], [39],
[40]. A CE method based on the sparse Kalman filter (SKF)
framework was developed. By analyzing the sparse channel
structure in the angular and delay domains and designing a
zero-padding block diagonal pilot pattern, SKF algorithms
were developed to recover the sparse angular gain vector. The
algorithms incorporate the constraint of the l1-norm using a
pseudo-measurement technique. Simulations show that the
accelerated SKF algorithm outperforms Oracle LS, OMP, and
an ordinary sparse filtering algorithm in terms of the NMSE,
support capture, convergence speed, and pilot overhead.

The main contributions of this study are as follows.
(1) A CE method within the SKF framework is proposed

for RIS-aided MIMO systems. The method transforms the
common sparse channel recovery problem into sequential
retrieval through multiple pilot tone observations. As the
method is insensitive to the coherence of angular dictionaries,
it is robust in practice. Moreover, it can recover a cascaded
channel when each row or column of the gain matrix has
either zero or only one nonzero entry. This permits the con-
struction of angular dictionaries without restriction.

(2) SKF algorithms with l1-norm constraints were devel-
oped. The l1-norm subdifferential pseudo-measurement
equation was deduced for sparse complex angular gain vec-
tors. An accelerated SKF algorithm is proposed to accomplish
CE using a few pilot blocks, and its superior performance is
validated by simulation studies. Moreover, these algorithms
are easy to implement online.

(3) The proposed method is suitable for both static and
dynamic scenarios that involve noisy pilot tone observa-
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FIGURE 1. RIS-aided uplink transmission scenarios.

tions. In particular, its ability to achieve a dynamic sparse
gain vector along with an accurate support renders the CE
method suitable for various scenarios. Although a zero-
padding block-diagonal pilot pattern is required to exploit the
delay sparsity, accurate and detailed angular information can
be obtained.

The remainder of this paper is organized as follows.
In Section II, the doubly sparse channel models of UE-RIS
and RIS-BS are introduced, and the state-space model of the
cascaded channel is explained. In Section III, the pilot pattern
and the received signal model are described. In Section IV,
the proposed SKF algorithm and its computational complex-
ity are presented. In Section V, the simulation results are
presented. Finally, conclusions are drawn in Section VI.
Notations. Bold capital letters and symbols denote matri-

ces. Bold lowercase letters denote column vectors. The italic
letter (j) denotes

√
−1. (·)H , (·)T , (·)∗, and (·)−1 denote

the conjugate transpose, transpose, conjugate, and inverse,
respectively. ∥ · ∥2, ∥ · ∥1, and | · | denote the l2-norm, l1-
norm, and absolute value, respectively. The diagonal matrix is
denoted as diag(a), where a vector is placed on the diagonal.
The vectored matrix is denoted as vec(A) by the column
stacking of the matrix. The symbols, ⊗ and ⊙, denote the
Kronecker and Khatri–Rao products, respectively. IN denotes
an N-dimensional identity matrix. The N × M zero matrix
is 0NM . The zero row vector is 0N . ⌊·⌋ denotes the round-
down operation. CN (µ,6) represents the complex Gaussian
distribution with mean µ and covariance 6. E{·} represents
the mathematical expectation.

II. CASCADED CHANNEL MODEL
The uplink of the RIS-aided mmWave transmission system
is shown in Fig. 1, where the number of antenna arrays at
the BS is denoted as NR. Each UE has a single antenna.
Multiple UEs form a virtual NT multi-antenna that shares
wireless resources, particularly time slots. When the direct
link of the line of sight is blocked, signals from the UEs
to the BS are reflected by the RIS. The RIS is composed
of NI elements to adjust the phase shifts of the incident
signals. It is assumed that each element can be adjusted to the

on–off state and provide a discrete phase shift. The reflective
coefficient of each element is constant. The RIS-BS channel
(H2 ∈ CNR×NI ) exhibits a long timescale property because
the BS and RIS are both at fixed deployment locations. The
entries remain unchangedwithinmultiple symbol frames. For
the mobility of the UE, the UE-RIS channel (H1 ∈ CNI×NT )
varies on a considerably smaller timescale than that for the
quasi-static channel (H2).
Without loss of generality, suppose that the antennas of

the UE, BS, and RIS elements form half-wavelength uniform
planar arrays. Channel H1 at the d-th delay tap in the s-th
transmission block is given by

H1(s) =

√
NTNI
L1

L1∑
i=1

ρ1i,sδ(dT s − τ1i)

