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ABSTRACT This study focuses on the parameter identification of a heavy-duty manipulator used in the
remote maintenance of the China Fusion Engineering Test Reactor (CFETR). Accurate modeling of the
manipulator’s dynamics needs investigation of the effects of hysteresis, velocity, and other variables on output
torque independently. For this reason, we estimate the undetermined model parameters using the Stochastic
Gradient HamiltonianMonte Carlo (SGHMC) method. In addition, a global sensitivity analysis is performed
to assess the precision of the model’s output and the relative significance of its input variables. Experiments
are conducted to determine the output torque, hysteresis displacement and velocity of the CFETR’s heavy-
duty manipulator. Our findings indicate that the SGHMC method significantly improves the efficacy of
parameter identification while maintaining a high level of accuracy, resulting in a significant reduction
of approximately 8% in the root mean square error (RMSE) of the output torque. In addition, the analysis
of first-order and total-effect sensitivity indices reveals the influential parameters on the output torque. The
sensitivity analysis offers valuable insights into the significance of parameters and system optimization.
Considering hysteresis deformation, this study presents a method for modeling and parameter estimation of
the output torque in a heavy-duty robotic arm. The developed method contributes to the solution of practical
problems and provides the groundwork for future research on SGHMC and parameter estimation algorithms.

INDEX TERMS Hysteresis, HMC method, parameter estimation.

I. INTRODUCTION
In recent years, the estimation of model parameters has
garnered a growing amount of interest across a variety of
disciplines. Academics have paid close heed to previous
work on modeling the output torque of a robotic arm. The
two most influential factors of output torque are friction
and stiffness. The approaches to modeling the output torque
can be categorized into two broad categories: model-based
and model-free. Lagrangian and Newton-Euler methods [1]
are included in the model-based approach. However, the
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specific traditional equations that assume a fixed matrix
of joint stiffness are not appropriate for modeling flexible
robotic arms accurately [2]. These equations oversimplify
the system’s behavior by neglecting the variations in stiff-
ness that can occur with changes in load and speed. These
models are inadequate for accurately reproducing modern
industrial manipulators because it does not account for the
elasticity of the links and bearings in the manipulator. These
additional sources of elasticity have the potential to signif-
icantly impact the manipulator’s behavior, necessitating a
more inclusive model to accurately describe its dynamics.
Consequently, there are numerous models for calculating the
output torque of a flexible joint, taking into account the
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FIGURE 1. Simulation Diagram of Multifunctional Heavy Duty
Maintenance Manipulator Working Scene in China Fusion Engineering
Test Reactor (CFETR).

stiffness [3], [4] of the joint. The most recent model-based
methods employ analytical models, data-driven models [5],
[6], etc. Model-free approaches consist of neural network-
based approaches [7], reinforcement Learning methods [8],
Adaptive Control methods [9], etc. In the context of heavy-
duty applications, modeling flexible robotic arms equipped
with planetary gear reducers is the subject of a few articles.
While there are numerous studies on the flexibility of robotic
arms with harmonic reducers [10], [11], [12], there is a lack
of research on the flexibility of robotic arms with planetary
gear reducers under high loads. Recent research has obtained
precise heavy-duty arm control through deformation model-
ing [13], [14]. However, a limitation of these studies is that the
online precision control algorithm relies on a limited number
of positions for deformation calculation. This may result in
potential inaccuracies in estimating the CMOR’s deformation
at other positions. Considering the limitation in the study on
deformation, further parameter identification of the heavy-
duty manipulator is crucial. By employing the stochastic
gradient Hamilton Monte Carlo method, our research aims
to enhance the understanding and estimation of parameters
related to the overload arm, filling the existing gap in knowl-
edge, and improving the overall performance and precision
control of the manipulator under heavy loads.

The goal of this paper is to extend the original model of the
dynamics equation of a single joint mechanism in section II-A
by using the Stochastic gradient Hamilton Monte Carlo [15]
(SGHMC) method to include (a) hysteresis effects and (b) a
more appropriate posterior parameter distribution on hystere-
sis effects to predict the output torque with high-frequency
oscillations. Extending a Bayesian model and estimating the
output torque of a heavy load manipulator constitute the final
phase.

The CFETR Multipurpose Overload Robot (CMOR) is
a heavy-duty manipulator designed for remote maintenance
tasks in the China Fusion Engineering Test Reactor (CFETR),
as depicted in Figure 1 and Figure 2. The CMOR is a flexible
and heavy-duty fusion robot designed with a multi-degrees-
of-freedom macro and micro mechanical structure, enabling

FIGURE 2. Structure of CMOR of the heavy-duty manipulator.

it to operate in a large working space under vacuum condi-
tions. The macro arm of the CMOR consists of a 9-degrees-
of-freedomMulti-Purpose Deployer (MPD) robot [16], while
the micro arm comprises a dual 7-degrees-of-freedom robot.
Figure 2 illustrates the configuration of the CMOR sys-
tem [17]. Figure 3 showcases the experimental platform for
the fourth joint of the MPD.

The CMOR robot arm, integrated within the CFETR super-
conducting Tokamak fusion device, serves as a teleoperation
and maintenance robot arm with nine degrees of freedom and
a mass exceeding 25 tons. Under the 9-degrees-of-freedom
mode, the maximum designed load capacity is two tons. The
structure of CMOR, as shown in Figure 1, imposes a signif-
icant burden on each joint. Consequently, the motor driving
the joints must possess a high reduction ratio. The J4 joint, for
instance, exhibits a maximum output torque of 100 KN ·m
with a total reduction ratio of 11000. However, the high load
and large reduction ratio can lead to decreased torque trans-
mission efficacy, subsequently affecting the manipulator’s
control precision.

The following are descriptions of several essential
components:
• Base: The base provides support and securement for test
components and equipment.

• Loading shaft: The loading shaft transmits the shear
force, bending moment, and torque exerted by the
hydraulic cylinder onto the test joint.

• Hydraulic system: The hydraulic system employs a
Y-type reversing valve with a hydraulic lock and an
accumulator to maintain pressure. The hydraulic cylin-
der centering mechanism prevents deformation of the
bearing seat in any direction other than vertical.

• Dynamometer: The dynamometer actively loads the
test joints and typically consists of a reducer, servo
motor, etc.

For detailed technical design and joint loading force indica-
tors, please refer to Appendix B.
The overall configuration of the CMORheavy-dutymanip-

ulator is as follows: The mechanical arm body structure
design requires dimensions ofWidth×Height⩽ 2740mm×
2330 mm. The J4 joint has a maximum load capacity of
120KN ·m. Themanipulator’s specifications include a repet-
itive positioning accuracy of ±10 mm, and a maximum
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FIGURE 3. CMOR single-joint experimental platform (The 4th joint).

TABLE 1. Joint type and range.

operating speed of 100 mm/s. The types and ranges of the
joints are presented in Table 1.

Taking the J4 joint as an example, it is driven by three
motors in the driving part. This configuration ensures that
if one of the three motors fails, the remaining two motors
can continue driving the J4 joint to facilitate subsequent
maintenance. In the transmission part, a precision reducer
and differential planetary gear transmission are employed to
meet the requirements of high load and a high reduction ratio
from the motor output end to the joint output end. How-
ever, the complex structure of the transmission system poses
challenges in joint modeling, resulting in a large equivalent
rotor moment of inertia and increased non-linearity at the
motor end.

To enhance the understanding of the system’s operation,
a control system diagram has been included in Appendix C.
This visual representation provides a clear overview of the
components and interactions involved in the control process.
Additionally, comprehensive details regarding the measuring
techniques have been provided. This includes information
on the types of sensors used and the calibration procedures
employed to ensure accurate data acquisition for parameter
estimation.

In the process of dynamic parameter identification, it is
typically necessary to estimate the model parameters, such
as by employing the least squares or maximum likelihood
estimation techniques to acquire the point estimation value
of the model parameters. However, the uncertainty of model
parameters is not reflected in this point estimate. By using
Bayesian methods, it is possible to derive a posterior distri-
bution of model parameters, which provides more complete
information, including optimal estimates and uncertainty
information. The posterior probability distribution is usually
complex and contains integrals that cannot be solved directly.
The application of the MCMC (Markov chain Monte Carlo)
algorithm [18] gives new vitality to the Bayesian method, and
of course, it cannot be separated from the great improvement
of computer computing power. MCMC includes two MCS.
The first one is the Markov chain, which is used to solve the
problem of sampling from arbitrary probability density (usu-
ally refers to those probability density functions that cannot
directly obtain the cumulative distribution function (CDF));
The second is Monte Carlo, which is used to solve the com-
plex integral solution. Metropolis–Hastings (MH) algorithm
has been highly praised in various sampling-related fields
since it first appeared in the 1950s, such as economics [19],
astronomy [20], psychology [21], and so on. There are two
main reasons: 1. MH algorithm steps are very simple, see
Section II-B; 2. MH algorithm can sample from complex
target distribution, regardless of the specific form of the target
distribution.

Later developed Hamiltonian Monte Carlo (HMC) [22],
slice sampling[4], elliptical slice sampling (ESS) [23], gener-
alized elliptical slice sampling(GESS) [24], Langevin Monte
Carlo [25], stochastic gradient Langevin dynamic [26], and
so on can be regarded as one kind of MH.

