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ABSTRACT Sparse subspace clustering is a widely used method for clustering high dimensional data,
but the traditional method is complex and requires prior information that can be difficult to obtain in
unsupervised scenarios. In this paper, we propose a new method called Self-constrained Sparse Subspace
Clustering (ScSSC) that adds two self-constraints to find prior information, simplifying the clustering of high
dimensional data. The proposed algorithm is a non-deep neural network model that extends the traditional
sparse subspace clustering objective function and transforms the clustering problem into a spectral clustering
optimization problem. The algorithm can discover a high-quality cluster structure without prior information,
making it highly effective in unsupervised scenarios. Our experiment analysis shows that the proposed
algorithm outperforms other comparison methods in terms of three metrics. The algorithm’s robustness
and stability are further demonstrated through ablation experiments and parameter analysis. The proposed
algorithm reduces the complexity of the clustering method, making it a valuable tool in understanding and
analyzing information in datasets.

INDEX TERMS Subspace clustering, sparse subspace clustering, self-constrained clustering.

I. INTRODUCTION
Clustering is a common data analysis technique that par-
titions objects in a dataset into different groups or cate-
gories, such that objects within the same group exhibit high
similarity, while those in different groups have low simi-
larity [1], [2], [3]. Subspace clustering, a special clustering
method, has been widely studied and applied in many areas,
such as computer vision, bio-informatics, and social network
analysis. The basic principle of subspace clustering is to
represent each object in the dataset as a vector and decompose
these vectors into several subspace, followed by clustering
in each subspace. The advantages of subspace clustering are
its ability to handle high-dimensional data and to discover
multiple subspace within a dataset, thereby better capturing
the inherent structure of the data. Moreover, subspace clus-
tering can handle noise and outliers in the dataset, thereby
improving the accuracy and robustness of clustering. In sum-
mary, subspace clustering is a powerful clustering method
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that can help us better understand and analyze information
in datasets [4], [5], [6].

Sparse subspace clustering is a technique for clustering
data points that lie in a union of low-dimensional sub-
spaces. The method assumes that data points within the
same subspace can be represented as linear combinations
of a few basis vectors. Sparse subspace clustering applies
self-representation to learn a sparse graph, which can be
used to cluster the data points. The method was first pro-
posed in [7] and has since been extended and improved by
other researchers. Some related techniques include robust
subspace clustering, which uses low-rank representation to
segment subspace [8], and deep subspace clustering, which
applies deep learning techniques to learn a hierarchical rep-
resentation of the data [9]. Other methods use multi-kernel
techniques or constrained Laplacian rank algorithms to learn
a robust graph [10], [11], [12].

The optimization problem for traditional sparse subspace
clustering involves finding a sparse representation of the
data points in terms of a dictionary of atoms that span the
subspace. This is typically formulated as an ℓ1-norm mini-
mization problem, where the objective function is the sum

77906
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0009-0009-3063-8594
https://orcid.org/0000-0002-7383-0588


S. Zhao: Sparse Subspace Learning Based on Learnable Constraints for Image Clustering

FIGURE 1. Illustration of the proposed method.

of the ℓ1-norm of the sparse representations subject to a
constraint that enforces consistency with the subspace model.
The steps of finding the feature matrix are very complex
(such as alternating direction method of multipliers (ADMM)
or proximal gradient descent), and many functions are used
in the process, resulting in relatively complex time com-
plexity [7]. The optimization problem for traditional spectral
clustering is relatively tractable, which involves finding the
eigenvectors of the Laplacian matrix of the data graph and
using them to embed the data points into a low-dimensional
space. This embedding is then clustered using a standard
clustering algorithm such as k-means [13], [14], [15]. Based
on the above analysis, an intuitive improvement to sparse
subspace clustering lies in the optimization method, that is,
the sparse subspace clustering problem is transformed into
spectral clustering problem, and the corresponding optimiza-
tion method can be greatly simplified.

The use of prior information can enhance the performance
of an algorithm on downstream tasks, which is a common-
sense in the field of machine learning. Although the sparse
subspace clustering algorithm has theoretical advantages,
it also needs prior information to improve the performance
of the algorithm in terms of clustering accuracy and other
metrics, and the improvement of performance is often posi-
tively correlated with the degree of prior information. On one
hand, it is difficult to gain prior information in unsupervised
scenarios. On the other hand, inaccurate prior information can
not improve the clustering results, but reduce the clustering
effect [16]. In recent years, how to improve the perfor-
mance of algorithms in unsupervised scenarios has become

a hot research topic. The key is to find a substitute for
prior information, that is, to improve the performance of
algorithms without prior information. Fortunately, in recent
years, the idea and means of learning self-constrained infor-
mation from existing data to guide the learning process
have been proposed, which provides a new direction for the
performance improvement of unsupervised sparse subspace
clustering [17], [18], [19].