× ar (ϕr1i, θ
r
1i)a

H
t (ϕ

t
1i, θ

t
1i), (1)

where L1 is the number of distinguishable paths. ρ1i,s is the
complex gain of the i-th spatial multipath component in the
s-th transmission block. τ1i denotes the propagation delay,
which obeys a uniform distribution. δ(·) denotes the band-
limited pulse-shaping filter response. ϕr1i(θ

r
1i) and ϕt1i(θ

t
1i)

are the azimuth (elevation) angles of arrival and departure,
respectively. ar (·) and at (·) represent the receive and transmit
steering vectors, respectively. For a planar array with size
N = NyNz, the steering vector is given by

a(ϕ, θ) =
1√
NyNz

(1, · · · , ejkd(m sinϕ sin θ+n cos θ ),

· · · , ejkd((Ny−1) sinϕ sin θ+(Nz−1) cos θ ))T , (2)

where 0 ≤ m < Ny and 0 ≤ n < Nz are the y
and z indices of the antenna element, respectively. k =

2π/λ, λ is the signal wavelength. d is the spacing of the
antennas, d = 0.5λ.

The incident signals from the different transmitting anten-
nas are reflected by the RIS elements. Subsequently, addi-
tional phase shifts are added to the incident signals. Let the
phase shift vector be g = (g1ejφ1 , · · · , gNI e

jφNI )T , where
gn, n = 1, · · · ,NI denotes the reflective coefficient of the
n-th RIS element. φn ∈ (0, 2π ].
Channel H2 is modeled similarly to (1) and (2). Owing to

the scattering nature of mmWave, the number of distinguish-
able paths of UE-RIS and RIS-BS is significantly smaller
than the dimension of the channel matrix. When the UE
is sufficiently close, the channel responses of UE-RIS and
RIS-BS are considered to share common angular-domain and
delay-domain sparse properties.

A. SPARSE PROPERTY IN THE ANGULAR DOMAIN
The geometric channel model (1) is expressed in compact
form, as follows:

H1(s) = A1Rdiag (g1(s))AH
1T , (3)

where A1R = [ar (ϕr11, θ
r
11), · · · , ar (ϕ

r
1L1
, θ r1L1

)] ∈ CNI×L1

and A1T = [at (ϕt11, θ
t
11), · · · , at (ϕ

t
1L1
, θ t1L1

)] ∈ CNT×L1
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denote the steering matrices that remain unchanged during
the CE stage. g1(s) denotes the beam response vector in the
s-th transmission block.

g1(s)=

√
NTNI
L1

[ρ11,sδ(dTs−τ11),· · ·, ρ1L,sδ(dTs−τ1L1 )]
T ,

(4)

where g1(s) contains all the distinguishable nonzero
responses associated with the L1 paths.
Due to the limited angular quantization and resolution,A1R

andA1T are sampled using overcomplete dictionary matrices
constructed as

21T = [at,0, at,1, · · · , at,β1−1], (5a)

21R = [ar,0, ar,1, · · · , ar,β1−1], (5b)

where β1 denotes the planar angular grid size of H1(s).
β1 = βy1βz1 , βy1 = 2π/Fa1 , βz1 = π/Fa1 , where Fa1 is
the resolution for both the azimuth and the elevation angles.
In accordance with the angular grids, the directional response
matrix (21g(s)) is expressed as

21g(s) =

 g1,11(s) · · · g1,1β1 (s)
...

. . .
...

g1,β1 (s) · · · g1,β1β1 (s)

 . (6)

The nonzero angular gain (g1,ij(s), i, j ∈ {1, · · · , β1}) is
modeled as the state-space equation:

g1,ij(s) = ψg1,ij(s− 1) +

√
1 − ψ2w1,ij(s− 1), (7)

where ψ denotes the temporal correlation coefficient of the
gain. It is evaluated from Jake’s model as ψ = J0(2π fDTs),
where J0(·) is the zeroth order Bessel function of the first
kind, and fD denotes the maximum Doppler frequency.
w1,ij(s− 1) denotes the innovation noise, and w1,ij(s − 1) ∼

CN (0, q). The initial nonzero components of 21g(0) are
irrelevant to the corresponding noise matrix (W1(s)).
Based on the dictionaries with β1 grids, the UE-RIS chan-

nel can be rewritten as

H1(s) = 21R21g(s)2H
1T . (8)

Dictionaries with predefined grids allow the detection of
the nonzero entries of 21g(s), which indicate the angular
gains along with the implicit AoAs/AoDs of the dominant
paths [41], [42], [43], [44]. If the real beam does not fall
into one of the grids, off-grid leakage will occur, resulting
in extra nonzero entries in 21g(s). When the grid density
is sufficiently high, the mismatch error is conventionally
neglected [45]. It is assumed that only the L1(≪ β21 ) entries
of 21g(s) are nonzero, which indicates the sparsity property
in the angular domain.