During the actual application of MCMC, the following
problems may be encountered, such as 1. The transition
kernel of MH may cause random walk behavior, which may
cause the effective sample size (ESS, which measures the
number of valid or unrelated samples) to be small and the
sampling efficiency to be too low; 2. Also, when the objec-
tive function is multi-modal, all modes cannot be found.
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3. The rejection rate of the MH algorithm is related to the
transition kernel. We hope that the rejection rate is as low as
possible.

The Hamiltonian Monte Carlo (HMC) algorithm proposed
later is famous for its ability to solve the above problems.
Compared with the MCMC algorithm, HMC (Hamiltonian
Monte Carlo) is a faster sampling method. Recently, many
modifications have been made to the HMC method in com-
putational statistics to form a new algorithm [27].
In Hamilton Monte Carlo, one is Hamilton and the other

is Monte Carlo. Among them, Hamilton here comes from
dynamics and corresponds to Hamiltonian dynamics, which
is often used to describe the motion process of objects. See
section II-B for details of the SGHMC algorithm.
In summary, the Stochastic Gradient Hamiltonian Monte

Carlo (SGHMC) is a variation of the techniqueMarkov Chain
Monte Carlo (MCMC) that is used to sample from complex
probability distributions. SGHMC uses stochastic gradient
descent (SGD) to execute the sampling, allowing for faster
convergence and improved scalability with bigger datasets.
Here are some benefits of SGHMC versus MCMC:

1. With conventional MCMC, convergence can be slow,
particularly for high-dimensional models or big data sets.
SGHMC makes advantage of SGD, which modifies the
parameters more frequently and in smaller increments, result-
ing in speedier convergence.

2. Improved scalability: As the amount of the dataset
grows, MCMC techniques can become computationally
costly. SGHMC is more scalable since it changes parame-
ters in mini-batches, enabling it to efficiently manage larger
datasets.

3. SGHMC is more robust than regular MCMC to noise in
the data. Because it changes the parameters using a stochastic
gradient, it can deal with noisy data without becoming stuck
in local minima.

4. Automatically adapts step size: In conventional MCMC,
it might be difficult to choose an acceptable step size for the
updates, particularly in high-dimensional domains. SGHMC
makes it easier to use by automatically adjusting the step size
based on the gradient and noise level of the data.

5. In MCMC, evaluating the gradient of the log-likelihood
function can be computationally demanding, particularly in
high-dimensional models. SGHMC simply requires an unbi-
ased estimate of the gradient, which can be computed more
quickly and with less effort.

The low transmission efficacy of a heavy-duty manipulator
is primarily attributable to the heavy friction force of a heavy-
duty manipulator in comparison to a light-duty manipulator.
It is now well established that friction [28], [29] and hys-
teresis effects [30] can impair torque transmission efficiency.
Until now no experiments on the single joint of heavy-duty
manipulator equipped with differential planetary gears have
been reported.

Since this article only mentions a single joint, several
clarifications are necessary. After modeling, the following
was determined:

a. The dynamic model is based on Lagrange, the parame-
ters of each connecting rod of the robot consist of 10 items
and are directly related to the torque, and the torque is pro-
portional to the product of the dynamic parameters.

b. The dynamic properties model for each connecting rod,
which is based on Lagrange, consists of identifiable com-
ponents (seven items) and undetermined components (three
items).

c. When the moment of inertia of the motor’s rotor appears
in the dynamic equation of the torque equation for eachmotor,
the connecting rod and its matching motor of the subsequent
joint are typically considered a unit. Based on the LaGrange
equation, it can be determined that: the rotor of the motor
(a portion of the stator is assumed to be part of the connecting
rod) in the dynamic equation, as the rotor rotation (Im), is typ-
ically very small in comparison to the mass of the robotic
arm, we only consider Im × n2, where n is the corresponding
reduction ratio. Since there is only one joint in this article,
there is no Im × n2. If two or more joints exist, the parameter
Im × n2 must be added. As previously stated, the connecting
rod of the preceding robotic arm and the rotor of the following
robotic arm is regarded as a unit.

d. Friction utilizes the classical model, which incorporates
viscous friction and Coulomb friction (a more comprehensive
analysis will be provided in the following paper).

e. Once the joints of the heavy-duty robotic arm have
been connected, the complete dynamic equation can be found
by adding Im × n2 to the Lagrange or classical Bouc-Wen
model introduced in the second section, which can identify
all identifiable dynamic components. This article has limited
conditions and only one joint data, so only parameters without
Im × n2 are used to determine the output torque.
This paper first introduces the MCMC algorithm which

uses the MH method to sample and the SGHMC algorithm.
Secondly, the SGHMC method was used to identify the
parameters of the classical Lagrange dynamic modeling of
a robot manipulator [1] and the CBW (the classical Bouc-
Wen) model [31], [32], [33], the accuracy of the two models
was compared, and the hysteresis model parameters were
identified. Finally, the global sensitivity of the CBW model
and hysteresis formula is analyzed.

II. THE DYNAMIC MODEL
A. THE CLASSICAL LAGRANGE DYNAMIC MODELING AND
THE CLASSICAL BOUC-WEN MODEL (CBW) OF A
ROBOT MANIPULATOR
The dynamic characteristics of the manipulator consist
mostly of position parameters, such as the angle, angular
velocity, and angular acceleration of each joint, which can
be determined through encoder measurement and differential
processing. It is simple to gather structural parameters, such
as the length of each connecting rod on the robot, by mea-
surement. Inertial characteristics, such as the mass of the
connecting rod, the moment of inertia, and the location of
the center of mass, are the primary elements influencing
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TABLE 2. Standard DH (SDH) parameter of the fourth joint of CMOR.

the robot’s dynamic model. The parameters differ from the
design parameters. If the design parameters are imported
directly into the dynamic model, a significant variation will
occur. The direct measuring method, such as disassembling
the mechanical arm and weighing the process, is excessively
complex and unsuitable for use in actual situations. Friction
parameters, for non-directly driven articulated manipulators,
the torque to overcome friction accounts for approximately
25 % of the driving torque, the structure of the drive system,
the contact type between components, the lubrication condi-
tions of the contact surface, and the relative movement speed
of the contact surface, load, etc. all influence friction.

1) MODEL THE ROBOT’S DYNAMICS BASED ON LAGRANGE
As shown in equation (4) the dynamics equation of a
single joint mechanism, Table 2 is the Standard Denavit-
Hartenberg parameters(SDH) parameter of the fourth joint
of CMOR [17], [34]. The joint output torque consists of
inertia torque, centrifugal force torque, Coriolis force torque,
gravity torque, and friction torque. The procedure of identi-
fying parameters entails determining the real mass attribute
of the joint, the real moment of inertia, and the viscous and
Coulomb friction coefficients, respectively.

The robot dynamics model in (1) can be written in the
linear form of its moment of inertia parameters without con-
sidering friction and presuming that all connecting rods are
rigid bodies (regardless of the flexibility of the connecting
rods).

Y (q, q̇, q̈)P = τ (1)

where P is the complete inertial parameter set (standard
parameters), which includes the unknown parameters of the
robot model that need to be estimated or identified. These
parameters can include the inertial parameters of the robot
links (such as mass, center of mass, and inertia tensor
components), friction parameters, and other parameters that
affect the robot’s dynamics. Y (q, q̇, q̈) represents the dynamic
matrix, which describes the relationship between the joint
positions q, joint velocities q̇, and joint accelerations q̈. It cap-
tures the dynamic behavior of the system and is typically
derived from the robot’s equations of motion.

τ represents the joint torque vector, which represents
the torques or forces applied to the robot’s joints. These
torques can be generated by various factors, such as external
loads, actuator dynamics, and control inputs. By solving this
equation, we can estimate the unknown parameters of the
robot model based on the measured joint torques and kine-
matic information.

Pi =
[
Iixx , Iixy, Iixz, Iiyy, Iiyz, Iizz,mirx ,miry,mirz,mi

]T (2)

In Equation (2), the vector Pi represents the parameters
associated with the i-th link of a robot manipulator. The
meaning of each parameter is explained below:
Iixx is the moment of inertia of the i-th link around the

x-axis. Iixy is the product of inertia of the i-th link between
the x and y axes. Iixz is the product of inertia of the i-th link
between the x and z axes. Iiyy is the moment of inertia of the
i-th link around the y-axis. Iiyz is the product of inertia of the
i-th link between the y and z axes. Iizz is the moment of inertia
of the i-th link around the z-axis. rx is the distance from the
center of mass of the i-th link to the x-axis. ry is the distance
from the center of mass of the i-th link to the y-axis. rz is the
distance from the center of mass of the i-th link to the z-axis.
mi is the total mass of the i-th link.
The Coulomb and viscous friction models are:

τf = [fv, fc]
[

q̇
sgn(q̇)

]
(3)

In Equation (3), the vector τf represents the friction torque
applied to the robot joints. Let’s explain the meaning of each
parameter:
fv is the viscous friction coefficient. It represents the damp-

ing effect in the joint motion, where the magnitude of the
friction torque is proportional to the velocity of the joint q̇.
fc is the coulomb friction coefficient. It represents the static
friction or stiction in the joint motion, where the friction
torque remains constant until a threshold velocity is reached.
The sign function sgn(q̇) is used to determine the direction of
the Coulomb friction torque. This friction torque affects the
dynamics of the manipulator and needs to be considered for
accurate modeling and control of the robot’s motion.