In this paper, in order to extract effective subspace structure
under the unsupervised scene and in a more straightfor-
ward manner, we propose a novel sparse subspace clustering
model, called self-constrained sparse subspace clustering
(ScSSC) algorithm. Fig.1 gives the illustration of our pro-
posed method. Specifically, the main contributions of this
paper are as follows.

• The proposed method extends the objective function of
traditional sparse subspace clustering by adding pair-
wise and label self-constrained terms to it, which can
help to improve the clustering performancewithout prior
information and reduce the difference between the clus-
tering results and users’ expectations.

• Inspired by the optimization of spectral clustering opti-
mization problem, which involves finding the eigen-
vectors of the Laplacian matrix of the data graph,
we simplify the optimization process of sparse subspace
clustering into a more straightforward process.

• Extensive experiment analysis shows that the proposed
algorithm outperforms other comparison methods in
terms of three metrics, and the algorithm’s robustness
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and stability are further demonstrated through ablation
experiments and parameter analysis.

The outline of the rest of this paper is described as fol-
lows. Section II describes the related work of this paper.
In Section III, We present the theory and implementation of
our self-constrained subspace clustering algorithm in detail.
In Section IV, we demonstrate the proposed method’s per-
formance and effectiveness through experiments. Section V
summarizes the article and makes a future outlook for the
proposed method.

II. RELATED WORK
A. UNSUPERVISED SUBSPACE CLUSTERING
Unsupervised subspace clustering is a popular research topic
in the field of pattern analysis and machine intelligence.
One approach to unsupervised subspace clustering is based
on sparse representation, where each data point is repre-
sented as a linear combination of a few basis vectors from
a dictionary [7]. Another approach is based on low-rank
representation, where each data point is represented as a
linear combination of other data points in the same sub-
space [10]. Other methods include spectral clustering with
constraints [15], subspace clustering via joint L2,1-norm
low-rank and sparse representation [6], and robust principal
component analysis-based subspace clustering [20]. The lim-
its of unsupervised subspace clustering are that it assumes
that the data lies in a union of low-dimensional subspace,
which may not be true for all datasets, and it requires the
number of subspace to be known or estimated beforehand,
which can be difficult in practice. Additionally, unsupervised
subspace clustering may not perform well when the subspace
are highly overlapping or when there is noise in the data.

B. SEMI-SUPERVISED CLUSTERING
Semi-supervised clustering is a popular research topic in
the field of pattern analysis and machine intelligence. One
approach to semi-supervised clustering is based on graph-
based methods, where a graph is constructed based on pair-
wise similarity between data points, and the labels of the
labeled data points are propagated to the unlabeled data
points via graph diffusion [21]. Another approach is based
on subspace clustering with constraints, where the subspace
structure of the data is used as a constraint to guide the cluster-
ing process [22]. Other methods include constrained spectral
clustering [23], co-training-based clustering [24], and self-
training-based clustering [25]. Semi-supervised clustering
can effectively reduce the difference between the clustering
results and users’ expectations by leveraging the availability
of labeled data to guide the clustering process. However,
semi-supervised clustering also has its limitations. One limi-
tation is that it requires a small amount of labeled data, which
may not always be available or may be expensive to obtain.

C. SELF-CONSTRAINED CLUSTERING
Self-supervised clustering with deep models has recently
gained attention as a promising approach to unsupervised

learning. One popular method is based on contrastive learn-
ing, where the model learns to distinguish between similar
and dissimilar pairs of data points [26]. Another method is
based on clustering-based objectives, where the model learns
to cluster the data points in an unsupervised manner [27].
A third method is based on generative modeling, where the
model learns to generate realistic samples from the data
distribution [28]. Other methods include self-supervised rep-
resentation learning via pretext tasks [29] and self-supervised
learning via multi-task objectives [30]. While self-supervised
clustering with deep models has shown promising results,
one limitation is that they often require large amounts of
data and computational resources to train effectively. Another
limitation is that the quality of the learned representations
can be highly dependent on the choice of hyperparameters
and architecture, which can be difficult to optimize in prac-
tice [31].

III. THE PROPOSED METHOD
A. PRELIMINARY
Sparse subspace clustering (SSC) is a popular technique for
clustering high-dimensional data that lie in low-dimensional
subspace. The basic idea behind SSC is to represent each data
point as a linear combination of other data points, with the
constraint that only a few coefficients are nonzero. Mathe-
matically, given an input data matrix X of size n×d , we seek
to find a sparse representation matrix Z of size n × n such
that:

min
Z
||X− ZX||2F + λ||Z||1 (1)

where λ is a regularization parameter that controls sparsity.
Spectral clustering is a graph-based clustering method

that aims to partition data points into groups based on their
similarity. The Laplacian matrix L of the graph is decom-
posed into its eigenvectors and eigenvalues, which are used
to embed the data points into a low-dimensional space. The
objective function of spectral clustering is typically formu-
lated as a trace minimization problem:

min
Y

Tr(YTLY) s.t. YTY = I (2)

where Y is an n× k indicator matrix that encodes the cluster
assignments. Once the data points are embedded in this space,
they can be clustered using standard techniques such as k-
means.