Similarly, channel H2 is treated in the same way as H1(s).
The angular dictionary matrices are formed using β2 grids,
and the time-invariant H2 is expressed as

H2 = 22R22g2
H
2T . (9)

It is assumed that only the L2(≪ β22 ) entries of 22g are
nonzero.

B. SPARSE PROPERTY in the DELAY DOMAIN
In a multipath wireless environment, the delay spread
increases the duration of the received signal. This time dis-
persion results in frequency-selective fading and inter-symbol
interference (ISI), which is conventionally eliminated by the
guard interval in block transmission methods. As depicted
in [38], most mmWave channel taps are extremely weak. Very
few dominant paths are observed in the frame period (Ts),
which is less than the channel coherence time.

For channel H1, by dividing the delay on the γ1 time-slot
grids with resolution Fd = Ts/γ1, the l-th path delay can fall
into one grid (γ1,l = ⌊τ1l/Fd⌋, l ∈ {1, · · · ,L1}). Similarly,
the L2 path delays fall into the corresponding grids divided
by the γ2 grids. The cascaded L = L1L2 path delays are
associated with the L grids in the total γ1γ2 grids. Thus,
the cascaded channel exhibits a sparse property in the delay
domain. As delays are slow-varying parameters, the delay
support in consecutive s = 1, · · · , S frames is considered
to be constant.

The channel sparsity property in the delay domain is hid-
den in transmission and used to design a pilot pattern in a
block transmittal.

C. CASCADED CHANNEL MODEL
The cascaded channel is defined as

H(s) = H2DsH1(s), (10)

where Ds ≜ diag(g(s)). The cascaded channel includes the
phase configuration of the RIS elements. It is chosen as a
low-resolution discrete set.

Through the dictionary matrices, we have

H(s) = 22R22g2
H
2TDs21R21g(s)2H

1T . (11)

Sparse 21g(s) and 22g are to be acquired in the CE. The
advantage of the angular gain estimation lies in its detailed
beam direction and gain information. After obtaining direc-
tional gains, beamforming can be implemented to improve
the signal-to-noise ratio (SNR). Once the gains are accurately
known, the cascaded MIMO channel can be obtained.

Using vec(ABC) = (CT
⊗ A)vec(B) and vec(A

diag(b)C) = (CT
⊙ A)b, the channel is expressed in vector

format [22]:

vec(H(s))

= ((2∗

2T ⊙21R)g∗(s))T ⊗ (2∗

1T ⊗22R)vec(2g(s)), (12)

where vec(2g(s)) = vec(2T
1g(s) ⊗22g).

It is determined that 2g(s) is considerably sparser than
21g(s) and 22g. A sparse example of 2g(s) is shown in
Fig. 2 when NT = NR = NI = β1 = β2 = 4, with
L1 = 2 and L2 = 3. An arbitrary row or column has either
zeros or one nonzero entry. In addition, notably, in one-hop
mmWave transmissions, the dictionary size is selected to be
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FIGURE 2. Sparse structure in the angular domain.

2 ∼ 4 times the array size [38]. However, in this two-hop
system, the dictionary matrices need to be constructed with
a comparatively coarse grid to overcome high-dimensional
processing. The dictionaries can be first constructed using
one times the array size and subsequently refined around the
coarse AoAs/AoDs. Using this strategy, the off-grid error can
be ignored.

We define the vector to be recovered as h(s) ≜ vec(2g(s)).
The state-space model in (7) is established as follows:

h(s) = ψh(s− 1) +

√
1 − ψ2w(s− 1), (13)

wherew(s−1) ∼ CN (0,Q). Notably, zero entries are always
zero. The sparsity structure is irrelevant to s. It is a static
sparse model when ψ = 1, whereas it is a dynamic sparse
model when ψ < 1.