Consider the torque effect of friction at the joints. As a
result, the following (4) exist:

τ = Y ′p′

= [q̈, 0, 0, 0, 0, 0, g sin(q), g cos(q), 0, 0, q̇, sgn(q̇)]

·
[
Ixx , Ixy, Ixz, Iyy, Iyz, Izz,m rx ,m ry,m rz,m, fv, fc

]T
(4)

In Equation (4), the vector τ represents the total torque
exerted on the robot joints. The meaning of each parameter
is explained below:
q̈ is the joint acceleration vector. g is the acceleration due

to gravity. q is the joint angle vector. It represents the current
positions of the robot joints. Ixx , Ixy, Ixz, Iyy, Iyz, Izz are the
elements of the inertia matrix. These parameters represent
the moments of inertia of the robot’s links around different
axes. m is the link mass. rx , ry, rz are the link center of mass
position. These parameters represent the distances between
the joint axis and the center of mass of the links along differ-
ent axes. fv is the viscous friction coefficient. It represents
the damping effect in the joint motion. fc is the coulomb
friction coefficient. It represents the static friction or stiction
in the joint motion. The equation computes the total torque τ

experienced by the robot joints. This torque accounts for the
effect of joint acceleration, gravity, inertia, mass distribution,
and friction in the robot’s dynamics.
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FIGURE 4. Flexible joint structure diagram.

2) THE CLASSICAL BOUC-WEN MODEL (CBW)
The preceding formula considers the joint to be a rigid
material. If the formula for identifying the parameters of a
flexible joint is used, the stiffness coefficient and damping
coefficient must be identified. Below Figure 4 is a schematic
representation of a flexible joint’s structure.

The identification (5) of the traditional flexible joint
parameter identification is as follows [35],

τ (φ, φ̇) = Ks(θ/η − q)+ Kd (θ̇/η − q̇) (5)

where q, θ, q̇, θ̇ are the torsional angle and torsional angular
velocity between the motor side and the load side, respec-
tively. η is the joint reduction ratio, ks is the stiffness of the
joint system, kd is the damping coefficient of the flexible link.

Shown in Figure 5, the Bouc-Wen model [36] is shown in
the three equations below.

Our objective is to accurately measure the angular dis-
placement, or joint torsion, between the input and output
of the joint. Joint torsion, denoted as 1θ (t), represents the
positional deviation or difference between the desired input
and the actual output of the joint.

The equation governing joint torsion is expressed as:

1θ (t) = q−
θ (t)
N
= z(t)+ x(t). (6)

In the context of our study, we do not consider back-
lash [30], which refers to any looseness or play in the
mechanical components of the joint. Therefore, the term x(t)
in the hysteresis model directly represents the joint torsion as
described in Equation (6). This term captures the positional
deviation between the desired input and the actual output of
the joint, allowing us to effectively analyze and control the
elasticity of the links and bearings in the manipulator.

In one expression, the joint torque is shown as a function
of the joint’s position and speed. The joint’s transmitted
torque, T, is given by:

T (t) = D× u̇(t)+ 0(u(t), t) (7)

where D is the internal damping coefficient. The following
are the definitions of a Bouc-Wen-like hysteresis model:

0(u(t), t) = wk|u(t)| + (1− w)k|x(t)| (8)

where u(t) is the input position to the one joint system, u̇(t) is
the velocity.0(u(t), t) represents the hysteresis output torque,
composed of an elastic term wk|u(t)| and a purely hysteretic
term (1 − w)k|x(t)| with the parameters k , and w. x is a
hysteresis variable which is the solution of (9).

A plastic torque response (w=0) and a completely elastic
torque response (w=1) are weighted differently. Stiffness is
denoted by k . The nonlinear hysteresis x of the Bouc-Wen
model is determined by the following differential (9):

ẋ(t) = αu̇(t)− β|u̇(t)∥x(t)|n−1x(t)− γ u̇(t)|x(t)|n (9)

The friction term is:

f = fc × u̇(t)+ fv × sgn(u̇(t)) (10)

where fc is the Coulomb friction, fv is the viscous friction, C
is the constant.

The classical Bouc-Wen (CBW) model [37] is developed
to describe the hysteresis effect in (9) and the output torque
in (11), we define the constants ku = wk , kh = (1− w)k .

T (t) = D× u̇(t)+ ku × u(t)+ kh × x(t)

+ fc × u̇(t)+ fv × sgn(u̇(t))+ C (11)

B. EXPERIMENT WITH SETUP AND IMPLEMENT
1) EXCITATION OF FOURIER SERIES TRAJECTORY
The input of the dynamic equation is the robot’s position and
current during operation, which are determined by designing
a robot’s motion trajectory. a. Each joint’s Fourier series has
2*N+1 parameters. This experiment uses the method of com-
bined connecting rods to determine the dynamic properties
of each combined body’s individually identifiable sections.
b. Regarding the selection of excitation frequency, it should
bementioned that selecting a low frequency has the following
benefits: Under the maximum acceleration, speed, and dis-
placement limits, it is possible to reach a bigger workspace,
but the acquisition period is lengthy and the acceleration is
low. It is not conducive to identifying parameters of inertia.
High frequency has the advantages of facilitating the identi-
fication of inertia characteristics and reducing the acquisition
time, but the downsides of limiting the working space and
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FIGURE 5. Structure of elastic robot joint.

making it simple to resonate. c. Use the smallest logarithm of
the condition number of the observation matrix of the kinetic
equation as the objective and optimize the Fourier series
parameters [38], [39]. The position, speed, and acceleration
of the excitation track are as follows (12).

qi(t) =
Ni∑
l=1

ail
ωf l

sin
(
ωf lt

)
−

bil
ωf l

cos
(
ωf lt

)
+ qi0

q̇i(t) =
Ni∑
l=1

ail cos
(
ωf lt

)
+ bil sin

(
ωf lt

)
q̈i(t) =

Ni∑
l=1

−aikωf l sin
(
ωf lt

)
+ bilωf l cos

(
ωf lt

)
(12)

2) DATA COLLECTION AND EXPERIMENT PROCEDURE
To identify the above parameters, the specific steps to real-
ize parameter identification is designed. However, since the
control system can only rotate for half a turn temporarily, the
excitation trajectory of the Fourier function can only rotate
within the range of ±180◦. It is impossible to minimize the
number of conditions, and only a relatively small number of
conditions can be used.
Scheme 1: measure the change of joint output torque with

speed and load.
The following experiments were repeated at 300r / min and

3000r / min: start the joint motor, turn the joint angle to 0◦

according to the motor code disk, and set the output encoder
angle to zero.

Slowly and positively load the joint output end with the
dynamometer to the rated torque of 120 KN · m. Read the
number of encoder pulses at the output end every 0.1 seconds.
Similarly, slowly unload the bending moment at the output
end from the rated torque to 0, read the pulse number of the
encoder at the output end every 0.1 seconds, and convert the
pulse number into an angle. At the same time, the displace-
ment, velocity, current and other data of the joint load end are
recorded.

FIGURE 6. The position, speed, and acceleration of the excitation path.

Scheme 2:measurement of joint current and torque follow-
ing curve.

Use the dynamometer to slowly forward load the output
end of the joint, pause for 2S every 10 KN · m, load it
to the maximum rated torque of 120 KN · m, record the
following curve of current and torque of each motor, and
record the motor temperature. Then, the above experiments
were repeated at 300r / min and 3000r / min.
Scheme 3: excitation trajectory of Fourier function
The smaller the number of conditions of the optimal exci-

tation trajectory, the better. Therefore, we use the fifth-order
Fourier function, according to the position of the experimen-
tal platform. The position, speed, and acceleration of the
excitation track are as follows Figure 6:

III. PARAMETER OPTIMIZATION OF THE
DYNAMIC MODEL
A. THE BAYESIAN APPROACHES AND THE
METROPOLIS-HASTINGS ALGORITHM
Using what we already know and data from different exper-
iments, we can divide the ways to find parameters into
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three groups: MLE (maximum likelihood estimation) [40],
MAP (maximum probability estimate) [41], and the Bayesian
method [15], [42].

Assuming we have training data D = {(x1, y1) , . . . ,

(xn, yn)}, and parameter θ .The goal is to use new test points
x ′ to make predictions y′. MLE does not consider prior,
while MAP and Bayesian estimation considers prior. MLE
and Map are to select the relatively best point estimation.
The Bayesian method is to estimate the posterior distribution
p(θ | D) through observation data and makes predictions∫
θ
p
(
y′ | x ′, θ

)
p(θ | D)dθ through the posterior distribution.

Because of the nonlinear and multi-parameter characteristics
of the dynamic model of the heavy-duty manipulator, the
Bayesian method is a good choice.

