
Received 18 June 2023, accepted 16 July 2023, date of publication 25 July 2023, date of current version 2 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298678

A Refactoring Classification Framework for
Efficient Software Maintenance
ABDULLAH ALMOGAHED 1, HAIRULNIZAM MAHDIN 1, MAZNI OMAR 2,
NUR HARYANI ZAKARIA2, SALAMA A. MOSTAFA1, SALMAN A. ALQAHTANI 3, (Member, IEEE),
PRANAVKUMAR PATHAK4, SHAZLYN MILLEANA SHAHARUDIN 5,6,
AND RAHMAT HIDAYAT 7, (Member, IEEE)
1Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Johor Bahru 86400, Malaysia
2School of Computing, Universiti Utara Malaysia, Sintok 06010, Malaysia
3Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
4School of Continuing Studies, McGill University, Montreal, QC H3A 0G4, Canada
5Department of Mathematics, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim 35900, Malaysia
6Department of Statistics, Columbia University, New York, NY 10032, USA
7Department of Information Technology, Politeknik Negeri Padang, Padang, Sumatera Barat 25164, Indonesia

Corresponding authors: Hairulnizam Mahdin (hairuln@uthm.edu.my) and Abdullah Almogahed (abdullahm@uthm.edu.my)

This Research is funded by Research Supporting Project Number (RSPD2023R585), King Saud University, Riyadh, Saudi Arabia.

ABSTRACT The expenses associated with software maintenance and evolution constitute a significant
portion, surpassing more than 80% of the overall costs involved in software development. Refactoring,
a widely embraced technique, plays a crucial role in streamlining and minimizing maintenance activities
and expenses. However, the effect of refactoring techniques on quality attributes presents inconsistent and
conflicting findings, making it challenging for software developers to enhance software quality effectively.
Additionally, the absence of a comprehensive framework further complicates the decision-making process
for developers when selecting appropriate refactoring techniques aligned with specific design objectives.
In light of these considerations, this research aims to introduce a novel framework for classifying refactoring
techniques based on their measurable influence on internal quality attributes. Initially, an exploratory study
was conducted to identify commonly employed refactoring techniques, followed by an experimental analysis
involving five case studies to evaluate the effects of these techniques on internal quality attributes. Subse-
quently, the framework was constructed based on the outcomes of the exploratory and experimental studies,
further reinforced by a multi-case analysis. Comprising three key components, namely the methodology
for applying refactoring techniques, the Quality Model for Object-Oriented Design (QMOOD), and the
classification scheme for refactoring techniques, this proposed framework serves as a valuable guideline
for developers. By comprehending the effect of each refactoring technique on internal quality attributes,
developers can make informed decisions and select suitable techniques to enhance specific aspects of their
software. Consequently, this framework optimizes developers’ time and effort by minimizing the need to
weigh the pros and cons of different refactoring techniques, potentially leading to a reduction in maintenance
activities and associated costs.

INDEX TERMS Refactoring classification, software metrics, software refactoring, refactoring techniques,
software quality, software maintenance, internal quality attributes.

I. INTRODUCTION
Software refactoring refers to a method aimed at enhancing
the internal design of a software system without altering

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudia Raibulet .

its functionality, thereby improving the overall quality of
the design [1], [2]. This approach serves to reduce mainte-
nance activities and costs associated with the software [3],
[4]. It is recognized as a standard solution that focuses on
restructuring the software’s design structure while preserving
its functionality [5], [6]. Consequently, software refactoring

78904 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5408-1529
https://orcid.org/0000-0002-2275-0094
https://orcid.org/0000-0003-1816-2940
https://orcid.org/0000-0003-1233-1774
https://orcid.org/0000-0001-8243-5646
https://orcid.org/0000-0002-6040-7561
https://orcid.org/0000-0002-7194-3159


A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

has emerged as a vital aspect of software maintenance and
evolution [7], [8], becoming increasingly indispensable in
the field of software development due to the evolving IT
landscape and user requirements [3]. The significance of
refactoringwithin software development processes has grown
significantly, as it can be prompted by various factors such as
new requirements, adaptation to diverse contexts, and subpar
quality [3], [9]. Refactoring is widely adopted as a promi-
nent technique for enhancing the quality of existing software
systems in practical settings [10], [11], [12], establishing an
important connection between quality attributes [13].

Within this context, previous empirical investigations have
explored the influence of applying refactoring techniques on
quality attributes. By examining pertinent literature, these
investigations have yielded a variety of outcomes. Cer-
tain research studies suggest that the utilization of refac-
toring techniques has a favorable impact on the quality
of software [14], [15], [16], [17], [18]. Conversely, other
studies suggest a negative effect of refactoring on quality
attributes [19], [20]. Some studies find no significant effect
of refactoring techniques on quality attributes [21], [22], [23].
Additionally, there are caseswhere the effect of refactoring on
quality attributes remains ambiguous and lacks clarity [24],
[25], [26].

Refactoring is a widely acknowledged practice that has
been widely utilized to improve the quality of software sys-
tems [27], [28]. However, it has been noted that the impact of
software refactoring on different software quality attributes
is not consistently positive [13], [29], [30], [31]. An analysis
of literature reviews demonstrates varying and conflicting
outcomes regarding the influence of refactoring techniques
on software quality attributes. This inconsistency can be
attributed to the fact that different techniques have distinct
effects on different attributes [30], [31]. In essence, there
is conflicting evidence concerning the benefits of refactor-
ing. Research findings indicate that the effects of different
refactoring techniques on software quality attributes can vary
significantly. In some cases, these effects may even be con-
tradictory or opposing to one another [13], [30], [31], [32],
[33]. Moreover, the particular sequence in which refactoring
techniques are carried out can have different impacts on qual-
ity attributes [8], [33]. Consequently, it becomes challenging
to differentiate the individual impacts of each refactoring
technique or draw definitive conclusions about their impact
on quality [13], [34]. A harmful practice is failing to rec-
ognize the refactoring techniques used or failing to use each
technique separately [30].
Using refactoring techniques to improve software quality

presents challenges for developers, given the inconsistent
or contradictory results regarding their effects [8], [34].
Chaparro et al. [35] highlight the difficulty developers face
in assessing the advantages and disadvantages of refactoring
techniques, which becomes evenmore complex when dealing
with conflicting techniques. Moreover, Nyamawe et al. [27]
and Almogahed and Omar [36] point out the challenges
developers encounter when selecting the most suitable refac-

toring technique from a range of options to address design
flaws. Determining the appropriate type of refactoring to
apply is often a daunting task [27]. Consequently, a clas-
sification framework that classifies refactoring techniques
according to how they influence software quality attributes
can support developers in attaining their design goals. By ana-
lyzing the specific purpose and impact of every refactor-
ing technique on quality attributes, developers can make
informed decisions and choose themost beneficial techniques
for their intended purposes [31], [37], [38], [39].

Several studies have attempted to classify refactoring
techniques according to their influence on desired quality
attributes, although their scope has been limited [31]. These
studies [28], [40], [41], [42], [43] have classified a subset of
refactoring techniques regarding particular quality attributes.
Nevertheless, these classifications have certain limitations,
as they do not encompass a comprehensive range of inter-
nal quality attributes, for example, composition, abstraction,
hierarchies, encapsulation, messaging, and polymorphism.
The ongoing debate surrounding the impacts of refactoring
techniques on software design quality is characterized by
diverse and conflicting opinions [31], [39]. These findings
highlight the insufficiency of current research on the subject
of refactoring techniques and their impact on software qual-
ity [30], [31], [38], [39].

The current lack of frameworks for software developers
to identify appropriate refactoring techniques for achieving
specific design goals has been noted [8], [39]. Developers
require explicit guidance on the optimal path and refactor-
ing choices to effectively achieve desired designs [8], [44].
Researchers are encouraged to explore various aspects in
conjunction with refactoring, including the recommendation
of specific refactoring techniques [13]. Addressing the chal-
lenge of recommending suitable refactoring techniques is
highlighted by Abid et al. [3]. To ensure consistent and effec-
tive utilization of refactoring techniques, the establishment
of a refactoring classification framework is necessary [8].
This framework would serve as a comprehensive set of
guidelines to assist software practitioners in selecting appro-
priate refactoring techniques. However, to date, no study has
proposed a refactoring classification framework specifically
designed to enhance the internal quality attributes of software
systems.