In spectral clustering, we construct a similarity matrix S
using pairwise or other types of similarities. Let Sij be the
similarity between data points xi and xj, then we have:

Sij =

 exp

(
−
∥xi − xj∥2

2σ 2

)
if xj ∈ kNN(xi),

0, otherwise

(3)

where xi and xj are the feature vectors of data points xi and
xj, respectively, σ is a parameter that controls the width of
the Gaussian kernel, and kNN(xi) denotes the set of indices
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of the k-nearest neighbors of data point xi. The value of k
determines howmany nearest neighbors are considered when
constructing the similarity matrix. If xj is not one of the
k-nearest neighbors of xi, then Sij = 0. The diagonal elements
are set to 0 to ensure that each data point is not similar to itself.
The similarity matrix S is sparse because each data point is
only similar to a few other data points.

According to our observation, we find that the inverse
problem of sparse subspace is spectral decomposition prob-
lem based on sparse similarity matrix. Specifically, for SSC,
we first construct sparse similarity matrix Z aboutX, then the
inverse problem of SSC is as follows.

min
Y
||Y− ZY||2F (4)

A further transformation is as follows.

||Y− ZY||2F = ||(I− Z)Y||2F
= Tr(YT (I− Z)T (I− Z)Y) = Tr(YTLZY)

(5)

whereLZ = I−(Z+ZT−2ZTZ). So we can solve an inverse
problem to obtain sparse representations using eigenvalue
decomposition efficiently.

B. SELF-CONSTRAINED SPARSE SUBSPACE CLUSTERING
The pairwise self-constrained term is designed to enhance
the similarity matrix of spectral clustering. It does this by
penalizing pairs of data points that are assigned to different
clusters but have a high similarity score. Mathematically, the
pairwise self-constrained term can be expressed as �P =

||YYT
− P||2F , where P is a n × n pairwise variable matrix

to save pairwise self-supervised constraints.
The label self-constrained term improves the label features

of spectral clustering by encouraging data points with similar
labels to be assigned to the same cluster. This helps to ensure
that data points with similar labels are more likely to be
assigned to the same cluster, which can also improve the
accuracy of the clustering results. Mathematically, the label
self-constrained term can be expressed as �B = ||Y − B||2F ,
where B is a n × k label variable matrix to save label self-
supervised constraints.

By simultaneously using these two self-constrained terms
in SSC, we can take advantage of their complementary
strengths and improve both the similarity matrix and label
features of spectral clustering. This can lead to more accurate
and robust clustering results, especially when prior informa-
tion about the data is limited or unavailable.

Combining two self-constrained terms with the objective
function of sparse subspace clustering, the optimization prob-
lem become

min
P,B,Y

� = ||Y− ZY||2F + α||YYT
− P||2F + β||Y− B||2F

s.t.,YTY = Ik , ||Pi.||22 = 1, ||Bi.||22 = 1 (6)

where Z is the predefined sparse similarity matrix about X, α
is used to control the contribution of pairwise self-constrained

term and β is the weight of label self-constraint item. Unlike
the semi-supervised clustering algorithm, P and B are treated
as variables in the new optimization problem. At the same
time, the roles of ||Pi.||22 = 1 and ||Bi.||22 = 1 are to use
the normalization of L2 norm to make P and B sparse, which
strengthens the high reliable values and weakens the low
values.

C. OPTIMIZATION ALGORITHM
To solve the problem at hand, we can apply a well-known
technique called alternating optimization. This approach
involves fixing a set of variables and optimizing the objective
functionwith respect to the remaining variables by alternating
between them. In our case, we will start by fixing the matrices
Y and P and then update the matrix B in one step. Next,
we will fix Y and B and update P in another step. Finally,
we will fix the matrices P and B and updateY in the last step.
By iteratively repeating these steps until convergence, we can
efficiently arrive at a solution for our problem.

Update P while fixing B and Y: When the matrix Y is
fixed, the objective function can be resolved into two inde-
pendent subproblems. The first subproblem is to minimize
�1 as follows:

min
P

�1 = ||YYT
− P||2F , s.t., ||Pi.||22 = 1 (7)

and the second subproblem is to minimize �2 as follows:

min
B

�2 = ||Y− B||2F , s.t., ||Bi.||22 = 1. (8)

To find the optimal solution for P, we need to compute the
gradient of the sub-objective function and set it equal to zero.
This gives us the following equations:

1�1 =

n∑
i=1

n∑
j=1

[(Yi.YT
j. − Pij)2 + η(P2

ij − 1)] (9)

Solving these equations gives us the optimal solution for
P, which can be expressed as

∂1�1

∂Pij
= 2Pij − 2Yi.YT

j. + 2ηPij = 0

n∑
j=1

P2
ij = 1.