There were other sampling methods before Metropolis-
Hastings appeared. For example, rejection sampling and
importance sampling [43] are independent for each sampling.
In this way, each sampling cannot use the information of the
previous sampling. One state of the Markov chain is only
related to the previous state, so the previous sampling infor-
mation is used. Assume that the objective distribution func-
tion is π (x). In general, the Metropolis-Hastings algorithm
can sample from the objective function by constructing a
Markov chain converging to π . The following is theMetropo-
lis Hasting Algorithm:

Input: Target distribution p(θ ), proposal distribution
q(θ ′|θ ), starting point θ0, number of iterations N .
Output: Samples θ1:N .
1) Set t = 0 and θ = θ0.
2) For t from 1 to N repeat the following steps:

• Sample a proposed state θ ′ ∼ q(θ ′|θ ).
• Calculate the acceptance probability: α =

min
(
1, p(θ

′)q(θ |θ ′)
p(θ )q(θ ′|θ)

)
.

• Sample a uniform random number u from [0, 1].
• If u < α(θ , θ ′), accept the proposal and set θ = θ ′.
Otherwise, reject the proposal and set θ = θ .

• Store the current sample θ in θ t .
3) Output the samples θ1:N .
where p(θ ) is the probability density function of the target

distribution, q(θ ′|θ ) is the proposal distribution, and θ ′ and
θ are the proposed and current states of the Markov chain,
respectively.

B. STOCHASTIC GRADIENT HAMILTON MONTE
CARLO (SGHMC)
The cornerstone of HMC [44] is the following Hamiltonian
dynamic [45]. By introducing Hamiltonian dynamics, the
SGHMC algorithm can perform efficient Bayesian inference
on large-scale datasets.

HMC algorithm should also be regarded as a Metropolis
Hasting algorithm, which realizes the initial state transi-
tion through the Hamiltonian partial differential equation
and satisfies the detailed and stable conditions through
the acceptance-rejection algorithm. The difference from the
ordinary Metropolis Hasting algorithm is that its initial state

transition is determined, that is, the probability is 1 (compared
with the ordinary random walk method, the acceptance prob-
ability is increased, and the convergence speed is improved).

Hamiltonian system in (13) and (14):

H (q, p) = U (q)+ K (p) (13)
∂qi
∂t
=

∂H
∂pi
=

∂K (p)
∂pi

,
∂pi
∂t
=

∂H
∂qi
= −

∂U (q)
∂qi

(14)

Q is the position, P is the momentum, and each state in
HMC is expressed in two dimensions. The reasons why HMC
can solve the random walk and low rejection rate of MH are
as follows: (a) continuous Hamiltonian dynamic has the prop-
erty of conversation of Hamiltonian, that is −H(Q∗,P∗) +
H(Q,P) = 0, and the rejection rate is 0. In general, the
rejection rate of HMC is much lower than that of other
algorithms. (b) The existence of momentum P can control the
velocity of motion in one state. P is updated in every iteration.
The uncertainty of P makes it more likely to transfer from one
state to a far state, which can suppress randomwalk behavior.
To reduce the computational complexity of the gradient, the
stochastic gradient is generated.

The SGHMC algorithm is based on the Hamiltonian
dynamics method, which combines dynamic equations with
random perturbation terms with the random gradient descent
algorithm to perform Monte Carlo sampling in high-
dimensional parameter space and gradually approximate the
target distribution p(θ ). The following is a process descrip-
tion of the Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) method.

Input: Target distribution p(θ ), data X, hyperparameter
α, learning rate ϵ, mass matrix M, and stochastic gradient
estimate g(θ ).
Output: Sampled parameters θ1:S .
1) Initialize θ ← θ0 and v ∼ N (0,M), where M is a

predefined mass matrix.
2) Repeat the following process S times:

• Sample a mini-batch Xbatch randomly from the
data.

• Compute the stochastic gradient estimate g(θ ).
• Sample a Gaussian noise η ∼ N (0, 2αϵM).
• Update the velocity v← (1− α)v− ϵg(θ )− η.
• Update the position θ ← θ + v.

3) Output θ1:S .
See the paper [15] for the complete HMC algorithm and

SGHMC algorithm flow.
Figure 7 contrasts the sampling effects of two sam-

pling techniques, Metropolis Hastings and SGHMC, on a
two-dimensional Gaussian distribution. The effectiveness of
Metropolis Hastings and SGHMC sampling methods can be
visually compared. The samples obtained from Metropolis
Hastings are more diffuse than those obtained from SGHMC.
Compared to SGHMC, theMetropolis Hastings (MH) sample
has the following disadvantages:

MH sampling necessitates the calculation of acceptance
probability, and in cases of low acceptance rate, multiple
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FIGURE 7. This image samples a two-dimensional Gaussian distribution
using two sampling methods, Metropolis Hastings and SGHMC.

resamples are required, resulting in relatively low sampling
efficiency. SGHMC can utilize random gradient information
for sampling, thereby averting the disadvantage of calcu-
lating the full gradient each time and enhancing sampling
efficiency.

Adjustments must be made to the potential distribu-
tion: The effectiveness and outcomes of MH sampling
are highly dependent on the selected potential distribution.
If the proposal distribution is too scattered or too concen-
trated, the acceptance rate will be low, which will o ran-
domly sample an initial valimpact sampling efficiency and
results. SGHMC can modify the step size and mass matrix
adaptively to accommodate various target distributions and
data sets.

Since the acceptance rate of MH sampling is only related
to the current position and prospective distribution, and not
the previous sampling path, difficult to control convergence
issues are likely to arise. If the proposal distribution is not
properly selected, the sampling path may oscillate repeatedly
in low-density regions, resulting in delayed convergence.
The SGHMC algorithm has improved convergence because
it includes the momentum term in sampling, thereby avoid-
ing the issue of repeated oscillations in low density regions
and making convergence simpler to achieve. In addition,
SGHMC can enhance sampling quality through hyperparam-
eter adjustment.

SGHMC is more suitable for sampling large-scale datasets
and complex target distributions due to its superior sam-
pling efficiency, convergence, and adaptability in comparison
to MH.

IV. CALCULATION OF POSTERIOR PARAMETER
DISTRIBUTIONS
In Equation (4), wewant to find the value of the parameter a in
the linear equation y = xT θ . We have five possible values for
θ . To solve this problem, we can use the posterior distribution,
which is proportional to the likelihood function multiplied by

the prior distribution.

p
(
θ, τ 2 | y

)
=
p
(
y | X, θ, τ 2

)
p(θ )p

(
τ 2
)

p(y)

∝ p
(
y | X, θ, τ 2

)
p(θ)p

(
τ 2
)

(15)

In Equation (15), p(θ, τ 2|y) is the posterior distribution of
the parameters θ and τ 2 given the observed data y, where θ

represents the five position parameters in the linear model
y = xT θ , and τ 2 represents the variance of the residuals. The
objective is to estimate θ and τ 2 using y and prior knowledge
regarding the distributions of θ and τ 2.

This formula represents the posterior distribution of param-
eters θ and τ 2 given the observed data y. It is obtained by
applying Bayes’ theorem to the likelihood function p(y |
X, θ, τ 2) and prior distributions p(θ ) and p(τ 2) of the param-
eters. The denominator p(y) is a normalization constant that
ensures that the posterior distribution is a valid probability
distribution. ∝ indicates that the right-hand side is propor-
tional to the left-hand side up to the normalization constant.
The selection of prior parameter distributions is a method for
choosing prior distributions for theta and τ 2 based on prior
knowledge or assumptions regarding the parameters.

p
(
θ, τ 2 | y

)
∝ p

(
y | X, θ, τ 2

)
p(θ)p

(
τ 2
)

∝

N∏
i=1

N
(
yi | xTi θ, τ−2

) 5∏
j=1

N
(
θj | 0, 1

)
· Inv-Gamma

(
τ 2 | 2, 2

)
(16)

This Equation (16) is the posterior distribution of the
parameters θ and τ 2 given the observed data y, which is
proportional to the likelihood of the data times the prior
distributions of θ and τ 2.

The likelihood function describes the probability of
observing the data y given the parameters θ and τ 2. This
means that the values in the data are assumed to be gener-
ated by adding random noise to a linear combination of the
input variables xi weighted by the parameters θ , and that the
magnitude of the noise is controlled by the parameter τ 2.
The prior distributions for θ are assumed to be normal

distributions with mean zero and variance one, and the prior
distribution for τ 2 is an inverse gamma distribution with
parameters (2, 2).

By multiplying the likelihood and prior distributions
together and simplifying, we get a proportional expression
that is proportional to the posterior distribution. Finally, the
resulting expression is a product of a power of τ , an exponen-
tial function of τ 2, and a Gaussian distribution of θ in (20),
as shown at the bottom of page 20.

By experimenting and adjusting the initial parameter val-
ues, one can achieve satisfactory results. Typically, it is
possible to select an initial value that is close to the true value
or to randomly sample an initial value from a prior distribu-
tion. Please refer to Appendix A.B for the initial values of the
procedure for determining the shape and scale parameters and
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FIGURE 8. A standard experimental robot identification procedure is
schematically represented in figure.

the inverse gamma prior parameters. TheAppendixA.A is the
specific derivation of the (16).