To address these gaps, the primary aim of this study is
to develop a comprehensive refactoring classification frame-
work that classifies refactoring techniques based on their
impact on internal quality attributes. By utilizing this frame-
work, software practitioners will have the ability to enhance
the quality of software systems by choosing and implement-
ing the appropriate refactoring techniques in the appropriate
locations. The proposed framework will serve as a valu-
able guideline, aiding software practitioners in gaining a
deeper understanding of the connections between refactor-
ing techniques and object-oriented properties. Additionally,
it will enable them to enhance the software system’s qual-
ity by selecting suitable refactoring techniques aligned with

VOLUME 11, 2023 78905



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

specific design objectives, ultimately enhancing targeted
quality attributes.

This paper is organized as follows: A description of the
relevant work done in the field is given in Section II. The
methodology used in this study is described in Section III.
The results are then presented and thoroughly discussed in
Section IV, which follows. Threats to validity are dealt with
in Section V. Finally, Section VI brings the paper to a close
by outlining our goals for future research.

II. RELATED WORK
Numerous investigations have been undertaken with the
objective of categorizing refactoring techniques according to
their impact on internal quality metrics. Bois and Mens [45]
conducted a categorization of refactoring techniques accord-
ing to their influence on a few internal quality metrics
(LCOM, NOM, CBO, NOC, and RFC), specifically focusing
on four techniques: Encapsulate Field, Extract Method, Pull
Up Method Subclass, and Pull Up Method Superclass. Their
study utilized a simple Java package comprising four classes
as a case study. However, there were fewer refactoring tech-
niques and internal quality metrics taken into account in this
classification. Furthermore, the experiment employed a small
demo program.

In another study, Bois et al. [46] presented a classifica-
tion that served as a guideline for identifying the conditions
under which applying refactoring techniques could enhance
code coupling and cohesion. They identified five specific
techniques (Replace Data Value with Object, Move Method,
Extract Class, Replace Method with Method Object, and
ExtractMethod) that demonstrated improvements in coupling
and cohesion. Elish and Alshayeb [24], [40], [41] proposed
classifications of several refactoring techniques, including
Extract Class, Consolidate Conditional Expression, Extract
Method, Hide Method, and Encapsulate Field, based on their
measurable effects on internal metrics (LOC, WMC, RFC,
NOM, and FOUT). However, the number of refactoring
techniques and quality attributes taken into account in these
classifications was constrained. It’s worth noting that small
systems were employed to establish these classifications.

In their study, Malhotra and Chug [42] focused on clas-
sifying refactoring techniques according to their impact on
quality attributes. They specifically considered five com-
monly used techniques: Hide Method, Extract Method,
Extract Class, Encapsulate Field, and Consolidate Condi-
tional Expression, along with four quality attributes: inher-
itance, complexity, coupling, and cohesion. The analysis
aimed to categorize these refactoring techniques in line with
their impacts on quality attributes. To conduct the experi-
ments, five C# software projects from the academic envi-
ronment were utilized. Similarly, Malhotra and Jain [43] led
a study to investigate the individual effects of four refac-
toring techniques: Encapsulate Field, Wrap Return value,
Replace Constructor with Builder, and Replace Constructor
with Factory, on four quality attributes: inheritance, cohesion,
coupling, and complexity.

FIGURE 1. Refactoring classification framework development
methodology.

Almogahed et al. cite47 investigated the influence of five
frequently employed refactoring techniques (Hide Method,
Encapsulate Field, Inline Method, Extract Method, and
Remove Setting Method) on the security characteristic in the
context of information hiding. These techniques were then
classified based on security metrics.

However, these existing classifications exhibit several
shortcomings that render them insufficiently comprehensive.
These shortcomings can be outlined as follows:

• The classifications are limited in scope as they only
encompass a specific set of refactoring techniques, fail-
ing to cover a wide range of available techniques.

• The selection of refactoring techniques lacks industry
evidence and is primarily based on subjective judgments
made by researchers or derived from literature review
analysis. It is crucial to validate the relevance and useful-
ness of refactoring techniques by incorporating feedback
from industry practitioners.

• The classifications are confined to a narrow range of
internal quality properties. Essential internal quality
properties such as messaging, hierarchies, abstraction,
polymorphism, composition, and encapsulation have not
been taken into consideration, limiting the comprehen-
siveness of the classifications.

Therefore, the purpose of this study is to overcome these
limitations by introducing a comprehensive classification
framework. This framework aims to classify commonly used
refactoring techniques based on a wide range of internal
quality attributes. To achieve this, the study will investigate
the prevalent refactoring techniques employed by software
practitioners in their current practices. Furthermore, it will
assess the individual impacts of these refactoring techniques
on internal quality properties such as abstraction, hierarchies,
messaging, composition, encapsulation, and polymorphism.

III. METHODOLOGY
In this section, we will outline the development phases
of the refactoring classification framework. The framework
is constructed through four essential process phases: 1)
exploratory study, 2) experimental study, 3) multi-case analy-
sis, and 4) development. The methodology for developing the
refactoring classification framework is visually depicted in
Figure 1.

The exploratory study aimed to identify the most com-
monly used refactoring techniques and object-oriented prop-
erties. Additionally, five case studies of varying sizes were
selected for conducting the experiments. In the experimental

78906 VOLUME 11, 2023



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

study, a total of 39 experiments were conducted to investigate
the individual effects of 10 refactoring techniques on inter-
nal quality attributes. Throughout the five case studies, the
refactoring techniques were performed a total of 889 times.
A multi-case analysis was then carried out to classify the
refactoring techniques according to their influence on the
internal quality attributes. The proposed framework was con-
structed based on the findings from the exploratory and exper-
imental studies as well as the multi-case analysis. Detailed
explanations of these four phases will be provided in the
subsequent sections.

A. EXPLORATORY STUDY
The exploratory study serves as the initial phase of this
research, involving a critical review and in-depth analysis
of relevant literature. Its purpose is to establish the scope
of the proposed classification framework. Within this phase,
three primary activities were conducted. Firstly, the iden-
tification of the commonly utilized refactoring techniques
in current software refactoring practices was carried out.
Secondly, internal quality attributes and metrics were iden-
tified for inclusion in the study. Lastly, case studies from
both real-world and academic environments were carefully
selected for experimental purposes. Detailed information
regarding these three activities will be presented in the sub-
sequent subsections.

1) IDENTIFYING THE REFACTORING TECHNIQUES
In the domain of object-oriented paradigms, Fowler et al. [1]
introduced a comprehensive refactoring catalog encompass-
ing 68 original techniques, categorized into six distinct
groups. To determine the most commonly employed refactor-
ing techniques, an extensive review and analysis of existing
literature were conducted in this study. Notably, five sys-
tematic literature reviews [13], [30], [48], [49], [50] and
one systematic mapping study [31] identified frequently
utilized refactoring techniques within academic research.
In addition, Kim et al. [15], [51] identified prevalent refac-
toring techniques employed in the software engineering
practices at Microsoft. Gatrell and Counsell [52] solicited
input from ex-industry developers to select 13 refactoring
techniques that are deemed most likely to be applied and
represent a broad range of refactoring practices. Furthermore,
Ouni et al. [53] reported widely adopted refactoring tech-
niques in practical settings. A recent survey by Almogahed
and Omar [36] identified themost frequently employed refac-
toring techniques among practitioners in current industry
practices.

Based on the analysis conducted in this study, the following
10 refactoring techniques emerged as the most frequently
employed: 1) Add Parameter (AP), 2) Extract Class (EC),
3) Encapsulate Field (EF), 4) Hide Method (HM), 5) Inline
Class (IC), 6) Pull Up Field (PUF), 7) Pull Up Method
(PUM), 8) Push Down Field (PDF), 9) Push Down Method
(PDM), and 10) Remove Parameter (RP).