III. RECEIVED SIGNAL MODEL
For this doubly sparse cascaded CE, a block-diagonal pilot
pattern is designed. As the multitap response incurs ISI, zero
padding in the pilot frames is implemented to separate the
convolution of responses without a discrete Fourier trans-
formation [38]. This pattern is illustrated in Fig. 3. One
frame is divided into two subframes for the pilot and traffic
data transmission. The pilot subframe is divided into NTLNg
subslots. EachNg-length subslot includes one pilot signal and
Ng − 1 guard interval, Ng > L.

For the t-th UE, the pilot is transmitted as

xs,t =

(
xs,1,

Ng−1︷ ︸︸ ︷
0 · · · 0, xs,2,

Ng−1︷ ︸︸ ︷
0 · · · 0, · · · , xs,L ,

Ng−1︷ ︸︸ ︷
0 · · · 0

)
.

(14)

Inter-antenna interference can also be eliminated using a
block-diagonal pilot pattern. Let Xs,NT be the block pilot
symbols in a single-frame period.

Xs,NT =


xs,1 0Ng · · · 0Ng
0Ng xs,2 · · · 0Ng

0Ng 0Ng
. . . 0Ng

0Ng 0Ng · · · xs,NT

 . (15)

The pilot pattern results in multiple one-tap transmissions,
as follows:

Ys(m, l) = H(s)X(s, l) + Us(m), (16)

FIGURE 3. Block-diagonal pilot pattern.

where m denotes the probing instant. X(s, l) is

X(s, l) =


x1,l 0 · · · 0
0 x2,l · · · 0

0 0
. . . 0

0 0 · · · xNT ,l

 . (17)

Hence, the pilot is designed as X(s, l) =
P
L INT , where P is

the total transmit power, P =
∑L

l=1
∑NT

t=1 xt,l .
The multitap channel responses were probed in every sub-

slot and combined. The received signal model is expressed as
follows:

Ys(m) = H2DsH1(s)X(s) + Us(m), (18)

where Ys(m) ∈ CNR×NT , X(s) ∈ CNT×NT , and H(s) =

H2DsH1(s) contain all the L path responses. Consequently,
the sensing matrix is formed as A(s) ≜ ((2∗

2T ⊙

21R)g∗(s))T ⊗ ((XT (s)2∗

1T ) ⊗ 22R). The pilot tone obser-
vation was y(s) ≜ vec(Ys(m)). The observation noise was
u(s) ≜ vec(Us(m)). Thus, we have

y(s) = A(s)h(s) + u(s), (19)

where u(s) ∼ CN (0,R).

IV. SPARSE RECOVERY OF THE CASCADED CHANNEL
According to the sparse-property analysis described in
Section II, the cascaded channel is structurally sparse. It has
a fixed support in the angular and delay domains. The sparse
h(s) is expected to be recovered using a single measurement
vector (SMV) and multiple measurement vectors (MMVs).
Owing to the cascaded setting, the pilot tone observation
(y(s)) is anNRNT×1 vector, whereas h(s) is a β21β

2
2×1 vector.

Sensing matrixA(s) is mutually coherent. It is difficult to use
a single y(s) to recover h(s). It is necessary to seek help from
MMV y(1), · · · , y(s).

A. RELATED SPARSE RECOVERY METHODS
For an underdetermined sensing equation, the sparsest solu-
tion is to minimize the l0-norm of the unknown sparse vector.
The l0-norm is a nonconvex function, and its minimization
is an NP-hard problem. The l1-norm is the optimal con-
vex approximation of the l0-norm. The sparsity obtained by
minimizing the l1-norm is smaller than that obtained by min-
imizing the l2-norm. Based on the norm-optimization metric,
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there are many algorithms for recovering a sparse vector. For
the SMV, typical algorithms include Oracle LS, the greedy
class of matching pursuit (e.g., OMP), and the class of basis
pursuit algorithms including iterative l1-norm minimization
(e.g., the least absolute shrinkage and selection operator).
Oracle LS is the LS solution when the sensing matrix is
underdetermined. OMP conventionally requires prior knowl-
edge of sparsity. In addition, AMP, along with its improved
algorithms, is a promising method for solving the recovery
problem. However, its pilot overhead is typically high, owing
to its iterative structure and probability inference. Sparse
Bayesian learning and its sequential approaches also suffer
from high pilot overheads.