V. RESULTS AND DISCUSSION
A standard experimental robot identification procedure is
schematically represented in the Figure 8. The procedure
takes inputs such as the kinematic and geometric information
of the robotmanipulator, as well asmodel-accuracy specifica-
tions. These inputs, known before the identification process,
guide the choices made during the procedure. The model
validation step assesses the accuracy of the identified model
based on criteria. If the identified model fails the validation
tests, the procedure may be repeated.

In Figure 8, the procedure takes inputs such as the kine-
matic and geometric information of the robot manipula-
tor, as well as model-accuracy specifications. These inputs,
known before the identification process, guide the choices
made during the procedure. The model validation step
assesses the accuracy of the identified model based on cri-
teria. If the identified model fails the validation tests, the
procedure may be repeated. In Figure 8, the parameter n
is considered to be sensitive according to reference [46].
This implies that, when other parameters are held constant,
a small change in n has a big effect on the model. Specif-
ically, the parameter n influences the smoothness of the
Bouc-Wen curve, but it does not impact other characteristics.

Therefore, the value of n can be constrained to a natural
number within a specific range, depending on the particular
circumstances.

Based on the analysis above, it is evident that the restoring
force is significantly affected by the parameter n. Conse-
quently, n can be limited to a specific natural number value.
Additionally, we can calculate the value of ku using the
information provided in reference [47]. According to the
paper, when the loading displacement exceeds five times
the yield displacement, the restoring force R demonstrates
almost linear behavior concerning the loading displacement.
At this point, the parameter ku can be expressed as 1R/1x,
where 1R represents the change in restoring force and 1x
represents the change in loading displacement.

Below, we summarize the details of the experimental
setup and parameter identification, along with information
regarding the duration of the experiment and computational
complexity.

1) Implementation:
• Programming Language and Development Envi-
ronment: MATLAB R2021b

• Tools: MATLAB’s Signal Processing Toolbox,
Optimization Toolbox

2) Validation Procedure:
• Experimental Setup:

a) Hardware: CMOR (CFETR Multipurpose
Overload Robot) robot system and associated
hardware.

b) Measurement Instruments:Measurement instru-
ments and sensors used in the CMOR single
joint (fourth joint) experimental platform.

• Parameter Identification Steps:
a) Use the composite link method to determine

the dynamic characteristics of each identifiable
part.

b) Optimize the Fourier series parameters [38],
[39] as excitation trajectories by minimizing
the logarithm of the condition number of the
observation matrix in the motion equations.

• Algorithm: Parameter Identification based on
SGHMC Algorithm
a) Input: Parameter data for identification
b) Define the prior distribution of the parameters,

including prior mean and variance.
c) Initialize parameter values using the prior dis-

tribution’s mean as the initial value.
d) Define the step size and iteration count.
e) Define the hyperparameters of the SGHMC

algorithm, including the noise variance of
stochastic gradient estimation and the coeffi-
cient of friction.

f) Generate candidate parameter values
iteratively.

g) Compute the posterior distribution of the
parameters, including mean and variance,
using the obtained samples.
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h) Output the parameter identification results,
using the mean of the posterior distribution as
the final parameter estimate.

• Data Acquisition:
a) Experimental Design 1: Measurement of joint

output torque variation with speed and load.
b) Experimental Design 2: Measurement of joint

current and torque variation over time.
c) Experimental Design 3: Excitation trajectory

using Fourier functions.
• Validation Time:

a) Duration of the experiment: 10 days
b) Individual step time: Time taken for the robot

arm to rotate 180 degrees, determined by the
rotation speed.

• Computational Complexity:
– Algorithm: Parameter Identification based on

SGHMC Algorithm
– Time Complexity:

a) The time complexity of an algorithm
depends on its implementation and compu-
tation stages. The general time complexity
for parameter identification based on the
SGHMC algorithm can be broken down into
the following steps:
i) Parameter Initialization: O(1) time

complexity.
ii) Generation of Candidate Parameter

Values: Time complexity is primarily
dependent on the sampling algorithm
employed, such as the HMC algorithm,
which has a typical time complexity of
O(M ), where M is the number of sam-
pling steps.

iii) Gradient Calculation of the Objective
Function: In general, the time complex-
ity is O(N ), where N is the number of
data samples and depends on the form
and calculation method of the objective
function.

iv) Parameter Update: In general, parameter
updating has a time complexity of O(1)
or O(D), where D is the dimension of
the parameters, depending on themethod
and computational complexity.

v) Multiple parameter updates are imple-
mented based on the predetermined
number of iterations or other halting cri-
teria. Typically, the iteration procedure
has a time complexity of O(K ), where K
is the number of iterations.

b) In conclusion, the time complexity of
parameter identification based on the
SGHMC algorithm is determined by the
generation of candidate parameter values

FIGURE 9. True output torque values and SGHMC predicted output torque
values in (4).

TABLE 3. The results of the Least Square method and SGHMC
method in (4).

and the computation of the objective func-
tion’s gradient, which has time complexities
of O(M ) and O(N ), respectively.

We utilize RMSE as the metric for evaluating the error,
which serves as a measure of the overall deviation between
the predicted and actual values.

RMSE =

√√√√1
n

n∑
i=1

(
yi − ŷi

)2 (17)

where n is the number of observations, yi is the true value,
ŷi is the predicted value.

A. POSTERIOR PARAMETER DISTRIBUTIONS AND
ANALYSIS OF MODEL PREDICTION UNCERTAINTY
1) POSTERIOR PARAMETER DISTRIBUTIONS OF (4)
In Table 3 parameters 1 to 5 represent the following variables:
Ixx (Moment of inertia around the X-axis), mrx (Product of
mass and distance along the X-axis), mry (Product of mass
and distance along the Y-axis), fv (Viscous friction coeffi-
cient), and fc (Coulomb friction coefficient).
The RMSE between the predicted output torque values

using the SGHMC method estimated values and true output
torque values is 2227.144.
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FIGURE 10. This image plots the corner plot of the posterior distributions
in (4).

The RMSE between the predicted output torque values
using the LS method estimated values and true output torque
values is 2227.144.

Figure 9 displays the comparison between the true output
torque values and the predicted output torque values obtained
using the SGHMC method for Equation (4). The graph illus-
trates that the SGHMC predictions closely align with the true
values, indicating the method’s effectiveness in accurately
estimating the output torque. In Figure 10, the corner plot
showcases the posterior distributions of the parameters in
Equation (4) obtained through the SGHMCmethod. The plot
provides valuable insights into the uncertainties and corre-
lations between the parameters, aiding in a comprehensive
understanding of the system’s dynamics.

Table 3 presents the results of the Least Square (LS)
method and the SGHMC method for Equation (4). The table
highlights the estimated values for the parameters, along with
their respective 95% credible intervals. It can be observed that
the SGHMCmethod yields parameter estimates that are close
to those obtained from the LS method.

2) POSTERIOR PARAMETER DISTRIBUTIONS OF
SGHMC IN (11)
The parameters 1 to 5 in Table 4 are: ku (Proportional gain for
input u(t)), kh (Proportional gain for input x(t)), fv (Viscous
friction coefficient), D + fc (Sum of viscous friction coeffi-
cient and inertia), and C (Constant term) in (11).
The RMSE between the predicted output torque values

using the SGHMC method estimated values and true output
torque values is 1705.926.

The RMSE between the predicted output torque values
using the LS method estimated values and true output torque
values is 1845.883.

Figures 11 and 12, along with Table 4, display the out-
comes of LS and SGHMCmethods applied to identify param-
eters in Equation (10). Figure 11 illustrates the comparison
between the true output torque values and the predicted output
torque values obtained using both the SGHMC method and
the Least Square (LS) method for Equation (11). The graph

FIGURE 11. True output torque values, SGHMC method and Least square
method predicted output torque values in (11).

TABLE 4. The results of the Least square method and SGHMC
method in (11).

demonstrates that the SGHMC method achieves a closer fit
to the true values compared to the LS method, indicating its
superior performance in estimating the output torque accu-
rately.

In Figure 12, the plot showcases the posterior distribu-
tions of the parameters in Equation (11) obtained through
the SGHMC method. This visualization provides valuable
insights into the uncertainties associated with the parameter
estimates and facilitates a comprehensive understanding of
their distributions.

Table 4 presents the results of the LS method and the
SGHMC method for Equation (11). The table displays the
estimated values for the parameters, along with their respec-
tive 95% credible intervals. It can be observed from the
table the effectiveness of the SGHMC method. The provided
RMSE values of 1705.926 and 1845.883 indicate the respec-
tive accuracies of the SGHMC and LS methods in predicting
the output torque.

3) EFFICIENCY COMPARISON OF MCMC AND SGHMC
METHOD: MEAN AUTOCORRELATION AND RHAT
The provided Figure 13 shows the comparison between the
true output torque and the predicted output torque obtained
using the MCMC method in (11). The table in Table 5
presents the results of the MCMC method, including the
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FIGURE 12. This image plots the posterior distributions in (11).

FIGURE 13. This image plots the true output torque and the MCMC
method predicted output torque in (11).

estimated parameter values and their corresponding 95%
credible intervals. The root mean squared error (RMSE)
between the predicted output torque values (based on the
estimated parameter values) and the true output torque values
is 1741.990.

The figure visually demonstrates the agreement between
the predicted and true output torque, indicating that the
MCMC method captures the underlying patterns reasonably
well. The relatively small RMSE value suggests that the
MCMC method provides accurate predictions with a reason-
able level of precision.