2) IDENTIFYING OBJECT ORIENTED PROPERTIES AND
METRICS
When selecting appropriate metrics, it is essential to con-
sider those that have been empirically validated through
previous studies. Various metric suites, such as Metrics for
Object-Oriented Designs (MOOD) [54], Lorenz and Kidd
(L&K) [55], Quality Model for Object-Oriented Design
(QMOOD) [56], and Chidamber and Kemerer (C&K) [57],
have undergone empirical validation and are extensively uti-
lized in object-oriented environments [31], [39], [47], [58],
[59]. To accomplish the goals of this research, it is essential to
employ a comprehensive quality model capable of assessing
the quality of software systems and evaluating the influence
of refactoring techniques on their quality. This quality model
should include the ability to measure and analyze the internal
quality attributes of the software.

Therefore, for this study, the QMOOD model proves to be
more suitable due to its comprehensive nature in evaluating
software design quality [60]. With its 11 internal quality
attributes, the QMOOD model provides a broader perspec-
tive on software quality compared to other metrics specific
to object-oriented design [61]. These properties effectively
capture the essential characteristics of object-oriented sys-
tems [60] and offer a comprehensive understanding of soft-
ware design quality [61]. Furthermore, the widespread use
of QMOODmetrics allows for assessment at both the system
and class levels, making them valuable in evaluating software
designs [59].
Consequently, for this study, a comprehensive set of

object-oriented properties and corresponding metrics were
selected from the QMOOD model. These properties encom-
pass complexity, hierarchies, polymorphism, inheritance,
abstraction, messaging, cohesion, coupling, composition,
encapsulation, and design size. The specific metrics chosen
to capture these properties include number of complexity
(NOM), number of hierarchies (NOH), number of poly-
morphic methods (NOP), measure of functional abstraction
(MFA), average number of ancestors (ANA), class interface
size (CIS), cohesion among methods in a class (CAM), direct
class coupling (DCC), measure of aggregation (MOA), data
access metric (DAM), and design size in classes (DSC).
Each metric serves to measure a distinct aspect: DSC quanti-
fies design size, NOH captures hierarchies, ANA evaluates
abstraction, DAM assesses encapsulation, DCC measures
coupling, CAM gauges cohesion, MOA quantifies com-
position, MFA reflects inheritance, NOP evaluates poly-
morphism, CIS quantifies messaging, and NOM measures
complexity.

3) SELECTING CASE STUDIES
To ensure a comprehensive and generalized investigation,
case studies were collected from two distinct environments:
the real-world and academic settings. The rationale behind
this selection was to incorporate projects developed by pro-
grammers with varying abilities and expertise, ranging from

VOLUME 11, 2023 78907



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

students and beginners to professionals. By considering these
diverse development skills and environments, the study’s
investigations become more comprehensive and allow for
the generalization of results. The proposed refactoring clas-
sification framework in this study was developed using five
well-known case studies [8], [30], [31]: the bankmanagement
system (BMS) [62], library management system (LMS) [63],
payroll management system (PMS) [64], jHotDraw [65], and
jEdit [66]. Including these varied case studies adds further
depth and applicability to the research.

B. EXPERIMENTAL STUDY
An experimental study aims to uncover, describe, validate,
and gain a comprehensive understanding of the processes,
activities, and characteristics of a current phenomenon. Its
purpose is to extend or develop new theories or methods
that can enhance current practice [67]. Within the scope of
this study, a total of 39 experiments were conducted across
five case studies. The main aim of these experiments was
to examine the influence of each refactoring technique indi-
vidually on object-oriented properties. The next sections will
provide a detailed outline of the experimental plan, including
the procedures and materials used during the experiments.

1) EXPERIMENTAL PROCEDURES
The total count of experiments conducted in a case study
aligns with the number of identified chances to apply refac-
toring techniques within that particular case study. Hence,
for each experiment, there exists a unique version of the
case study where a specific refactoring technique is applied.
Essentially, every case study’s original version underwent
multiple independent runs, each run representing the appli-
cation of a detected refactoring opportunity. After each run,
a new version of the case study was generated, reflecting
the changes resulting from the applied refactoring technique.
Figure 2 illustrates the experimental steps undertaken to ana-
lyze the influence of each refactoring technique on internal
quality attributes across different case studies.

Each experiment was carried out through several steps,
as described in the following:

Step One: Identifying opportunities to perform a refactor-
ing technique

In this step, the classes of a software project were analyzed
to find out where they may need refactoring to improve the
quality of the design. Fowler, in his book, provided examples
to explain how to use the refactoring techniques [1], [2].
By the end of this step, the possible classes that require
refactoring had been identified, and the related refactoring
technique had been selected.

Step Two:Collecting object-oriented metrics before per-
forming a refactoring technique

The object-oriented metrics (CIS,MFA, NOH, DCC, NOP,
CAM,DSC, DAM,ANA,NOM, andMOA)were collected to
measure their relevant internal quality attributes (inheritance,
coupling, cohesion, design size, composition, encapsulation,

FIGURE 2. Experiment steps.

polymorphism, abstraction, messaging, hierarchies, and com-
plexity). The object-oriented metrics were automatically col-
lected by Eclipse Metrics plugin 1.3.8.

Step Three: Performing the refactoring technique selected
individually

78908 VOLUME 11, 2023



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

To assess the influence of each selected refactoring tech-
nique on internal quality attributes, they were individually
applied. The procedures for using each refactoring technique
were outlined by Fowler in his works [1], [2]. Refactoring
techniques are capable of being carried out manually or
with the assistance of software tools, although only a few
techniques have dedicated tools. For this study, the Eclipse
Refactor plug-in was utilized for three refactoring techniques
(Add Parameter, Encapsulate Field, and Remove Parameter).
However, even when using the tool, manual verification was
conducted to ensure adherence to Fowler’s recommended
mechanics. This manual check was necessary due to the
potential for errors in existing refactoring tools, which could
lead to inaccurately refactored code segments [13], [30].
For the remaining refactoring techniques, they were manu-
ally performed according to Fowler’s prescribed mechanics,
as there were no available tools specifically designed for
those techniques.

Step Four: Ensuring behavior preservation after using
refactoring techniques

Behavior preservation of a systemmeans the outputs of the
software system after implementing the refactoring must be
maintained as its outputs before applying the refactoring [31].
The preservation of the behavior of the software systems was
achieved by regression testing. In addition, preserving the
behavior of the software systems was achieved by compiling
and executing the source codes after using the refactoring
and comparing their outputs after the refactoring with their
outputs before the refactoring.

Step Five: Collecting object-oriented metrics after per-
forming a refactoring technique

After performing the selected refactoring technique, the
object-oriented metrics have been collected to assess the
relevant internal quality attributes.

Step Six: Reporting the measured metrics of the
object-oriented properties before and after performing the
refactoring technique, as well as saving the source code after
performing the refactoring technique.

Step Seven: After completing steps one to six for a
particular refactoring technique, the process returns to the
original software version. This cycle continues for all the
selected refactoring techniques, repeating steps one to six
each time. This iterative process ensures that every oppor-
tunity to apply the chosen refactoring techniques has been
thoroughly explored, leaving no chance for any of them to
be overlooked.

2) EXPERIMENTAL MATERIALS
This section presents a description of the tools employed in
the experimental process. The two tools utilized for conduct-
ing the experiments include the Eclipse refactoring tool and
the Eclipse Metrics 1.3.8 tool. Detailed descriptions of these
tools are presented in the subsequent subsections.

a: ECLIPSE REFACTORING TOOL
Eclipse, an open-source Integrated Development Environ-
ment (IDE) developed by IBM, offers a comprehensive

tool platform for software development. It provides a uni-
versal development environment for various programming
languages and supports a wide range of functionalities. The
Eclipse IDE can be downloaded from the official website
at [68]. Eclipse is one of the popular IDEs that supports auto-
mated refactoring and is a widely used refactoring tool [69].
Eclipse supports a number of refactoring techniques listed
in Fowler’s catalog [10]. Eclipse Refactoring has gained
significant recognition for its ongoing enhancements and
continuous efforts to optimize the utilization of refactoring
techniques [13]. One of the benefits of utilizing this tool is
that it guarantees the effective implementation of refactoring
operations [13]. However, it is up to the developers to find
and know the refactoring to apply [13].

b: ECLIPSE METRICS TOOL
The Eclipse Metrics 1.3.8 tool, accessible at [70], is an open-
source Eclipse plug-in designed for calculating metrics and
analyzing dependencies [71], [72]. It offers a comprehensive
range of metrics, including those proposed in the QMOOD.
For this study, the Eclipse Metrics 1.3.8 tool was utilized to
gather 11 QMOODmetrics for evaluating the internal quality
attributes. The selection of this tool was motivated by its
widespread usage in numerous research applications focusing
on Java. Moreover, it is compatible with major operating
systems such as Windows, Mac, and Linux [73].