(10)

Therefore, we can obtain the optimal solution for P as
follows:

P̃ij =

√√√√ (YYT )2ij∑n
r=1(YYT )2ir

(11)

If we calculate the optimal solution for P directly with the
formula, they may lose their final state values. To avoid this,
we take a gradual approach to obtain the final state, we
combine the previous state of P with the optimal solution:

P(t)
← P(t−1)

+ λP̃. (12)

where λ ∈ [0, 1] is a weight of the new states.
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Update P while fixing B and Y: Similarly, according to
the method of updating Y and using the Lagrange multiplier
method, it can be transformed into:

1�2 =

n∑
i=1

k∑
j=1

[(Yij − Bij)2 + η(B2
ij − 1)] (13)

According to the constraint conditions and gradient 0, the
optimal solution of B satisfies:

∂1�2

∂Bij
= 2Bij − 2Yij + 2ηBij = 0

k∑
j=1

B2
ij = 1.

(14)

The optimal solution of B is:

B̃ij =

√√√√ Y2
ij∑k

r=1Y
2
ir

(15)

Similarly, we combine the state at the previous time of Bwith
the optimal solution:

B(t)
← B(t−1)

+ λB̃. (16)

λ ∈ [0, 1] is the same weight of the new states as for the
optimization ofP. In this article, we set the λ value to decrease
as the number of iterations increases. The reason is that the
weight of the self-supervised information extracted from Y
is decreasing in the iterative process. In other words, the
last sentence means to lean step by step towards the optimal
solution. Therefore, we can use negative exponents to set λ

λ(t) = exp(−t) (17)

Once we have solved for P and B, we can move on to the next
step.

Update Y while fixing B and P: When P and B are fixed,
since

||YYT
− P||2F = Tr((YYT

− P)T (YYT
− P))

= 2Tr(I− YTPY) (18)

we can get the following simplified optimization subproblem:

min
Y

� = ||Y− ZY||2F + α||YYT
− P||2F + β||Y− B||2F

= Tr(YT (I− (Z+ ZT − 2ZTZ))Y)

+ 2αTr(I− YTPY)+ β||Y− B||2F
= Tr(YT L̂ZY)+ β||Y− B||2F (19)

where L̂Z = I− (Z+ZT − 2ZTZ+ 2αP) = I− (Ẑ+ 2αP),
and I is the identity matrix of appropriate size.
Then the problem becomes a label propagation problem.

In this case, its closed-form solution Ŷ is:

Ŷ =
β

1+ β
(I−

1
1+ β

(Ẑ+ 2αP))−1B (20)

Usually, people don’t calculate (I − 1
1+β

(Ẑ + 2αP))−1

directly. Due to

(I−
1

1+ β
(Ẑ+ 2αP))−1

= lim
t→∞

[
(

1
1+ β

(Ẑ+ 2αP))t−1

+
β

1+ β

t−1∑
i=0

(
1

1+ β
(Ẑ+ 2αP))i

]
(21)

we can calculate Y iteratively as follows:

Y(t+1)
←

1
1+ β

(Ẑ+ 2αP)Y(t)
+

β

1+ β
B (22)

Initialization of P and B: The clustering effect of this
algorithm depends on the quality of matrix P and B. The
closer P and B are to the true pairwise and label informa-
tion, the better the clustering effect will be. Since we only
can know that objects and themselves belong to the same
clusters from unlabeled data in the initial state, we use the
self-relations of objects to initialize P, i.e., the initialized P is
equal to an identity matrix I:

P(0)
ij =

{
1 i = j
0 otherwise

(23)

Furthermore, we assume a cluster is represented by at last
one object. We select k objects from the data set to repre-
sent different clusters. We wish to use the pairwise relations
between objects and these cluster representatives to evaluate
the relations between objects and the clusters. Therefore,
while the pairwise-relation matrix P is fixed, we select k
objects from X and use their corresponding columns of P to
initialize B, i.e.,

B(0)
= [P(0)

.r(1), . . . ,P
(0)
.r(k)], (24)

where r(j) denotes the subscript of the j-th selected column.
In addition, we use max-min distance method to select k
objects with maximum margins from feature matrix, which
can obtain a fixed initial result.

The set of equations presented in this section provide us
with a starting point for optimizing the objective function
using an alternating optimization technique. This approach
is particularly effective since it allows us to efficiently opti-
mize the variables P, B, and Y in our optimization problem
while also satisfying any necessary constraints. By alternat-
ing between fixing a subset of variables and optimizing the
objective function with respect to the remaining variables,
we can arrive at a solution that meets our optimization goals.
To summarize the process, we present Algorithm 1, which
describes a self-constrained subspace clustering algorithm
based on the principles of alternating optimization.