Overall, based on the visual comparison, parameter esti-
mates, interval estimates, and RMSE, the MCMC method
shows promising performance in predicting the output torque.

We calculate the autocorrelation of the samples obtained
from both algorithms and compare them. Lower autocorrela-
tion indicates a higher efficiency, as it implies that subsequent

TABLE 5. The results of MCMC Method in (11).

TABLE 6. Mean Autocorrelation values for MCMC and SGHMC method.

samples are less dependent on each other. The autocorrelation
function is in the third chapter of this article [48].

Based on the average autocorrelation values and in the
provided figures 14 and 15, it can be observed that the
SGHMC algorithm has relatively smaller values compared to
the MCMC algorithm. The values range from -0.5994e-03 to
0.2927e-03 for SGHMC, while MCMC has values ranging
from -0.0008 to 0.0034.

This suggests that the SGHMC algorithm exhibits faster
convergence and better mixing properties compared to the
MCMC algorithm. The smaller autocorrelation values indi-
cate that the samples generated by SGHMC are less corre-
lated and reach stationarity more quickly. This can lead to
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FIGURE 14. The autocorrelation values of the samples obtained from
SGHMC algorithm in (11).

FIGURE 15. The autocorrelation values of the samples obtained from
MCMC algorithm in (11).

more efficient exploration of the parameter space and faster
convergence to the target distribution. In summary, based on
the average autocorrelation values, the SGHMC algorithm
demonstrates faster convergence compared to the MCMC
algorithm. The smaller autocorrelation values indicate faster
exploration of the parameter space in SGHMC.

The Gelman-Rubin convergence statistic (RHat) [49] is
commonly used to assess the convergence of Monte Carlo
chains. It provides a measure of how well multiple chains
agree with each other and whether they have reached con-
vergence to the desired distribution. In general, RHat values
below 1.1 indicate that the chains have converged. Therefore,
values of RHat less than 1.1 are typically considered indica-
tive of satisfactory convergence to the desired distribution.

Compare the number of iterations required for both algo-
rithms to converge to a reasonable estimate of the target
distribution. In the provided figures 16 and 17 and Table 7,
the number of iterations for both algorithms is set to 10000.
We calculate the Rhat value every 200 points. By observing
the convergence behavior, we can assess which algorithm
converges faster. According to the calculation results, the

FIGURE 16. The RHat values of SGHMC algorithm of the samples
obtained from the (11).

FIGURE 17. The RHat values of MCMC algorithm of the samples obtained
from the (11).

RHat values of both MCMC and SGHMC algorithms are
close to 1, indicating that they have good convergence in
parameter estimation.

However, from the results, the RHat value of the SGHMC
algorithm is relatively slightly lower, indicating that it may
be slightly better than the MCMC algorithm in terms of con-
vergence speed. This may be because the SGHMC algorithm
introduces randomness when updating parameters and uti-
lizes stochastic gradient estimation to speed up the con-
vergence process. In contrast, the MCMC algorithm uses
Metropolis-Hastings sampling, and its update process is rel-
atively conservative.

Overall, the SGHMC algorithm may achieve better con-
vergence in a shorter number of iterations, while the MCMC
algorithm may require more iterations to achieve similar
results.

4) POSTERIOR PARAMETER DISTRIBUTIONS
OF SGHMC IN (9)
The parameters 1 to 3 in Table 8 represent the following
variables: α (the shape constant of the hysteresis curve),
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TABLE 7. RHat average values for MCMC and SGHMC.

FIGURE 18. True hysteresis values, the SGHMC method, and Least square
method predicted hysteresis values in (9).

TABLE 8. The results of the Least square method and SGHMC
method in (9).

β (the shape constant of the hysteresis curve), and γ (the
shape constant of the hysteresis curve) in equation (9). They
are coefficient factors that affect the behavior of the equation,
so they do not have specific units of measurement.

Determine n=1 first, and then proceedwith the calculation,
as a slight change in the value of n will result in a significant
change in the results of hysteresis. The sensitivity analysis
will be conducted in the next section.

The RMSE between the predicted hysteresis values using
the SGHMC method estimated values and true hysteresis
values is 0.234. The RMSE between the predicted hysteresis
values using the LS method estimated values and true hys-
teresis values is 0.545.

Lastly, Figures 18, 19, and 20, along with Table 8, exhibit
the results of LS and SGHMC methods for parameter identi-
fication in Equation (9).

Figure 18 showcases the comparison between the true
hysteresis values and the predicted hysteresis values obtained
using the SGHMCmethod and the Least Square (LS) method
for Equation (9). It can be observed that the SGHMCmethod
provides a closer match to the true values compared to the
LS method, indicating its superior performance in accurately
estimating the hysteresis behavior of the system.

In Figure 19, the corner plot of the posterior distributions
for Equation (9) is displayed. This plot provides a com-
prehensive visualization of the uncertainties associated with
the estimated parameters. By examining the intersections of
the histograms, valuable insights can be gained regarding the
correlations and probability distributions of the parameters.
Figure 20 presents the posterior distributions for Equation (9).
This plot provides a detailed representation of the probability
density functions for each parameter.

Table 8 summarizes the results obtained from the LS
method and the SGHMC method for Equation (9). The table
displays the estimated values for the parameters, along with
their respective 95% credible intervals. It can be observed that
the SGHMC method yields parameter estimates that differ
from those obtained by the LS method. The RMSE values
represent the prediction accuracy of the SGHMC and LS
methods when estimating hysteresis values, respectively. The
SGHMC method exceeds the LS method in capturing the
hysteresis behavior of the system, which is shown by a lower
RMSE value.

5) DISCUSSIONS
RMSE (Root Mean Square Error) is a commonly used evalu-
ation indicator in a variety of disciplines, including statistics
and data analysis. It provides a quantitative evaluation of
the accuracy of a predictive model or estimation technique
by measuring the average difference between predicted and
actual values.

The significance of RMSE resides in its capacity to provide
an all-encompassingmeasure of prediction error. This charac-
teristicmakes RMSE particularly valuable in situationswhere
balanced performance between positive and negative errors is
desired.

RMSE is expressed in the same units as the variable being
predicted, making it simple to interpret. This makes it easy
for researchers, practitioners, and decision-makers to com-
prehend the magnitude of prediction errors in terms of their
actual impact.

In this study, the RMSE values reveal the accuracy of
the SGHMC and LS methodologies in estimating output
torque and hysteresis values. A smaller RMSE suggests a
better fit between the predicted and actual values, indicating
greater precision and dependability of the respective meth-
ods. Comparing the RMSE values allows for the evaluation
and comparison of the effectiveness of the two methods in
capturing the dynamics and hysteresis effects of the under
investigation robotic system.

This article primarily focuses on the application of the
SGHMCmethod, therefore only one formula is used for com-
paring the efficiency ofMCMC and SGHMC.Other formulas
are not repeatedly compared between the two methods.

To evaluate the performance of the SGHMCmethod, a sin-
gle formula is chosen for comparison against the MCMC
method. The results obtained from this formula are presented
in Table 4. The SGHMC method demonstrates competitive
efficiency in estimating the parameters, as indicated by the
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FIGURE 19. This image plots the corner plot of the posterior distributions in (9).

FIGURE 20. This image plots the posterior distributions in (9).

comparable values of the Gelman-Rubin convergence statis-
tic (RHat) and the mean autocorrelation.

By focusing on a specific Equation (11), the article empha-
sizes the effectiveness of the SGHMC method in tackling
the targeted problem. The comparative analysis of RHat and
mean autocorrelation highlights the convergence speed and
independence of samples generated by the SGHMC method.
This approach allows for a comprehensive evaluation of the
SGHMC method’s performance without redundant compar-
isons across multiple formulas.

Overall, the SGHMC method shows better results and
proves to be a viable alternative to the MCMC method for
the specific formula considered in this study.

The study of section V-A found that the SGHMC algorithm
outperformed the Least Square method for computing the
robot arm’s output torque in terms of precision. This
result indicates that SGHMC can be an effective instru-
ment for solving complex optimization problems, especially
those involving large datasets or high-dimensional parameter
spaces.

By comparing the root mean square error (RMSE) of the
predicted output torque of the SGHMC method and the LS

TABLE 9. Root Mean Square Error (RMSE) Comparison. The table
compares the RMSE values for the output torque values predicted by the
SGHMC method and the LS method for two distinct equations. Equation
(4) represents the model of the robot’s dynamics based on LaGrange,
while Equation (11) represents the model devised to describe the
hysteresis effect based on the Bouc-Wen (CBW) model.

method on two different equations, we observed that the
RMSE of the two methods in equation (4) is the same as
2227.144, while in equation (11) The RMSE of the SGHMC
method is 1705.926, and the RMSE of the LS method
is 1845.883. The results show that the SGHMC method
has better predictive performance on Equation (11). The
RMSE reduction of the GHMC method on equation (11) is
about 8.16%.

In this study, two different models, Equation (4) based
on the Lagrange formulation and Equation (11). based on
the Bouc-Wen (CBW) model, were employed to capture the
dynamics and hysteresis effect of the robotic arm. In Table 9,
a comparison of the calculation results using these equations
was presented, with Equation (9) focusing on modeling the
hysteresis phenomenon itself.