The retrieval of h(s) is challenging. Among the current
estimation methods, KF belongs to the category of maxi-
mum posterior estimation. It can track the time-varying state
and provide a recursive optimal estimate in a linear state-
spacemodel. KF incorporated with norm constraints has been
applied to sparse signal reconstruction using the temporal
correlation of sparse signals [46], [47], [48]. The SKF frame-
work exploits the updating and norm-correction structures,
providing a solution for sequentially estimating the static or
dynamic h(s) from the MMV. Compared with a method that
is dependent on SMV, which obtains the solution in MMV
by averaging multiple recovered sparse vectors regardless of
their temporal correlation, SKF is the choice for the recovery
of structurally sparse h(s). The SKF framework and corre-
sponding algorithms are preferred because they present a
filtering structure for static and dynamic h(s) in a sequential
processing manner, and they are easy to implement.

B. ORDINARY SPARSE KALMAN FILTER ALGORITHM
The optimization problem with the l1-norm constraint for the
recovery of sparse h(s) in the SKF framework is expressed as

min
S∑
s=1

{∥∥∥ĥ(s)−h(s)
∥∥∥2
2

}
s.t.

∥∥∥ĥ(s)∥∥∥
1
≤ ϵ. (20)

The inequality constraint is incorporated into the filtering
process using the pseudo-measurement technique:

0 = ∥h(s)∥1 − ϵ, (21)

where ϵ serves as the measurement noise. The variance (rϵ of
ϵ) is regarded as a tuning factor that regulates the tightness
of the constraint (||ĥ(s)||1≤ ϵ). Interestingly, taking ϵ to be
high intensity, e.g., rϵ = γ 2 with γ ≥ 200, yields satisfactory
accuracy [49].
For linear filtering, Eq. (21) must be linearized by the

subdifferential of the l1-norm, which is deduced as follows:

∂∥h(s)∥1
∂hn(s)

=
∂
∑√

hn(s)h∗
n(s)

∂hn(s)
=
hn(s)−

1
2 h∗

n(s)
1
2

2
, (22)

where hn(s) is the n-th element of h(s) in the s-th recursion.
Thus, the Jacobian matrix is written as

b(s) =

(
∂∥h(s)∥1
∂h1(s)

, · · · ,
∂∥h(s)∥1
∂h
β21β

2
2
(s)

)
hn(s)=ĥn(s)

. (23)

Algorithm 1 O-SKF for the Angular Gain Recovery
Input: ψ, y(s), A(s), Q, R, rϵ , ζ
Output: ĥ(s)
1: Initialize h(0) as a complexGaussian randomvector,P(0)

as 100Iβ21β22
2: while s ≤ S do
3: Calculate (27)–(31)
4: τ = 0;

5: while
∣∣∣∣ ∥∥∥ĥs(τ )∥∥∥1 −

∥∥∥ĥs(τ − 1)
∥∥∥
1

∣∣∣∣ < ζ do

6: τ = τ + 1;
7: ηs(τ ) = 1;
8: Calculate (32)-(36)
9: end while

10: end while

The linearized pseudo-measurement is constructed as

0 = b(s)h(s) − ϵ. (24)

Pseudo-measurement (24) and pilot tone observation (19)
cannot be utilized simultaneously to construct a complete
filtering algorithm. The complete algorithm suffers from a
long convergence time and a large reconstruction error. Con-
sequently, two-stage correction is utilized. The first stage is a
common five-step KF procedure using (13) and (19), whereas
the second stage is implemented to iteratively correct the l1-
norm using (24). The ordinary sparse filtering algorithm is
described in Algorithm 1.

C. ACCELERATED SPARSE KALMAN FILTER ALGORITHM
To reduce the l1-norm of the angular gain vector rapidly with
a few pilot tone observations, an adaptive factor is introduced
into the pseudo-measurement equation. This renders the l1-
norm correction to reach a stable value faster. Considering the
dynamic model of (13), the sparse reconstruction problem is
given by

min
S∑
s=1

{∥∥∥ĥ(s)−h(s)
∥∥∥2
2

}
s.t.

∥∥∥ĥ(s)∥∥∥
1
≤ η(s)ϵ. (25)

The pseudo-measurement equation is established as

0 = ∥h(s)∥1 − η(s)ϵ, (26)

where η(s) is another factor introduced to tune the variance
(rϵ) to η2(s)rϵ . This is intended to force the l1-norm to reduce
at a high speed in early iterations. To guarantee that the
l1-norm is convergent, η(s) should be designed to increase
gradually with s. The factor should reach one when s tends
toward infinity [46]. The typical function for η(s) is chosen
as η(s) = 1 − η(0)exp(−µs/T ), where η(0), T, and µ are
the profile parameters used to adjust the l1-norm correction
procedure.