C. MULTI-CASE ANALYSIS
The application of a multi-case analysis proves valuable in
unraveling the intricate mechanisms of complex phenomena
or systems [74], [75]. This approach facilitates researchers
development of a more profound comprehension of theo-
retical constructs associated with novel phenomena or sys-
tems under investigation. Within the scope of this study, the
primary objective of the multi-case analysis is to classify
refactoring techniques according to their impact on internal
quality attributes. The multi-case analysis was performed on
the many experiments (39) that were conducted on five case
studies. All measurement information relevant to the internal
quality attributes before and after performing the refactoring
techniques across all experiments was put in one pool. In this
study, the term pool refers to combining all experiments’
data before and after performing the refactoring in one place
and dealing with them as one unit to conduct the multi-case
analysis. The data collected from the pool underwent com-
prehensive analysis and cross-case comparison, enabling the
attainment of general insights [76]. Through the categoriza-
tion of cases, similarities and differences were identified [77],
offering a deeper understanding of the patterns and variations
within the dataset.

1) CLASSIFICATION OF REFACTORING TECHNIQUES
To classify each refactoring technique individually based on
its impact on the internal quality attributes, a common prac-
tice design approach was employed. This approach involved

VOLUME 11, 2023 78909



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

identifying, comparing, and analyzing the impacts of every
refactoring technique on the internal quality attributes across
the five case studies in the pool. The analysis took into
account the frequency of occurrence of each effect in the
experiments. The impact with the highest occurrence was
subsequently selected and classified for inclusion in the refac-
toring classification framework.

To analyze the influence of each refactoring technique on
the internal quality attributes in the dataset, a comparison
was made between the calculated values of object-oriented
metrics before and after applying the technique across the
five case studies. The QMOOD was utilized to interpret the
differences observed in the computed values. The assessment
of each refactoring technique involved subtracting the calcu-
lated value of the object-oriented metrics before refactoring
from the calculated value after refactoring. A positive differ-
ence indicated that the refactoring technique increased the
corresponding quality attribute, while a negative difference
indicated an adverse effect on the quality attribute. A differ-
ence of zero signified that the refactoring technique had no
impact on the related quality attribute.

After this analysis, the number of times for each effect
(improve, impair, or no effect) on the quality attribute in the
pool was counted for each refactoring technique. The per-
centage for each effect was then determined. The effect with
the highest percentage of effect was classified and chosen
for the refactoring classification framework. This process was
replicated for all refactoring techniques across the five case
studies in the pool.

D. CLASSIFICATION FRAMEWORK DEVELOPMENT
In this phase, three main activities were performed: 1) devel-
oping a glossary and common terminology; 2) defining com-
ponents of the framework and their name conventions; and
3) a graphical representation of the framework. Three termi-
nologies were identified and used in the proposed framework.
There are ineffective refactoring techniques, unsafe refactor-
ing techniques, and safe refactoring techniques. In this study,
the proposed framework was composed of three components,
and each component contained items. The three components
were identified based on the literature review, the findings
of the exploratory study, the findings of the experimental
study, and the findings of a multi-case analysis. The three
components of the proposed framework are: 1) the method-
ology of applying refactoring techniques; 2) the QMOOD
model; and 3) the classification of refactoring techniques.
The proposed framework was designed based on the goals,
results, glossary, modeling, and conventions obtained from
the previous phases. The conceptual approach was used to
design the proposed framework. The framework presents the
three components, their items, and the interactions among
them in a detailed way.

IV. RESULTS AND DISCUSSION
A total of 39 experiments were conducted as part of this study,
distributed across different case studies: 5 in BMS, 4 in LMS,

TABLE 1. Statistical information regarding the utilization of individual
refactoring techniques in the five case studies.

10 in PMS, 10 in jHotDraw, and 10 in jEdit. Throughout
these case studies, a total of 889 refactoring techniques were
performed. The frequency with which each refactoring tech-
nique was employed across all five case studies is displayed
in Table 1.

The 10 refactoring techniques have been classified based
on internal quality attributes. The refactoring techniques have
been classified into three classifications, described as fol-
lows:

• Safe Refactoring Techniques (SRT):
These are the designated refactoring techniques that were
classified according to their beneficial effect on internal qual-
ity attributes.

• Unsafe Refactoring Techniques (URT):
These are the specific refactoring techniques that were clas-
sified according to their adverse effect on internal quality
attributes.

• Ineffective Refactoring Techniques (IRT):
These are the specific refactoring techniques that were classi-
fied according to their null effect on internal quality attributes.

The impact of every refactoring technique (RT) on the
internal quality attributes is determined by computing the
difference between the metric value before applying RT and
the metric value after applying RT. The calculation was per-
formed using the following formula:

1Value of internal quality attribute

= its metric value after using RT

− its metric value before using RT (1)

If the 1 value of the internal quality attribute is positive,
the refactoring technique is considered a safe refactoring
technique (SRT) as it improves the quality attribute. Con-
versely, if the 1 value of the internal quality attribute is
negative, the refactoring technique is classified as an unsafe
refactoring technique (URT) as it negatively impacts the inter-
nal quality attribute. If the 1 value of the internal quality
attribute is zero, the refactoring technique is classified as
an ineffective refactoring technique (IRT) for that specific
internal quality attribute, indicating that it does not alter the

78910 VOLUME 11, 2023



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

TABLE 2. Summary of the results of the multi-case analysis: the impact of
every refactoring technique on internal quality attributes.

attribute. The refactoring techniques are classified according
to their highest common impact observed across the five case
studies for each internal quality attribute. In other words,
the classification considers the refactoring technique’s high-
est rate of effect and the highest average rate of equality
in relation to its impact on each object-oriented property.
Table 2 summarizes the multi-case analysis results of the
impact of each refactoring technique on the internal quality
attributes, where the symbol (↑) refers to the improvement
of the internal quality attribute (except for complexity and
coupling), the symbol (↓) refers to the impairment of the
internal quality attribute (except for complexity and cou-
pling), and the symbol (−) refers to the no change quality
attribute.

Extract Class (EC) increased cohesion, composition,
design size, encapsulation, and messaging; consequently,
it was classified as SRT for these attributes. EC decreased
abstraction and increased complexity and coupling; accord-
ingly, it was classified as URT for these attributes.
EC did not change hierarchies, inheritance, or polymor-
phism; consequently, it was classified as IRT for these
attributes.

Inline Class (IC) increased abstraction and decreased
coupling; consequently, it was classified as SRT for
these attributes. IC decreased cohesion, design size, and
encapsulation; accordingly, it was classified as URT for
these attributes. IC did not change composition, mes-
saging, complexity, hierarchies, inheritance, or polymor-

phism; consequently, it was classified as IRT for these
attributes.

Encapsulate Field (EF) increased encapsulation and mes-
saging; consequently, it was classified as SRT for these
attributes. EF decreased cohesion and increased complexity;
accordingly, it was classified as URT for these attributes.
EF did not change abstraction, coupling, design size, com-
position, hierarchies, inheritance, or polymorphism; conse-
quently, it was classified as IRT for these attributes.

Hide Method (HM) decreased messaging and was clas-
sified as URT for this attribute. HM did not change
design size, inheritance, abstraction, polymorphism, com-
plexity, encapsulation, composition, hierarchies, coupling,
or cohesion; consequently, it was classified as IRT for these
attributes.