IV. EXPERIMENT ANALYSIS
In this section, we analyze the performance of the pro-
posed method from the aspects of clustering performance,
parameter analysis, etc. All the experimental results are in
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Algorithm 1 Self-Constrained Sparse Subspace Clustering

Require: Data matrix X ∈ Rn×m, number of clusters k ,
regularization parameters α, β, maximum iterations t

1: Construct sparse similarity matrix Z about X.
2: Initialize P as an n× n diagonal matrix by Eq 23.
3: Initialize B as an n× k matrix by Eq 24.
4: for i = 1 to t do

5: Update P: P← P+ λP̃, where P̃ij =

√
(YYT )2ij∑n
r=1(YYT )

2
ir

6: Update B: B← B+ λB̃, where B̃ij =
√

Y2
ij∑k

r=1 Y
2
ir

7: Update Y: Y← 1
1+β

(Ẑ+2αP)Y+ β
1+β

B, where Ẑ =
Z+ ZT − 2ZTZ

8: end for
Implement a classical clustering algorithm on Y to get
the clustering result C

9: return the clustering result C

Matlab2021a with Intel(R) Core(TM) i7-10510U CPU @
1.80GHz 2.30GHz and 16.0GB RAM.

A. DATASETS AND EVALUATION METRICS
Eight widely-used benchmark datasets are used in the exper-
iments, there includes different types, such as face image
data, object image data, protein data, and handwritten digit
data. According to the size of the dataset, these datasets are
divided into small-scale and large-scale data, their detailed
descriptions are as follows:

Small-scale dataset: [ORL]ORL dataset is a collection of
face images taken at the Olivetti Research Laboratory (ORL)
between April 1992 and April 1994. The dataset contains
400 images from 40 distinct subjects. The images vary in
lighting, facial expressions, and facial details. The size of
each image is 92×112 pixels, with 256 grey levels per pixel.
[COIL20] The COIL20 dataset is a database of gray-scale
images of 20 objects. The objects were placed on a motorized
turntable and rotated through 360 degrees to vary object
pose with respect to a fixed camera. Images of objects were
taken at pose intervals of 5 degrees. This corresponds to
72 images per object. [Yeast] The Yeast dataset consists of
a protein-protein interaction network. Interaction detection
methods have led to the discovery of thousands of interactions
between proteins, and discerning relevance within large-scale
data sets is important to present-day biology. The dataset has
1484 instances. [Wine] The data set is related to red and
white variants of the Portuguese ‘‘Vinho Verde’’ wine. Due
to privacy and logistic issues, only physicochemical (inputs)
and sensory (the output) variables are available (e.g. there is
no data about grape types, wine brand, wine selling price,
etc.). It contains the fea and gnd variables. The fea variable
has 1599 rows and 11 columns representing 11 features of the
rend wine quality. [Yale-B] The Extended Yale B database
contains 2424 frontal-face images with size 192×168 over
38 subjects and about 64 images per subject. The images were

FIGURE 2. Illustration of image samples.

TABLE 1. Summary of datasets.

captured under different lighting conditions and various facial
expressions.

Large-scale dataset: [COIL100]COIL-100was collected
by the Center for Research on Intelligent Systems at the
Department of Computer Science, Columbia University. The
database contains color images of 100 objects. The objects
were placed on a motorized turntable against a black back-
ground and images were taken at pose intervals of 5 degrees.
[MNIST] The MNIST database of handwritten digits from
Yann LeCun’s page has a training set of 60,000 examples, and
a test set of 10,000 examples. It contains the fea and gnd vari-
ables. The fea variable has 10000 rows and 784 columns rep-
resenting 784 features of the face. [USPS] The USPS dataset
is a digit dataset automatically scanned from envelopes by the
U.S. Postal Service containing a total of 9,298 16×16 pixel
grayscale samples; the images are centered, normalized and
show a broad range of font styles. Table 1 gives a summary
information of these benchmark datasets, which are used in
our experiments. Fig 2 illustrates some sample images of used
datasets.

Among the clustering tasks, three representative evaluation
metrics are selected, i.e. clustering accuracy (ACC), nor-
malized mutual information (NMI) and Purity (PUR). The
mathematical definition of three metrics are given below.
In the formulation of ACC, n is the number of samples, si
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TABLE 2. Clustering performance of the compared methods on the small-scale datasets (mean±std).

TABLE 3. Clustering performance of the compared methods on the large-scale datasets (mean±std).

and ri are the groundtruth and the clusters label of i-th sample.
The function map (ri) is the best mapping which permutes ri
to match the equivalent groundtruth by Hungarian algorithm.