The filtering process follows the same stages as those
of O-SKF. It comprises the state correction by pilot tone
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observation and the l1-norm correction by the current pseudo-
measurement. The procedure is as follows.

In the first stage, the one-step state prediction is given by

h(s |s− 1) = ψh(s− 1). (27)

The one-step prediction of estimate error covariance is
expressed as

P(s |s− 1) = ψ2P(s− 1) + (1 − ψ2)Q. (28)

The gain matrix is given by

K(s)=P(s |s−1)AH (s)(A(s)P(s |s−1)AH (s)+R)−1. (29)

Thus, the current estimate is updated as

ĥ(s) = h(s |s− 1) + K(s)(y(s) − A(s)h(s |s− 1)). (30)

The estimate error covariance is updated as

P(s) = P(s |s−1) − K(s)A(s)P(s |s− 1). (31)

In the second stage, the l1-norm correction of ĥ(s) is
performed in an iterative manner. It starts with the current
estimate (ĥ(s)) in (30). The ĥ(s) is regarded as hs(0), and the
estimated error covariance (P(s)) in (31) is regarded as Ps(0).
The one-step l1-norm prediction is as follows:

hs(τ |τ − 1) = hs(τ − 1). (32)

The estimate error covariance prediction is given by

Ps(τ |τ − 1) = Ps(τ − 1). (33)

Thus, the l1-norm correction gain is obtained as

ks(τ )

= Ps(τ − 1)bHs (τ )(bs(τ )Ps(τ − 1)bHs (τ ) + η2(τ )rϵ)−1.

(34)

The estimate is updated as

ĥs(τ ) = hs(τ − 1) − ks(τ )bs(τ )hs(τ ). (35)

The estimate error covariance is updated as

Ps(τ ) = Ps(τ − 1) − ks(τ )bs(τ )Ps(τ − 1). (36)

In the second stage of the l1-norm correction, the process
is performed with each SMV. Let η(τ ) = 1 − exp(−µτ/T ).
The halting condition is determined by the absolute differ-
ence between two adjacent l1-norm values. In other words,∣∣∣∣ ∥∥∥ĥs(τ )∥∥∥1 −

∥∥∥ĥs(τ − 1)
∥∥∥
1

∣∣∣∣ < ζ , where ζ is a small positive

value. After processing with the current SMV, hs(τ ) and
Ps(τ ) are considered the current estimates of h(s) and P(s),
respectively. Subsequently, filtering continues when the next
SMV is available. The proposed algorithm is described in
Algorithm 2.

Algorithm 2 A-SKF for Angular Gain Recovery
Input: ψ, y(s), A(s), Q, R, rϵ , η(0), µ, T, ζ
Output: ĥ(s)
1: Initialize h(0) as a complexGaussian randomvector,P(0)

as 100Iβ21β22
2: while s ≤ S do
3: Calculate (27)-(31)
4: τ = 0;

5: while
∣∣∣∣ ∥∥∥ĥs(τ )∥∥∥1 −

∥∥∥ĥs(τ − 1)
∥∥∥
1

∣∣∣∣ < ζ do

6: τ = τ + 1;
7: ηs(τ ) = 1 − η(0)exp(−µτ/T )
8: Calculate (32)–(36)
9: end while

10: end while

D. COMPUTATIONAL COMPLEXITY
The computational complexity is evaluated by the floating-
point operation (FLOP) for addition, multiplication, and
square-root calculations. The inverse of a square matrix is
calculated using the Cholesky decomposition. The computa-
tional complexity is closely related to the dimensions of the
state and measurement, which are β21β

2
2 and NRNT , respec-

tively. According to the details in [50] for a real domain
model with a high state dimension (a) and a lowmeasurement
dimension (b), in the one-step implementation of (27)–(31),
the addition FLOP is a3 +0.5b3 +3a2b+2ab2 −0.5b2 −ab,
the multiplication FLOP is a3 + 0.5b3 + 3a2b + 2ab2 −

3a2 + 3.5b2 + 2ab, and the square-root FLOP is b. Each
FLOP is doubled in the complex-domain channel calcula-
tions. The FLOPs of (32)–(36) and (23) are ignored because
the pseudo-measurement yields a numerical value. The inver-
sion calculation in (34) is reciprocal. Hence, the computa-
tional FLOP of the filtering algorithm is mainly dominated
by O(2Sβ61β

6
2 ). The complexity of the OMP algorithm is

O(NTNRNIS) [22]. Although the complexity of SKF is higher
than that of an OMP algorithm, the filtering framework
improves the NMSE, as shown in the simulations.