Pull Up Field (PUF) increased messaging and was classi-
fied as SRT for this attribute. PUF decreased cohesion and
increased complexity; accordingly, it was classified as URT
for these attributes. PUF did not change abstraction, polymor-
phism, composition, inheritance, encapsulation, hierarchies,
design size, or coupling; consequently, it was classified as
IRT for these attributes.

Pull Up Method (PUM) decreased complexity and was
classified as SRT for this attribute. PUM decreased cohe-
sion and messaging; accordingly, it was categorized as URT
for these attributes. PUM did not change abstraction, poly-
morphism, encapsulation, inheritance, coupling, hierarchies,
design size, or composition; consequently, it was classified as
IRT for these attributes.

Push Dawn Method (PDM) increased cohesion and
decreased complexity; accordingly, it was classified as SRT
for these attributes. PDM decreased messaging and poly-
morphism; accordingly, it was classified as URT for these
attributes. PDM did not change abstraction, composition,
coupling, design size, encapsulation, hierarchies, or inher-
itance; consequently, it was classified as IRT for these
attributes.

PushDown Field (PDF), Remove Parameter (RP), andAdd
Parameter (AP) did not change any internal quality attribute
and were therefore categorized as IRT.

1) THE PROPOSED CLASSIFICATION FRAMEWORK FOR
REFACTORING TECHNIQUES
In this section, the framework was constructed based on its
scope, purpose, and goals, as well as on the results of the
exploratory study, the experimental study, and the multi-case
analysis obtained from the preceding phases. The conceptual
modeling approach was used to represent the framework. The
design shows the components and their items. Figure 3 shows
the refactoring classification framework.

The proposed framework was constructed based on three
main components. These components were derived from the
findings of the exploratory and experimental studies as well
as the multi-case analysis. These components are described
in the following subsections:

VOLUME 11, 2023 78911



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

FIGURE 3. The proposed refactoring classification framework.

a: METHODOLOGY OF APPLYING REFACTORING
TECHNIQUES
This component is derived from the literature review and
applied to the experimental study of this research. The pro-
cess employed to examine and analyze the effects of each
refactoring technique on the internal quality attributes com-
prises the following stages:

1. Identifying opportunities for the application of refac-
toring techniques.

2. Gathering object-oriented metrics before applying a
refactoring technique.

3. Applying each refactoring technique individually.
4. Ensuring the preservation of behavior after applying

the refactoring techniques.
5. Collecting object-oriented metrics after applying the

refactoring technique.
6. Analyzing the effects of the refactoring technique by

comparing the pre- and post-application values on the
internal quality attributes.

b: QUALITY MODEL FOR OBJECT-ORIENTED DESIGN
(QMOOD)
This component is derived from the literature review and
utilized for measurements in this research. The QMOOD
framework was employed to measure the object-oriented

properties both before and after applying each refactoring
technique. The internal quality attributes considered in the
measurements encompass the following elements: 1) com-
plexity, 2) encapsulation, 3) abstraction, 4) design size,
5) polymorphism, 6) coupling, 7) composition, 8) messag-
ing, 9) cohesion, 10) hierarchies, and 11) inheritance. The
object-oriented metrics employed for the measurements are
as follows: 1) DCC, 2) CAM, 3) CIS, 4) DSC, 5) DAM, 6)
MOA, 7) NOP, 8) ANA, 9) MFA, 10) NOH, and 11) NOM.

c: CLASSIFICATION OF REFACTORING TECHNIQUES
The 10 refactoring techniques were derived from the findings
of the exploratory study. The classification of the 10 refac-
toring techniques was derived from multi-case analysis. The
10 refactoring techniques were classified into three cate-
gories. The three categories are: 1) safe refactoring tech-
niques; 2) unsafe refactoring techniques; and 3) ineffective
refactoring techniques.

The methodology for applying refactoring techniques is
outlined in the framework, which details the step-by-step
procedures for investigating and analyzing the impact of each
technique on internal quality attributes using the QMOOD.
The process involves identifying opportunities for apply-
ing each technique and subsequently assessing its effect
on object-oriented properties based on the QMOOD. The
framework also elucidates the relationship between internal

78912 VOLUME 11, 2023



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

quality attributes and object-oriented metrics within the
QMOOD.

The classification of the 10 refactoring techniques into
three categories (safe, unsafe, and ineffective) is an integral
part of the framework. Stakeholders can refer to the frame-
work’s design to replicate the investigation procedures, utiliz-
ing the QMOOD or other relevant quality models in the field
of refactoring. Software developers can select appropriate
refactoring techniques from the proposed classification to
enhance the quality of software systems, aligning with their
specific design goals and objectives.

The proposed framework for classifying refactoring tech-
niques brings significant value to software developers in the
industry. By offering a well-organized and extensive classi-
fication of refactoring techniques based on their influence
on internal quality attributes, the framework provides valu-
able guidance and assistance during the decision-making
process of selecting and applying suitable refactoring
techniques.

The framework equips software developers with the means
to improve the quality of their software systems by effectively
identifying and implementing the most appropriate refactor-
ing techniques. Through a deep understanding of the cor-
relation between refactoring techniques and internal quality
attributes, developers are empowered to make well-informed
choices that align with their design objectives, ultimately
leading to overall enhancements in software quality.

The framework minimizes the time and effort expended
by developers when evaluating the advantages and disad-
vantages of various refactoring techniques. By presenting
empirical evidence and a classification system, the frame-
work mitigates the risks of maintenance costs and effort by
providing insights into the anticipated effects of each tech-
nique on software quality attributes. This enables developers
to make confident decisions and streamline the refactoring
process efficiently.

Moreover, the framework fosters consistency and stan-
dardization in refactoring practices. By establishing a shared
language and comprehension of the impact of refactoring
techniques on software quality attributes, the framework
facilitates effective communication and collaboration among
developers. Additionally, it serves as a valuable point of ref-
erence for future research and development endeavors within
the software engineering domain.

In conclusion, the proposed refactoring classification
framework empowers software developers to make informed
decisions, elevate software quality, and streamline the refac-
toring process. Its contribution lies in presenting a structured
approach for selecting and applying refactoring techniques,
ultimately benefiting the entire software development com-
munity.

V. THREATS TO VALIDITY
In this section, we address the potential validity threats and
the measures taken to mitigate them, ensuring increased
confidence in the study’s results. To systematically address

the validity threats, we follow the classification proposed
by Wohlin et al. [78] and Cook et al. [79]. These classifica-
tions encompass the four most prevalent validity threats: 1)
construct validity, 2) conclusion validity, 3) internal validity,
and 4) external validity. Subsequent sections elaborate on
each potential threat to the study’s validity and outline the
strategies employed to address them effectively.

A. CONSTRUCT VALIDITY
Threats to construct validity pertain to the alignment between
theory and observation, which in this study primarily stems
from the measurement procedures employed. To mitigate this
threat, a meticulous approach was adopted. Firstly, the selec-
tion of the 10 most widely employed refactoring techniques
in both literature and practice was based on comprehensive
literature reviews and an exploratory study involving software
practitioners in the field. This approach aimed to avoid any
potential bias or subjectivity in the technique selection pro-
cess. Furthermore, adherence to Fowler’s guidelines ensured
the precise identification and execution of the selected refac-
toring techniques. Additionally, the study utilized a reliable
quality model, namely the QMOOD, to accurately assess the
impact of the refactoring techniques on the internal quality
attributes.

B. CONCLUSION VALIDITY
Threats to the validity of the conclusion revolve around the
connection between the treatment and the outcome. Conclu-
sion validity pertains to the degree to which other researchers
can reproduce the study’s findings and obtain comparable
results when employing the same procedures as the original
researcher. To address this concern, 39 distinct experiments
were conducted across five case studies (PMS, LMS, BMS,
JHotDraw, and jEdit) during the development of the frame-
work. This comprehensive approach provides ample evidence
to draw valid conclusions. Moreover, to ensure replicabil-
ity, a rigorous methodology was followed in performing the
experiments, thereby enabling other researchers to replicate
the study with precision.