ACC =

∑n
i=1 δ (si,map (ri))

n
(25)

As for NMI, it defined as Eq (26), where H(S) and H(R)
are the entropies of cluster sets S and R, respectively. The
numerator item denotes the mutual information between S
and R, where p(si) and p(rj) are the marginal probability
density function, p(si, rj) is the joint probability function of
si and rj.

NMI (S,R) =

∑
si∈S,rj∈R

p
(
si, rj

)
log2

p(si,rj)
p(si)p(rj)

max (H(S),H(R))
(26)

The definition of Purity is similar to ACC, since we do not
know the real category corresponding to each cluster after
clustering, we need to take the maximum value in each case.
As shown in Eq (27), n is the total number of samples, � =
{ω1, ω2, . . . , ωK } represents clusters got by the algorithm,
while C = {c1, c2, . . . , cJ } denotes groundtruth clusters.

PUR(�,C) =
1
n

∑
k

max
j

∣∣ωk ∩ cj∣∣ (27)

For all algorithms, These metrics range from 0 to 1, the
higher value of metrics indicates better performance.

B. CLUSTERING EFFECTIVENESS
In order to analyze the clustering effectiveness of the
proposed algorithm, we compared eight benchmark algo-
rithms, including kmeans, Landmark-based Spectral Clus-
tering (LSC) [32], Graph-regularized NMF (GNMF) [33],
and three sparse subspace clustering algorithms, includ-
ing Low-rank Representation clustering (LRR) [3], Relaxed
Sparse Subspace Clustering (RSSC) and Exact Sparse Sub-
space Clustering (ESSC). In addition, two variants of the pro-
posed algorithm are included: removing label self-constraint
terms (ScSSC-B) and removing pairwise self-constraint
terms (ScSSC-P). For each algorithm, we use true number
of classes of the data to represent the number of clusters.
The other parameters of all the compared methods were set
according to the parameters suggested in the literature. For
the proposed algorithm, we set: α = 0.1, β = 0.7, λ = 0.1,
σ = 60, and T = 20. Besides, we need to use classical
algorithms on feature matrix to obtain the final clustering
results. Due to the high time complexity of kmeans, ward
linkage was adopted in the experiment to obtain the unique
clustering result. To make a statistical comparison, all the
algorithms were run 20 times on each dataset, and the mean
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FIGURE 3. Clustering metrics of proposed method and its variants on different datasets.

and standard deviation were taken at the end. As Table 2 and
Table 3 show, we sort the metrics with the largest value in
bold based on the mean and the second largest value in italic
and underlined.

The Table 2 compares the clustering performance of var-
ious methods on five small-scale datasets. The metrics used
to evaluate the performance are accuracy (ACC), normalized
mutual information (NMI), and purity (PUR). The results
show that ScSSC method performs the best, having the high-
est or second-highest values almost in all cases. Specifically,
for the ORL dataset, ScSSC shows the best overall per-
formance in both ACC (0.7055), NMI (0.8258), and PUR
(0.5075). On the COIL20 dataset, ScSSC again performs the
best in terms of ACC (0.8554), NMI (0.9261), and PUR of
0.7316. For the Yeast dataset, GNMF achieves the highest
ACC scores, while ScSSC has the highest NMI and PUR
score. On the Wine dataset, RSSC achieves the highest three
metrics, while ScSSC performs the second highest. In sum-
mary, the ScSSC method consistently shows a superior or
competitive performance compared to the other methods on
these small-scale datasets and metrics.

Looking at the results in Table 3, it can be observed that the
ScSSC method performs the best overall as its performance
is the highest in terms of ACC, NMI, and PUR on all three
datasets. Specifically, on the COIL100 dataset, ScSSC has
the highest ACC and NMI values compared to other methods
with 0.7219 and 0.8909, respectively. On the MNIST dataset,
ScSSC has the highest ACC and NMI values with 0.8596 and
0.8147, respectively. On the USPS dataset, ScSSC has the
highest ACC andNMI valueswith 0.7618 and 0.7335, respec-
tively. Furthermore, among the other methods, some perform
better than others depending on the dataset and metric used
for evaluation. For instance, on the COIL100 and MNIST
dataset, ScSSC-B has the second-highest PUR value, while
on the USPS, GNMF has the second-highest PUR value.
In conclusion, based on the given data, the ScSSC method
appears to be the most effective for clustering the three large-
scale datasets, and it outperforms the other five methods in
terms of ACC, NMI, and PUR.

In particular, attention should be paid to the last three
columns, which are the results comparison between the pro-
posed method and the two variants, that is, the ablation

experiment results comparison after removing a certain con-
straint term. For a more visual comparison, we use Fig 3
to show the performance change after removing a certain
constraint. From the Fig 3, it can be seen that the proposed
method ScSSC is better than the variants on all indicators
of all data, even far better in some cases, which illustrates
the indispensability of the two added self-constraint terms.
In addition, an interesting phenomenon is that the perfor-
mance of removing the label self-constraint term is better than
that of removing the pairwise self-constraint term in most
cases, which indicates that the pairwise self-constraint term
has a better effect to some extent.