V. SIMULATION AND ANALYSIS
In the simulation, the algorithm performance was first eval-
uated in terms of the NMSE, estimation convergence pro-
cedure, support capture, and pilot overhead when ψ = 1.
After that, the performances of the two SKF-based algo-
rithms in dynamic scenarios with ψ < 1 were compared
with respect to the NMSE, tracking ability, and the l1-norm
convergence speed. For the evaluation, mmWave channel
models (1) and (2) were adopted for both the UE-RIS and
RIS-BS channels. The parameters of AoAs/AoDs, along
with the corresponding angular gains in two scenarios,
are listed in Table 1. The angular dictionaries are con-
structed using the same parameters as those in Table 1. Each
antenna array is 2 × 2 the planar one, and NR = NT =

NI = 4. The RIS phase shift vector is periodically set
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TABLE 1. The cascaded channel parameters for the two scenarios.

FIGURE 4. NMSE versus SNR (S1).

to (1, 1, 1, 1), (1, j,−1,−j), (1,−1, 1,−1), (1,−j,−1, j) in
MMV. The A-SKF parameters are P(0) = 100Iβ21β22 , Q =√
1 − ψ2Iβ21β22 , R = INTNR , and rϵ = 40000. The profile

parameters for η(τ ) are η(0) = 0.9, T = 10, and µ = 0.02.
The initial O-SKF parameters were the same as those for A-
SKF. The estimates of Oracle LS and OMP were averaged
using the MMV. The estimate in the last training frame (S) is
utilized for O-SKF and A-SKF. NMSE is defined as

NMSE(ĥ(S)) =
E{∥ h(S) − ĥ(S) ∥

2
2}

E{∥ h(S) ∥
2
2}

. (37)

A. PERFORMANCE ANALYSIS in STATIC SCENARIOS
1) S1: L1 = 2, L2 = 3.

The NMSE curves for ĥ(S) versus the SNR for Ora-
cle LS, OMP, O-SKF, and A-SKF are shown in Fig. 4
using 100 MMV. Evidently, the NMSE of Oracle LS is
extremely high; thus, it fails to perform CE. The NMSE curve
of the OMP was flat, owing to incorrect support capture. The
A-SKF achieved the best NMSE at SNR values greater than
5 dB. The NMSE gap between the O-SKF and A-SKF is
large because the O-SKF is unable to reach its stable state
at 100 MMV.

The estimation convergence procedure curves of the
SKF-based algorithms at SNR = 10 dB are shown in Fig. 5 for

FIGURE 5. Estimation procedure versus the MMV number (S1).

FIGURE 6. Capture of angular support (S1).

FIGURE 7. NMSE versus the MMV number (S1).

a complex angular gain denoted as h1. As can be observed, the
transition process of A-SKF is faster than that of O-SKF. A-
SKF only needs 20 MMV to reach a stable state, and O-SKF
requires more MMV owing to its slow convergence. This
phenomenon indicates that the pilot overhead can be as small
as 20 pilot blocks using A-SKF. Therefore, it is beneficial to
perform CE using A-SKF.

The support capture result of A-SKF for h(S) at SNR =
10 dB, compared with that of O-SKF, and the real support are
shown in Fig. 6. The A-SKF performance is quite good when
the SNR is as low as 10 dB. Moreover, the corresponding
angular gains were estimated accurately. The capture error of
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FIGURE 8. NMSE versus SNR (S2).

FIGURE 9. Estimation procedure versus the MMV number (S2).

FIGURE 10. Capture of angular support (S2).

A-SKF was significantly lower than that of O-SKF. Although
errors occur because of the l1-norm constraint approach, the
support capture of A-SKF is better than those of Oracle LS
and OMP, which are unable to capture the support in this
case. This indicates that accurate AoAs/AoDs, along with the
angular gains, can be estimated by SKF-type algorithms.

In Fig. 7, the curves of NMSE versus the MMV numbers
of O-SKF and A-SKF are shown. As can be observed, the
NMSE decreases with the MMV number. A-SKF requires
fewer pilot blocks than O-SKF to achieve a tolerant NMSE.

In addition to the results, the profile parameters of the adap-
tive factor (η(τ )) are critical for the convergence of l1-norm.

FIGURE 11. NMSE versus the MMV number (S2).

FIGURE 12. NMSE versus ψ (S1).