Figures 9 and 10, along with Table 3, displayed the results
of parameter identification using the LS and SGHMC meth-
ods for Equation (4). Figure 9 showed that the SGHMC
method accurately estimated the output torque, closely align-
ing with the true values. The corner plot in Figure 10 provided
insights into parameter uncertainties and correlations, aiding
in understanding the system’s dynamics. Table 3 highlighted
that the SGHMC method yielded parameter estimates close
to those obtained from the LS method.
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Similarly, Figures 11 and 12, along with Table 4, presented
the outcomes of LS and SGHMCmethods applied to identify
parameters in Equation (11). Figure 11 demonstrated that the
SGHMC method outperformed the LS method in accurately
estimating the output torque. The posterior distributions in
Figure 12 provided a comprehensive understanding of param-
eter uncertainties. Table 4 showcased the effectiveness of
the SGHMC method, with lower RMSE values indicating its
superior performance in predicting the output torque com-
pared to the LS method.

Lastly, Figures 18, 19, and 20, along with Table 8, exhib-
ited the results of LS and SGHMC methods for parameter
identification in Equation (9). Figure 18 showed that the
SGHMC method achieved a closer match to the true hys-
teresis values compared to the LS method. The corner plot
in Figure 19 provided insights into parameter uncertainties
and correlations, while Figure 20 displayed the posterior
distributions, representing the probability density functions
for each parameter. Table 8 summarized the results, indicating
that the SGHMC method outperformed the LS method in
estimating the hysteresis values, as reflected by the lower
RMSE value.

Overall, the SGHMC method demonstrated superior per-
formance in accurately estimating the output torque and
capturing the hysteresis behavior of the robotic arm, as evi-
denced by the close alignment with true values and lower
RMSE values compared to the LS method. These findings
emphasize the effectiveness of the SGHMC algorithm in
parameter estimation for robotic arm systems.

Regarding parameter estimation and model selection,
the SGHMC algorithm exhibits outstanding computational
efficiency and accuracy. This study demonstrates that the
SGHMC algorithm is a powerful modeling and parameter
estimation tool for dynamic systems with complex structures.
In addition, we observe that the Least-squares algorithm can
provide a high level of precision and efficiency under certain
conditions, especially for simple linear models. Therefore,
selecting an appropriate algorithm depends on the nature of
the problem and the data, and requires trade-offs and deci-
sions based on the situation.

B. ANALYSIS OF FIRST-ORDER SENSITIVITY INDEX AND
GLOBAL SENSITIVITY
1) FIRST-ORDER SENSITIVITY INDEX AND GLOBAL
SENSITIVITY OF (4)
The ‘‘First-order sensitivity index’’, or ‘‘main effect index’’
is stated in [50]. The ‘‘Total-effect index’’ or ‘‘Total-order
index’’ is stated in [51]. The First order sensitivity index
can be used to analyze the impact of parameters in SGHMC
identification on the output, thereby optimizing the parameter
configuration of SGHMC by determining which parame-
ters have a significant impact on the output. By calculating
the first-order sensitivity index of each parameter, we can
evaluate each parameter’s contribution to the output vari-
ance, thereby gaining a deeper understanding of the SGHMC

FIGURE 21. First-order sensitivity index values in (4). Subplot1:
First-order sensitivity index of Ixx (Moment of inertia around the X-axis)
Subplot2: First-order sensitivity index of mrx (Product of mass and
distance along the X-axis) Subplot3: First-order sensitivity index of mry
(Product of mass and distance along the Y-axis) Subplot4: First-order
sensitivity index of fv (Viscous friction coefficient) Subplot5: First-order
sensitivity index of fc (Coulomb friction coefficient).

model and its parameters. Utilizing the first-order sensitivity
index in the tuning of SGHMC can direct parameter adjust-
ments toward improved model performance.

The first-order sensitivity index for parameter Xi can be
calculated using the following formula:

FSi =
Var (E (Y | Xi))

Var(Y )
(18)

where FSi is the first-order sensitivity index, Var(E(Y |Xi))
represents the variance of the conditional expectation of the
output Y given the parameter Xi, and Var(Y ) is the total
variance of the output.

The Total effect index can assist in determining which
parameters have the most significant effect on the model,
especially when parameter interactions are present. Using
the total effect index for sghmc can help determine which
parameters have the greatest variance in the sample posterior
distribution, which may necessitate additional data or more
precise prior information to enhance estimation precision.
Therefore, utilizing the total effect index is extremely useful
for analyzing the parameters identified by sghmc, which
can help us design experiments or construct models more
effectively.

The total-effect index for parameter Xi can be calculated
using the following formula:

Ti =
Var (E (Y | Xi))+

∑
j̸=i Var

(
E
(
Y | Xj,Xi

))
Var(Y )

(19)

where Ti is the total-effect index, Var(E(Y |Xi)) represents the
variance of the conditional expectation of the output Y given
the parameter Xi, Var(E(Y |Xj,Xi)) represents the variance
of the conditional expectation of the output Y given the
parameters Xj and Xi together, and Var(Y ) is the total variance
of the output.
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FIGURE 22. This image plots the Total-effect index in (4).Subplot1:
Total-effect index of Ixx (Moment of inertia around the X-axis) Subplot2:
Total-effect index of mrx (Product of mass and distance along the X-axis)
Subplot3: Total-effect index of mry (Product of mass and distance along
the Y-axis) Subplot4: Total-effect index of fv (Viscous friction coefficient)
Subplot5: Total-effect index of fc (Coulomb friction coefficient).

FIGURE 23. First-order sensitivity index values in (11). Subplot1:
First-order sensitivity index of ku (Proportional gain for input u(t))
Subplot2: First-order sensitivity index of kh (Proportional gain for input
x(t)) Subplot3: First-order sensitivity index of fv (Viscous friction
coefficient) Subplot4: First-order sensitivity index of D + fc (Sum of
viscous friction coefficient and inertia) Subplot5: First-order sensitivity
index of C (Constant term) in Equation (11).

In Figure 21 and Figure 22, we can see that the values
of the Total effect index are sorted in descending order:
mrx ≈ fv > fc > Ixx > mry. fc and fv are located in the second
and third positions, so when considering the robotic arm as a
rigid body, the frictional force has a significant impact on the
output torque.

2) FIRST-ORDER SENSITIVITY INDEX AND GLOBAL
SENSITIVITY OF SGHMC IN (11)
In Figure 23, we can see that the values of the First-order
index are sorted in descending order: fv > Kh > Ku >

D + fc > C . fv is the fircton which is the maximum value.
Ku is the proportional gain for input u(t). Kh is the parameter

FIGURE 24. This image plots the Total-effect index in (11).
Subplot1: Total-effect index of ku (Proportional gain for input u(t) )
Subplot2: Total-effect index of kh (Proportional gain for input x(t))
Subplot3: Total-effect index of fv (Viscous friction coefficient) Subplot4:
Total-effect index of D + fc (Sum of viscous friction coefficient and
inertia) Subplot5: Total-effect index of C (Constant term) in Equation (11).
The subplots represent the total-effect indices of each parameter,
indicating the overall influence of that particular parameter on the
system’s response or output.

of hysteresis deformation. In Figure 24 the values of Total
effect index is sorted in descending order: Ku > fv ≈ Kh >

C > D+ fc. It can be seen that hysteresis deformation has the
greatest impact on the output torque.

The Total-Effect Index quantifies the global impact of a
parameter on the model output. mrx , fv, fc had the highest
total-effect index for the first Equaiton (4), whereas Ku, fv
had the highest total-effect index for the second equation (11).
This indicates that these parameters have a substantial effect
on the model output and should be carefully considered when
designing and controlling the robot arm.

VI. CONCLUSION
The results of this study demonstrate the efficacy of the
SGHMC algorithm in parameter estimation for heavy-duty
manipulators, making an important scientific contribution.
This algorithm provides a robust and stable method for pre-
cisely estimating the system’s parameters, thereby advancing
the theoretical understanding of robotics. In addition, the
practical implications of these findings are substantial, as
the SGHMCalgorithm demonstrates its efficacy in improving
the reliability and performance of robotic arm systems in real-
world applications. This research bridges the divide between
theory and practice, paving the way for further investigation
and development of advanced parameter estimation methods.

Based on calculations of the output torque of a heavy-duty
robotic arm using the SGHMC and least squares algorithms,
we discovered that the SGHMC algorithmwith (11) produced
the highest accuracy at a relatively lower computational cost.
In addition, the analysis of the first-order and total-effect
sensitivity indices revealed that mrx , fv, fc, and Ixx have the
greatest influence on the output torque, followed by mry.
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Moreover, the parameters Ku, fv have significant effects on
the respective output torque.

The effectiveness and efficacy of the SGHMC algorithm
for analyzing the output torque of a heavy-duty robotic arm
are demonstrated by our research. In addition, the sensitivity
analysis offers valuable insights into the relative significance
of various parameters and can steer the system’s optimization.

This study’s findings provide a foundation for future
research into the use of SGHMC and the Total-Effect Index
in robotics applications. In addition, only a limited number of
model parameters were considered, and future research could
investigate the sensitivity of the model output to a broader
range of parameters.