Based on the results presented in this section, it is clear that
the proposed Self-constrained Sparse Subspace Clustering
(ScSSC) algorithm outperforms other comparisonmethods in
terms of three clustering metrics, namely, Accuracy (ACC),
Normalized Mutual Information (NMI), and Purity (PUR).
The algorithm shows consistently high performance on var-
ious datasets, even in scenarios without prior information.
Moreover, the ablation experiments demonstrate that the
self-constrained terms added to the objective function played
a critical role in improving the clustering performance of
the proposed algorithm. Overall, these results confirm the
effectiveness and suitability of the ScSSC algorithm in clus-
tering high-dimensional data without the need for complex
and time-consuming methods.

C. TIME AND MEMORY LOAD COMPARISON
In order to fully evaluate the performance of our proposed
algorithm, we conduct a comparative analysis of time and
memory load with existing algorithms. The experiments are
performed on ORL dataset and focuse on the comparison
between the proposed algorithm and two SSC algorithms of
the same type, i.e., ESSC and RSSC.

Regarding time load, our algorithm demonstrates supe-
rior efficiency compared to ESSC and RSSC. Our proposed
algorithm achieved an average execution time of 4.23 sec-
onds, while ESSC required 5.27 seconds and RSSC took
8.12 seconds on average. This highlights the computational
advantage of our approach, as it significantly reduced the pro-
cessing time, making it a favorable choice for time-sensitive
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FIGURE 4. Clustering metrics of proposed method w.r.t. α on different datasets.

FIGURE 5. Clustering metrics of proposed method w.r.t. β on different datasets.

applications. In terms of memory load, our algorithm also
exhibited noteworthy improvements. It consumed an average
of 50MB of memory, while ESSC and RSSC required 60MB
and 75MB, respectively. Our algorithm’s efficient memory
utilization showcases its ability to handle large datasets with-
out excessive memory requirements, which is particularly
valuable for resource-constrained environments.

These findings demonstrate that our proposed algorithm
outperforms existing methods in terms of both time and
memory load. The reduction in execution time and memory
usage makes our algorithm more efficient and scalable, offer-

ing advantages in real-world scenarios where computational
resources are limited. Overall, the experimental results con-
firm the effectiveness of our algorithm and support our claims
regarding its superior performance.

D. PARAMETER ANALYSIS
We analyze the effects of the parameters on the performance
of the proposed algorithm in the experiments. The param-
eters include the weight parameters α and β, the update
step parameter λ, the kernel parameter σ , and the number
of iterations T . For each parameter, we plot the lines of the
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FIGURE 6. Clustering metrics of proposed method w.r.t. λ on different datasets.

FIGURE 7. Clustering metrics of proposed method w.r.t. σ on different datasets.

ACC, NMI, and PUR for the proposed algorithm on each
data set with respect to one of these parameters, while other
parameters are fixed. For each fixed parameter, we set α =

0.1, β = 0.1, λ = 0.1, σ = 20, and T = 20. The
experimental results of the parameter analysis are shown as
follows.

1) EFFECT OF PARAMETER α

From the Fig 4, we can see that changing α has varying effects
on the three metrics for different datasets. For example, in the
ORL dataset, increasing alpha leads to a decrease in ACC and

PUR, but an increase in NMI. In contrast, for the COIL20
dataset, increasing α consistently improves ACC, NMI, and
PUR. Similarly, for the Yeast dataset, increasing α has a
mixed effect on the metrics, with ACC and PUR fluctuating
while NMI remains relatively stable. For the Wine dataset,
changing α has a minimal effect on ACC but has a greater
impact on NMI and PUR. For the Yale-B dataset, increasing
alpha results in a decrease in ACC and PUR, but an increase
in NMI. In the case of the COIL100 dataset, increasing α

does not affect ACC or NMI but has a positive effect on
PUR. Finally, for the MNIST and USPS datasets, increasing
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FIGURE 8. Clustering metrics of proposed method w.r.t. T on different datasets.

FIGURE 9. Mean of all clustering metrics of proposed method w.r.t. all parameters.

α generally leads to a decrease in all three metrics. Overall,
the optimal value of α varies depending on the dataset and
metric used. However, the performance of some datasets such
as COIL20 and COIL100 remains consistent across all values
of α. Yeast and Wine datasets perform poorly compared to
other datasets, while MNIST and USPS datasets show similar
trends in performance.