FIGURE 13. Dynamic tracking of the angular gain (S1).

For the chosen exponentially increasing function, a large η(0)
implies fast correction of the l1-norm at early iterations with
an SMV. A small η(0) suffers from slow convergence, and a
suitable η(0) can be selected by balancing the sparsity and
convergent speed. Moreover, parameter T should be less than
the MMV number, and µ can be selected according to the
profile.

2) S2: L1 = 1, L2 = 1.
In the scenario of one path in S2, the results are shown

in Fig. 8, Fig. 9, Fig. 10, and Fig. 11, where it can be
observed that A-SKF still presents the best NMSE. A-SKF
also achieves faster convergence than O-SKF. Notably, A-
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FIGURE 14. The l1-norm of the angular gain vector (S1).

FIGURE 15. NMSE versus ψ (S2).

SKF can capture the support and accurately recover the
angular gain. Similarly, O-SKF exhibits a small support error.
Conversely, Oracle LS and OMP still failed to perform CE.

Simulations were also conducted in S1 and S2, with a
fixed RIS phase-shift vector ((1,−j,−1, j)). A-SKF failed to
capture the support in S1, whereas it was successful in S2.
However, O-SKF was unable to capture the support in either
scenario. The corresponding figures are not shown here for
brevity. This indicates that a variant RIS phase-shift setting is
necessary for the cascaded CE.

Based on the above results in static scenarios, A-SKF
is suitable for CE as it can capture the support with
low pilot overhead at low SNRs. Further, it can pro-
vide better beam information than other algorithms that
ignore the temporal correlation of nonzero angular gains.
The constructed pseudo-measurement by introducing an
adaptive factor (η(s)) can be implemented to enhance
performance.

B. PERFORMANCE ANALYSIS in DYNAMIC SCENARIOS
The angular gains listed in Table 1 were considered as the
initial real parameters in dynamic scenarios. The gains vary
recursively with s when ψ < 1.
1) S1: L1 = 2, L2 = 3.

With the parameters in S1, the NMSE curves versus ψ at
SNR = 10 dB are shown in Fig. 12, where the MMV number

FIGURE 16. Dynamic tracking of the angular gain (S2).

FIGURE 17. The l1-norm of the angular gain vector (S2).

was 100. As can be observed, a smallψ corresponds to a large
NMSE. Notably, A-SKF and O-SKF can capture the angular
support, although more errors are obtained. In Fig. 13, the
tracking curve of A-SKF for h1(s) is shown in comparison
with that of O-SKF, as well as the real gain. It was observed
that A-SKF can track the channel to some extent. Fig. 14
shows the l1-norm convergence curves of the two filtering
algorithms for the angular gain vector. The transition process
is almost the same as that in the static scenarios. This indicates
that A-SKF does not require more pilot overhead in dynamic
scenarios.

2) S2: L1 = 1, L2 = 1.
Similar results in S2 are shown in Fig. 15, Fig. 16, and

Fig. 17. As shown, A-SKF exhibits better performance in
terms of NMSE and the necessary MMV number in compar-
ison with O-SKF, and it successfully captured the support.
Additionally, the convergence speed of A-SKF is faster than
that of O-SKF. The pilot overhead can be reduced to less than
10 blocks for a certain CE.

From the simulation results, it is concluded that cascaded
CE can be accomplished by SKF-type algorithms to find
implicit AoAs/AoDs and angular gains. A-SKF can acquire
accurate angular support at low SNRs when the available
pilot overhead is low. Since SKF-type algorithms do not
require any prior sparsity and support information, they can
be implemented online in both static and dynamic scenarios.
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VI. CONCLUSION
A channel-estimation method based on the SKF frame-
work is proposed for RIS-aided mmWave MIMO systems.
The sparse angular gain vector sampled by overcomplete
dictionaries is recovered through state-space modeling and
block-diagonal pilot-pattern design. The l1-norm pseudo-
measurement equation is linearized by the deduced subdif-
ferential of the sparse complex gain vector. In the proposed
algorithm, an adaptive factor is introduced to control the
noise covariance of the l1-norm in the pseudo-measurement
equation. Simulations demonstrated that the method has the
advantages of a superior NMSE, accurate support capture,
rapid convergence speed, and low pilot overhead. Its com-
putational complexity is moderate, owing to the cascaded
settings. The method is robust to angular dictionaries and
noisy environments. It is suitable for implementation under
both static and dynamic scenarios.
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