C. INTERNAL VALIDITY
Internal validity refers to the extent to which a study estab-
lishes a reliable and causal relationship between a treatment
or intervention and its observed outcomes. The case studies
selected for analysis and evaluation in this study are pre-
dominantly focused on software refactoring, making them
highly representative of the overall population. These case
studies were subjected solely to the treatment of refactoring,
enabling a focused observation of the impacts of refactor-
ing techniques across different scenarios. Uniform treatment
conditions were maintained across all case studies, ensuring
consistency in the experimental setup. Careful preservation
of the case study states after refactoring facilitated the com-
putation of metrics. The experiments were conducted in a
sequential manner, commencing with smaller case studies

VOLUME 11, 2023 78913



A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

and progressively advancing to larger ones. This progressive
approach allowed the researcher to accumulate valuable expe-
rience throughout the course of the experiment.

D. EXTERNAL VALIDITY
External validity concerns the extent to which the results of
a study can be generalized. To enhance the external validity
of this research, experiments have been conducted on diverse
case studies encompassing both open-source and academic
Java software systems. The case studies selected for this
research encompassed diverse application domains and var-
ied in terms of their sizes. The primary focus of the study
was on analyzing Java projects, as the refactoring techniques
under investigation are primarily targeted at Java systems. It is
important to note that Java is widely used in both industry
and academia. However, it is crucial to acknowledge that
the generalization of results to other programming languages
may be limited due to potential variations in refactoring
techniques and tool support. Researchers are encouraged to
extend this work to other languages such as Python and
JavaScript to broaden the scope of investigation and increase
external validity.

VI. CONCLUSION AND FUTURE WORK
The software industry places great importance on software
quality, as low-quality software can introduce complexity
and become a significant maintenance concern. Therefore,
software refactoring is recognized as a crucial practice in
software maintenance and evolution. Nevertheless, when
applying refactoring techniques to enhance software quality,
developers encounter the challenge of balancing the poten-
tial improvement in some quality attributes with the risk of
deterioration in others.

This study introduces a refactoring classification frame-
work aimed at enhancing the internal quality attributes of
software systems. The development of the framework con-
sisted of four main phases: an exploratory study, an exper-
imental study, a multi-case analysis, and the actual frame-
work development. The exploratory study identified the most
commonly used refactoring techniques and internal quality
attributes. Additionally, five case studies of varying sizes
were selected for the experiments. A total of 39 experiments
were conducted in the experimental study to individually
investigate the impact of 10 refactoring techniques on internal
quality attributes. Across the five case studies, the refac-
toring techniques were applied 889 times. The multi-case
analysis was performed to classify the refactoring techniques
according to their effect on the 11 internal quality attributes.
These phases were undertaken to gather initial insights, con-
duct experiments, analyze multiple case studies, and finally
develop the framework based on the findings and observa-
tions from the previous stages.

The proposed framework consists of three components:
a methodology for applying refactoring techniques, the
QMOOD quality model, and the classification of refactoring
techniques. The 10 commonly used refactoring techniques

were classified into three categories (safe, unsafe, and inef-
fective) based on their impact on internal quality attributes.
The framework aims to serve as a guideline for software
developers, providing assistance in choosing suitable refac-
toring techniques to improve the internal quality attributes
of software systems. By leveraging empirical evidence, the
framework reduces the time and effort required for developers
to evaluate conflicts and trade-offs among refactoring tech-
niques, thereby mitigating the risks associated with software
maintenance costs and effort.

In the future, the proposed framework will be expanded to
include other commonly used refactoring techniques. Addi-
tionally, expert reviews in academic and industrial settings
will be conducted to evaluate the framework’s effectiveness.
Furthermore, the framework will be empirically evaluated
through various case studies conducted by domain experts.

REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:

Improving the Design of Existing Code. Reading, MA, USA: Addison-
Wesley Professional, 2002.

[2] M. Fowler and K. Beck, Refactoring Improving the Design of Existing
Code Refactoring, 2nd ed. Reading, MA, USA: Addison-Wesley Profes-
sional, 2019.

[3] C. Abid, V. Alizadeh, M. Kessentini, T. D. N. Ferreira, and D. Dig, ‘‘30
years of software refactoring research: A systematic literature review,’’
2020, arXiv:2007.02194.

[4] M. Kaya, S. Conley, Z. S. Othman, and A. Varol, ‘‘Effective soft-
ware refactoring process,’’ in Proc. 6th Int. Symp. Digit. Forensic Secur.
(ISDFS), Antalya, Turkey, Mar. 2018, pp. 1–6, doi: 10.1109/ISDFS.
2018.8355350.

[5] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni,
and Y. Cai, ‘‘Interactive and dynamic multi-objective software refactor-
ing recommendations,’’ in Proc. 33rd ACM/IEEE Int. Conf. Automated
Softw., Sep. 2019, pp. 1–30. [Online]. Available: https://deepblue.lib.
umich.edu/bitstream/handle/2027.42/147343/papertse.pdf?sequence=1

[6] V. Alizadeh, M. A. Ouali, M. Kessentini, and M. Chater, ‘‘RefBot: Intel-
ligent software refactoring bot,’’ in Proc. 34th IEEE/ACM Int. Conf.
Automated Softw. Eng. (ASE), Nov. 2019, pp. 823–834. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/8952287

[7] M. Alotaibi, ‘‘Advances and challenges in software refactoring: A tertiary
systematic literature review,’’ M.S. thesis, Dept. Softw. Eng., B. Thomas
Golisano College Comput. Inf. Sci., Rochester Inst. Technol., Rochester,
NY, USA, 2018.

[8] A. Almogahed, M. Omar, N. H. Zakaria, G. Muhammad, and
S. A. AlQahtani, ‘‘Revisiting scenarios of using refactoring techniques
to improve software systems quality,’’ IEEE Access, vol. 11,
pp. 28800–28819, 2023, doi: 10.1109/ACCESS.2022.3218007.

[9] D. Arcelli, V. Cortellessa, and D. D. Pompeo, ‘‘Performance-driven
software model refactoring,’’ Inf. Softw. Technol., vol. 95, pp. 366–397,
Mar. 2018, doi: 10.1016/j.infsof.2017.09.006.

[10] A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, ‘‘Multi-criteria
code refactoring using search-based software engineering: An industrial
case study,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–53,
Aug. 2016, doi: 10.1145/2932631.

[11] L. Sousa, D. Cedrim, A. Garcia, W. Oizumi, A. C. Bibiano, D. Oliveira,
M. Kim, and A. Oliveira, ‘‘Characterizing and identifying composite refac-
torings: Concepts, heuristics and patterns,’’ in Proc. IEEE/ACM 17th Int.
Conf. Mining Softw. Repositories (MSR), Seoul, South Korea, May 2020,
pp. 186–197, doi: 10.1145/3379597.3387477.

[12] E. Fernandes, A. Chávez, A. Garcia, I. Ferreira, D. Cedrim, L. Sousa,
and W. Oizumi, ‘‘Refactoring effect on internal quality attributes: What
haven’t they told you yet?’’ Inf. Softw. Technol., vol. 126, Oct. 2020,
Art. no. 106347, doi: 10.1016/j.infsof.2020.106347.

[13] G. Lacerda, F. Petrillo, M. Pimenta, and Y. G. Guéhéneuc, ‘‘Code
smells and refactoring: A tertiary systematic review of challenges and
observations,’’ J. Syst. Softw., vol. 167, Sep. 2020, Art. no. 110610, doi:
10.1016/j.jss.2020.110610.

78914 VOLUME 11, 2023

http://dx.doi.org/10.1109/ISDFS.2018.8355350
http://dx.doi.org/10.1109/ISDFS.2018.8355350
http://dx.doi.org/10.1109/ACCESS.2022.3218007
http://dx.doi.org/10.1016/j.infsof.2017.09.006
http://dx.doi.org/10.1145/2932631
http://dx.doi.org/10.1145/3379597.3387477
http://dx.doi.org/10.1016/j.infsof.2020.106347
http://dx.doi.org/10.1016/j.jss.2020.110610


A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

[14] M. Alshayeb, ‘‘Empirical investigation of refactoring effect on software
quality,’’ Inf. Softw. Technol., vol. 51, no. 9, pp. 1319–1326, Sep. 2009,
doi: 10.1016/j.infsof.2009.04.002.