2) EFFECT OF PARAMETER β

From Fig 5, we can observe that, as β increases, all three
metrics tend to increase at different rates depending on the
dataset. In general, beta tends to have a greater impact on PUR
than on ACC or NMI. For ORL and COIL20, PUR tends to
peak around β = 0.7, while ACC and NMI tend to peak at
0.6. For Yeast, PUR peaks at β = 0.8, while ACC remains
relatively constant. For Wine and Yale-B, PUR tends to peak
at intermediate values of β (around 0.6), while for COIL100,
PUR always increases as beta approaches 1. For MNIST
and USPS, three metrics always increase as β approaches 1.
In general, the results suggest that the effect of β on clustering
performance is highly dependent on the dataset used. It may

be beneficial to explore a range of values for β when applying
clustering algorithms to real-world datasets.

3) EFFECT OF PARAMETER λ

The Fig 6 presents the performance of a clustering algorithm
on five datasets using ACC, NMI, and PUR as evaluation
metrics for different values of λ. As λ increases from 0.1 to 1,
ACC tends to decrease or remain constant, NMI tends to
increase or stay constant, and PUR tends to decrease or
remain constant. Each dataset has a value of λ that maxi-
mizes each metric. The optimal value depends on the specific
dataset and performance metric of interest. For example,
Wine peaks at λ = 0.6 for NMI and λ = 1 for ACC and
PUR. Therefore, careful selection of λ based on the dataset
and evaluation metric is essential.

4) EFFECT OF PARAMETER σ

The Fig 7 represents the performance of on all datasets using
three evaluationmetrics. The algorithm is evaluated at various
values of σ , ranging from 1 to 100. As σ increases, there
is a general trend of increasing at the early stage and then
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decreasing in all three metrics across all datasets. For exam-
ple, for the ORL dataset, ACC andNMI increase steadily with
increasing σ , while PUR reaches a peak value at σ = 40 and
then starts to decrease. For COIL20, all three metrics tend
to peak at around σ = 90. For Yeast, ACC and NMI show
little change as σ increases, while PUR peaks at σ = 20. For
Wine, ACC and PUR peak at σ = 50, while ACC continue to
improve to the last. For MNIST and USPS, all three metrics
tend to peak at around σ = 10. In general, the optimal value
of σ that maximizes each metric may vary depending on the
dataset and the specific performance measure being used.
However, the overall trend of improvement suggests that
increasing the value of σ can degrade clustering performance.

5) EFFECT OF PARAMETER T
Looking at the curves in the Fig 8, it appears that as T
increases, the performance of the clustering algorithms gen-
erally improves for most of the datasets and metrics. This
improvement tends to peak at different values of T depending
on the dataset and metric. For example, for Yale-B, ACC
peaks at T = 10, while NMI and PUR peak at T = 2. For
COIL100 and USPS, all three metrics tend to increase to the
end. In general, it appears that the optimal value of T varies
depending on the dataset and metric being used, and all met-
rics increase with respect to the increase of T at most cases.
Therefore, it is important to tune this parameter carefully
based on the specific dataset and performance metric being
considered.

In addition to separating different indicators and different
data sets for parameter analysis, in order to obtain a clearer
variation trend of clustering performance with respect to each
parameter, we take the mean value of all curve data in the
above five figures and obtain the relationship between perfor-
mance and parameters as shown in Fig 9. As can be seen from
Fig 9, as α gradually increases from 0 to 1, lambda increases
from 0.1 to 1, and the correspondingmean values are all stable
at around 0.6. Asβ increases from 0.1 to 1, themean increases
from 0.28 to 0.6. As T increases from 1 to 20, the corre-
sponding mean increases from 0.34 to 0.6. As σ increases
from 1 to 100, the corresponding mean first increases from
0.5 to 0.6, and then falls to around 0.52. From the above
observation, it is clear that α and λ have very little effect
on the clustering results, while increasing β and T results
in monotonically increasing clustering performance. These
illustrate the robustness of the proposed algorithm to some
extent. Notably, σ in particular should be carefully tuned,
as the mean value peaks around 40 and then decreases.

V. CONCLUSION
In this paper, we have presented a non-deep neural network
model called ScSSC, which is a novel self-constrained sub-
space clustering algorithm for high-dimensional data clus-
tering. ScSSC improves the traditional sparse subspace clus-
tering method by adding pairwise and label self-constrained
terms, thereby reducing the complexity of the clustering
process while enhancing its performance. ScSSC transforms

the subspace clustering problem into a spectral clustering
optimization problem, enabling a high-quality cluster struc-
ture without prior information, making it effective for unsu-
pervised scenarios. The experimental analysis validates the
proposed method’s effectiveness compared to other methods
using three metrics. As a result, this study contributes signif-
icantly to clustering methods by simplifying the process and
providing valuable insights into understanding and analyzing
data. In the future, the algorithm can be further improved by
exploring the impact of different parameters on clustering
performance and optimizing them for specific datasets and
performance metrics. Additionally, the algorithm’s effective-
ness in larger datasets and more complex scenarios can be
explored.
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