The limitations of our research must be acknowledged.
At first, the estimation of model parameters and sensitivity
analysis relied on a restricted data set. A larger and more
various data set would increase the scope and precision of
our findings. Second, by concentrating on a particular set of
model parameters, we may have overlooked other influential
factors. Future research should investigate a broader range of
parameters to achieve a deeper comprehension. Our analy-
sis focused primarily on internal factors, ignoring external
factors like temperature and disturbances. Including these
variables in future research would result in a more accurate
evaluation of the manipulator’s performance in real-world
situations.

The SGHMC method for parameter identification in
heavy-duty manipulators confronts obstacles including the
selection of suitable hyperparameters, the manipulation of
high-dimensional parameter spaces, and the management of
non-linear and complex dynamics. To ensure the efficacy
and dependability of the SGHMC algorithm in accurately
estimating the parameters of the robotic arm system, these
obstacles must be carefully considered.

This investigation concludes with the development of a
method for modeling and parameter estimation of the out-
put torque of a heavy-duty robotic arm taking hysteresis
deformation into account. This is crucial for solving and
implementing practical problems.

Possible future directions include exploring the use of
other random gradient methods, such as random gradient
jumps. Finally, environmental factors, such as temperature,
may affect the efficacy of the robot arm. Future research
also holds the potential for explaining the performance of
the SGHMC algorithm and other parameter estimation tech-
niques in a wider range of application scenarios. Addi-
tional methods that effectively address model selection issues
must be developed. In addition, it is essential to expand
research on the SGHMC algorithm and other parameter
estimation techniques to evaluate their efficacy in various
application scenarios. To assure the heavy-dutymanipulator’s
stability in a variety of conditions, it is essential to study
the effect of environmental factors, such as temperature,
on its performance. These research attempts will substan-
tially improve the performance of robotic arms in the real
world.

APPENDIX A
THE SPECIFIC DERIVATION OF THE POSTERIOR
PARAMETER DISTRIBUTIONS
A. THE LIKELIHOOD FUNCTION AND PRIOR
DISTRIBUTIONS
This Equation 17 represents the posterior distribution of
parameters θ and τ 2 given the observed data y. It is obtained
by applying Bayes’ theorem to the likelihood function p(y |
X, θ, τ 2) and prior distributions p(θ ) and p(τ 2) of the param-
eters. The proportionality symbol ∝ indicates that the right-
hand side is proportional to the left-hand side up to a nor-
malization constant. The likelihood function assumes that
the observed data y is normally distributed with a mean of
xTi θ and variance of τ−2. The prior distributions for θ and
τ 2 are assumed to be normal and inverse-gamma distribu-
tions, respectively. The posterior distribution is proportional
to the likelihood function times the prior distributions. The
selection of appropriate prior distributions is important for
accurate Bayesian inference.

The specific calculation formula for the likelihood function
p(y | X, θ, τ 2) is as in (21), shown at the bottom of the next
page.

B. THE METHOD OF DETERMINING THE PARAMETERS OF
INVERSE GAMMA PRIOR
In Bayesian inference, the inverse-gamma prior distribution is
commonly used as a conjugate prior for the precision or vari-
ance parameter in the normal distribution. This article [52]
explores the benefits and applications of using an inverse
gamma distribution as a prior distribution.

If y=ax finds parameter a, a is five parameters (same as
Equation (4)), themean value of x is known to be n1, themean
value of y is n2, and the variance ism2, assuming that the prior
distribution of a is an inverse Gamma distribution, themethod
of determining the shape parameter and scale parameter of
inverse Gamma prior and the initial value of the parameter
and the calculation process is given below.

p (ai | αi, βi) ∝
β

αi
i

0 (αi)
(ai)−αi−1 exp

(
−

βi

ai

)
(22)

The Equation (22) represents the posterior distribution of
the parameter ai given the hyperparameters αi and βi in the
inverse-gamma prior distribution ai ∼ Inv-Gamma (αi, βi).
The mean and variance of the inverse gamma distribution

are as follows:

E [ai] =
βi

αi − 1
, αi > 1

Var [ai] =
β2
i

(αi − 1)2 (αi − 2)
, α (23)

The known variance m2 is the variance of the prior distri-
bution for each parameter ai. In other words, when we set the
inverse gamma distribution prior to each ai, we can choose
the appropriate shape parameter αi and scale parameter βi so
that the variance of the prior distribution Var[ai] is equal to
the known variance m2.

VOLUME 11, 2023 78579



Q. Wang et al.: Parameter Identification of Heavy-Duty Manipulator Using SGHMC Method

TABLE 10. Design specifications of the fourth joint of CMOR.

TABLE 11. Test items and evaluation indicators of the test platform for
the fourth joint of CMOR.

APPENDIX B
DESIGN SPECIFICATIONS OF THE FOURTH
JOINT OF CMOR
Please refer to Table 10 and Table 11.

APPENDIX C
THE CONTROL SYSTEM DIAGRAM
The control system in Fig. 25 consists of a SIMATIC S7-1500
programmable logic controller (PLC) that is responsible for
controlling various components in the hydraulic system, test-
ing platform data acquisition, internal joint control, and the
dynamometer.

For the hydraulic system (1), the control system includes
components such as the oil pump motor, cooling device, pro-
portional pressure regulator, and pressure transmitter. These
components are controlled and monitored by the PLC to
maintain the desired hydraulic pressure and ensure efficient
operation.

In the testing platform data acquisition (2), the control sys-
tem incorporates strain gauges, encoders, and displacement
sensors. These sensors collect data related to the performance
and behavior of the system under test. The PLC interfaces
with these sensors to acquire and process the data for analysis
and monitoring purposes.

The internal joint control (3) involves the use of optical
sensors, encoders, and S120 drive units with servo motors.
These components enable precise control and positioning of
the joints within the system. The PLC receives feedback from
the sensors and adjusts the motor control signals accordingly
to achieve the desired joint movements.

p
(
θ, τ 2 | y

)
∝ p

(
y | X, θ, τ 2

)
p(θ )p

(
τ 2
)

(20a)

∝

N∏
i=1

N
(
yi | xTi θ, τ−2

) 5∏
j=1

N
(
θj | 0, 1

)
· Inv-Gamma

(
τ 2 | 2, 2

)
(20b)

∝ τN exp

(
−

τ 2

2

N∑
i=1

(
yi − xTi θ

)2) 5∏
j=1

exp
(
−
1
2
θ2j

)
·

1(
τ 2
)2+1 exp(− 2

τ 2

)
(20c)

∝ τN exp

−τ 2

2

N∑
i=1

(
yi − xTi θ

)2
−

1
2

5∑
j=1

θ2j − 2 ·
1
τ 2

 (20d)

N∏
i=1

N
(
yi | xTi θ, τ−2

)
= N

(
y1 | xT1 θ, τ−2

)
×N

(
y2 | xT2 θ, τ−2

)
× · · · ×N

(
yN | xTN θ, τ−2

)
(21a)

=
1

√
2πτ−1

exp

(
−
1
2

(
y1 − xT1 θ

)2
τ−2

)
×

1
√
2πτ−1

exp

(
−
1
2

(
y2 − xT2 θ

)2
τ−2

)

× · · · ×
1

√
2πτ−1

exp

(
−
1
2

(
yN − xTN θ

)2
τ−2

)
(21b)

=
1(

2πτ−2
)N/2 exp

(
−

τ 2

2

N∑
i=1

(
yi − xTi θ

)2)
(21c)

= τN
1

(2π )N/2 exp

(
−

τ 2

2

N∑
i=1

(
yi − xTi θ

)2)
(21d)
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FIGURE 25. Diagram of the control system design of the CMOR fourth joint test platform.

FIGURE 26. The system control scheme which consists of five functional components: sensors,
actuators, PLC, HMI, and SQL Server.

Lastly, for the dynamometer (4), the control system
includes an S7-1500 digital/analog I/O module. This module
allows the PLC to interface with the dynamometer for con-
trol and measurement purposes, enabling the assessment of
torque and power output.

Overall, the control system integrates the PLCwith various
sensors, actuators, and modules to monitor and control the
different aspects of the hydraulic system, data acquisition,
joint control, and dynamometer. This comprehensive control
system ensures accurate and reliable operation of the overall
system.

The system control scheme in Fig. 26 which consists of
five functional components: sensors, actuators, PLC, HMI,
and SQL Server. The PLC controls the hydraulic cylinder,

allowing for adjustable force output and simulating person-
alized combinations of shear force and bending moment to
achieve various load testing scenarios. TheHMI in the control
system reads data from sensors, such as the force magnitude
of the hydraulic cylinder, and displays and archives this data
for further analysis. The SQL Server receives data from the
HMI during the testing process and performs analysis tasks,
including graphical data visualization, average value analy-
sis, variance analysis, and generation of test platform reports.
These reports are then outputted and archived for future
reference. By integrating sensors, actuators, PLC, HMI, and
SQL Server, the system control solution enables precise con-
trol of the hydraulic cylinder, data acquisition from sensors,
data visualization and analysis, and report generation for the
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testing platform. This comprehensive solution ensures effi-
cient and effective control, monitoring, and analysis of the
system.
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