[15] N. Rachatasumrit and M. Kim, ‘‘An empirical investigation into the
impact of refactoring on regression testing,’’ in Proc. 28th IEEE
Int. Conf. Softw. Maintenance (ICSM), Sep. 2012, pp. 357–366, doi:
10.1109/ICSM.2012.6405293.

[16] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle, ‘‘A multidimen-
sional empirical study on refactoring activity,’’ in Proc. Conf. Center
Adv. Stud. Collaborative Res., 2013, pp. 132–146. [Online]. Available:
https://dl.acm.org/doi/10.5555/2555523.2555539

[17] N. Naiya, S. Counsell, and T. Hall, ‘‘The relationship between
depth of inheritance and refactoring: An empirical study of eclipse
releases,’’ in Proc. 41st Euromicro Conf. Softw. Eng. Adv. Appl.,
Aug. 2015, pp. 88–91. [Online]. Available: https://ieeexplore.ieee.org/
abstract/document/7302436

[18] F. Palomba, A. Zaidman, R. Oliveto, and A. De Lucia,
‘‘An exploratory study on the relationship between changes
and refactoring,’’ in Proc. IEEE/ACM 25th Int. Conf. Program
Comprehension (ICPC), May 2017, pp. 176–185. [Online]. Available:
https://ieeexplore.ieee.org/document/7961515

[19] S. H. Kannangara andW.M. J. I.Wijayanayake, ‘‘An empirical exploration
of refactoring effect on software quality using external quality factors,’’
Int. J. Adv. ICT Emerg. Regions, vol. 7, no. 2, p. 36, May 2014, doi:
10.4038/icter.v7i2.7176.

[20] K. Stroggylos and D. Spinellis, ‘‘Refactoring-does it improve soft-
ware quality?’’ in Proc. 5th Int. Workshop Softw. Quality (WoSQ:
ICSE Workshops), Minneapolis, MN, USA, May 2007, p. 10, doi:
10.1109/WOSQ.2007.11.

[21] G. Bavota, A. De Lucia, M. Di Penta, R. Oliveto, and F. Palomba,
‘‘An experimental investigation on the innate relationship between qual-
ity and refactoring,’’ J. Syst. Softw., vol. 107, pp. 1–14, Sep. 2015, doi:
10.1016/j.jss.2015.05.024.

[22] Q. D. Soetens and S. Demeyer, ‘‘Studying the effect of refactorings:
A complexity metrics perspective,’’ in Proc. 7th Int. Conf. Quality
Inf. Commun. Technol., Porto, Portugal, Sep. 2010, pp. 313–318, doi:
10.1109/QUATIC.2010.58.

[23] D. Wilking, U. F. Khan, and S. Kowalewski, ‘‘An empirical evaluation
of refactoring,’’ E-Inform. Softw. Eng. J., vol. 1, no. 1, pp. 1–16, 2007.
[Online]. Available: https://www.e-informatyka.pl/attach/e-Informatica_-
_Volume_1/Vol1Iss1Art2eInformatica.pdf

[24] K. O. Elish and M. Alshayeb, ‘‘Investigating the effect of refactoring on
software testing effort,’’ in Proc. 16th Asia–Pacific Softw. Eng. Conf.,
Dec. 2009, pp. 29–34, doi: 10.1109/APSEC.2009.14.

[25] M. Alshayeb, ‘‘Refactoring effect on cohesion metrics,’’ in Proc. Int.
Conf. Comput., Eng. Inf., Fullerton, CA, USA, Apr. 2009, pp. 3–7, doi:
10.1109/ICC.2009.12.

[26] A. Halim and P. Mursanto, ‘‘Refactoring rules effect of class cohesion
on high-level design,’’ in Proc. Int. Conf. Inf. Technol. Electr. Eng. (ICI-
TEE), Yogyakarta, Indonesia, Oct. 2013, pp. 197–202, doi: 10.1109/ICI-
TEED.2013.6676238.

[27] A. S. Nyamawe, H. Liu, Z. Niu, W. Wang, and N. Niu, ‘‘Recommending
refactoring solutions based on traceability and codemetrics,’’ IEEEAccess,
vol. 6, pp. 49460–49475, 2018, doi: 10.1109/ACCESS.2018.2868990.

[28] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Refactoring codes to
improve software security requirements,’’ Procedia Comput. Sci., vol. 204,
pp. 108–115, 2022, doi: 10.1016/j.procs.2022.08.013.

[29] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Categorization
refactoring techniques based on their effect on software quality
attributes,’’ Int. J. Innov. Technol. Exploring Eng., vol. 8, no. 8S,
pp. 439–445, 2019. [Online]. Available: https://www.ijitee.org/wp-
content/uploads/papers/v8i8s/H10760688S19.pdf

[30] J. Al Dallal and A. Abdin, ‘‘Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,’’ IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44–69, Jan. 2018, doi:
10.1109/TSE.2017.2658573.

[31] S. Kaur and P. Singh, ‘‘How does object-oriented code refactoring influ-
ence software quality? Research landscape and challenges,’’ J. Syst. Softw.,
vol. 157, Nov. 2019, Art. no. 110394, doi: 10.1016/j.jss.2019.110394.

[32] A. S. Nyamawe, ‘‘Mining commit messages to enhance software
refactorings recommendation: A machine learning approach,’’ Mach.
Learn. Appl., vol. 9, Sep. 2022, Art. no. 100316, doi: 10.1016/j.mlwa.
2022.100316.

[33] I. Alazzam, B. Abuata, and G.Mhediat, ‘‘Impact of refactoring on OOmet-
rics: A study on the extract class, extract superclass, encapsulate field and
pull up method,’’ Int. J. Mach. Learn. Comput., vol. 10, no. 1, pp. 158–163,
Jan. 2020, doi: 10.18178/ijmlc.2020.10.1.913.

[34] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Recent studies on the
effects of refactoring in software quality: Challenges and open issues,’’ in
Proc. 2nd Int. Conf. Emerg. Smart Technol. Appl. (eSmarTA), Ibb, Yemen,
Oct. 2022, pp. 1–7, doi: 10.1109/eSmarTA56775.2022.9935361.

[35] O. Chaparro, G. Bavota, A. Marcus, and M. D. Penta, ‘‘On the impact of
refactoring operations on code quality metrics,’’ in Proc. IEEE Int. Conf.
Softw. Maintenance Evol., Victoria, BC, Canada, Sep. 2014, pp. 456–460,
doi: 10.1109/ICSME.2014.73.

[36] A. Almogahed and M. Omar, ‘‘Refactoring techniques for improving
software quality: Practitioners’ perspectives,’’ J. Inf. Commun. Technol.,
vol. 20, pp. 511–539, 2021, doi: 10.32890/jict2021.20.4.3.

[37] M. Alshayeb, H. Al. Jamimi, and K. O. Elish, ‘‘Empirical taxonomy of
refactoring methods for aspect-oriented programming,’’ J. Softw., Evol.
Process, vol. 25, no. 1, pp. 1–25, 2013, doi: 10.1002/smr.544.

[38] M. Abebe and C. Yoo, ‘‘Trends, opportunities and challenges of
software refactoring: A systematic literature review,’’ Int. J. Softw.
Eng. Appl., vol. 8, no. 6, pp. 299–318, 2014. [Online]. Available: https://
citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=84ae6851e5b
130906091f604a32d6f940cd8b2ec

[39] R. S. Bashir, S. P. Lee, C. C. Yung, K. A. Alam, and R. W. Ahmad,
‘‘A methodology for impact evaluation of refactoring on external qual-
ity attributes of a software design,’’ in Proc. Int. Conf. Frontiers
Inf. Technol. (FIT), Islamabad, Pakistan, Dec. 2017, pp. 183–188, doi:
10.1109/FIT.2017.00040.

[40] K. O. Elish and M. Alshayeb, ‘‘A classification of refactoring methods
based on software quality attributes,’’ Arabian J. Sci. Eng., vol. 36, no. 7,
pp. 1253–1267, Nov. 2011, doi: 10.1007/s13369-011-0117-x.

[41] K. O. Elish andM. Alshayeb, ‘‘Using software quality attributes to classify
refactoring to patterns,’’ J. Softw., vol. 7, no. 2, pp. 408–419, Feb. 2012, doi:
10.4304/jsw.7.2.408-419.

[42] R. Malhotra and A. Chug, ‘‘An empirical study to assess the effects
of refactoring on software maintainability,’’ in Proc. Int. Conf. Adv.
Comput., Commun. Informat. (ICACCI), Sep. 2016, pp. 110–117, doi:
10.1109/ICACCI.2016.7732033.

[43] R. Malhotra and J. Jain, ‘‘Analysis of refactoring effect on software
quality of object-oriented,’’ in Proc. Int. Conf. Innov. Comput. Com-
mun. Singapore: Springer, 2019, pp. 197–212, doi: 10.1007/978-981-
13-2354-6.

[44] Y. Lin, X. Peng, Y. Cai, D. Dig, D. Zheng, and W. Zhao, ‘‘Interactive
and guided architectural refactoring with search-based recommendation,’’
in Proc. 24th ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2016,
pp. 535–546, doi: 10.1145/2950290.2950317.

[45] B. Du. Bois, and T. Mens, ‘‘Describing the impact of refactoring on
internal program quality,’’ in Proc. Int. Workshop Evol. Large-Scale
Ind. Softw. Appl., 2003, pp. 1–9. [Online]. Available: http://plg2.math.
uwaterloo.ca/~migod/papers/2003/ELISAproceedings.pdf#page=39

[46] B. Du Bois, S. Demeyer, and J. Verelst, ‘‘Refactoring–improving coupling
and cohesion of existing code,’’ in Proc. 11th Work. Conf. Reverse Eng.,
2004, pp. 144–151, doi: 10.1109/WCRE.2004.33.

[47] A. Almogahed, M. Omar, N. H. Zakaria, and A. Alawadhi, ‘‘Software
security measurements: A survey,’’ in Proc. Int. Conf. Intell. Technol., Syst.
Service Internet Everything (ITSS-IoE), Hadhramaut, Yemen, Dec. 2022,
pp. 1–6, doi: 10.1109/ITSS-IoE56359.2022.9990968.

[48] J. Al Dallal, ‘‘Identifying refactoring opportunities in object-oriented code:
A systematic literature review,’’ Inf. Softw. Technol., vol. 58, pp. 231–249,
Feb. 2015, doi: 10.1016/j.infsof.2014.08.002.

[49] T. Mariani and S. R. Vergilio, ‘‘A systematic review on search-based
refactoring,’’ Inf. Softw. Technol., vol. 83, pp. 1–21, Mar. 2016, doi:
10.1016/j.infsof.2016.11.009.

[50] A. Almogahed, M. Omar, and N. H. Zakaria, ‘‘Empirical studies on soft-
ware refactoring techniques in the industrial setting,’’ Turkish J. Comput.
Math. Educ., vol. 12, no. 3, pp. 1705–1716, 2021, doi: 10.17762/turco-
mat.v12i3.995.

[51] M. Kim, T. Zimmermann, and N. Nagappan, ‘‘An empirical study of
refactoring challenges and benefits atMicrosoft,’’ IEEE Trans. Softw. Eng.,
vol. 40, no. 7, pp. 633–649, Jul. 2014, doi: 10.1109/TSE.2014.2318734.

[52] M. Gatrell and S. Counsell, ‘‘The effect of refactoring on change and fault-
proneness in commercial C# software,’’ Sci. Comput. Program., vol. 102,
pp. 44–56, May 2015, doi: 10.1016/j.scico.2014.12.002.

VOLUME 11, 2023 78915

http://dx.doi.org/10.1016/j.infsof.2009.04.002
http://dx.doi.org/10.1109/ICSM.2012.6405293
http://dx.doi.org/10.4038/icter.v7i2.7176
http://dx.doi.org/10.1109/WOSQ.2007.11
http://dx.doi.org/10.1016/j.jss.2015.05.024
http://dx.doi.org/10.1109/QUATIC.2010.58
http://dx.doi.org/10.1109/APSEC.2009.14
http://dx.doi.org/10.1109/ICC.2009.12
http://dx.doi.org/10.1109/ICITEED.2013.6676238
http://dx.doi.org/10.1109/ICITEED.2013.6676238
http://dx.doi.org/10.1109/ACCESS.2018.2868990
http://dx.doi.org/10.1016/j.procs.2022.08.013
http://dx.doi.org/10.1109/TSE.2017.2658573
http://dx.doi.org/10.1016/j.jss.2019.110394
http://dx.doi.org/10.1016/j.mlwa.2022.100316
http://dx.doi.org/10.1016/j.mlwa.2022.100316
http://dx.doi.org/10.18178/ijmlc.2020.10.1.913
http://dx.doi.org/10.1109/eSmarTA56775.2022.9935361
http://dx.doi.org/10.1109/ICSME.2014.73
http://dx.doi.org/10.32890/jict2021.20.4.3
http://dx.doi.org/10.1002/smr.544
http://dx.doi.org/10.1109/FIT.2017.00040
http://dx.doi.org/10.1007/s13369-011-0117-x
http://dx.doi.org/10.4304/jsw.7.2.408-419
http://dx.doi.org/10.1109/ICACCI.2016.7732033
http://dx.doi.org/10.1007/978-981-13-2354-6
http://dx.doi.org/10.1007/978-981-13-2354-6
http://dx.doi.org/10.1145/2950290.2950317
http://dx.doi.org/10.1109/WCRE.2004.33
http://dx.doi.org/10.1109/ITSS-IoE56359.2022.9990968
http://dx.doi.org/10.1016/j.infsof.2014.08.002
http://dx.doi.org/10.1016/j.infsof.2016.11.009
http://dx.doi.org/10.17762/turcomat.v12i3.995
http://dx.doi.org/10.17762/turcomat.v12i3.995
http://dx.doi.org/10.1109/TSE.2014.2318734
http://dx.doi.org/10.1016/j.scico.2014.12.002


A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

[53] A. Ouni, M. Kessentini, H. Sahraoui, M. Ó. Cinnéide, K. Deb, and
K. Inoue, ‘‘A multi-objective refactoring approach to introduce design
patterns and fix anti-patterns,’’ in Proc. 1st North Amer. Search Based
Softw. Eng. Symp., NASBASE, 2015, pp. 1–15. [Online]. Available:
https://kir.ics.es.osaka-u.ac.jp/lab-db/betuzuri/archive/990/990.pdf

[54] F. B. Abreu and R. Carapuça, ‘‘Object-oriented software engineering:
Measuring and controlling the development process,’’ in Proc. 4th Int.
Conf. Softw. Quality, Oct. 1994, pp. 3–5.

[55] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical
Guide. Upper Saddle River, NJ, USA: Prentice-Hall, 1994.

[56] J. Bansiya and C. G. Davis, ‘‘A hierarchical model for object-oriented
design quality assessment,’’ IEEE Trans. Softw. Eng., vol. 28, no. 1,
pp. 4–17, Jan. 2002, doi: 10.1109/32.979986.

[57] S. R. Chidamber and C. F. Kemerer, ‘‘A metrics suite for object oriented
design,’’ IEEE Trans. Softw. Eng., vol. 20, no. 6, pp. 476–493, Jun. 1994,
doi: 10.1109/32.295895.

[58] R. Jabangwe, J. Börstler, D. Šmite, and C.Wohlin, ‘‘Empirical evidence on
the link between object-oriented measures and external quality attributes:
A systematic literature review,’’ Empirical Softw. Eng., vol. 20, no. 3,
pp. 640–693, Jun. 2015, doi: 10.1007/s10664-013-9291-7.

[59] V. Pham, C. Lokan, and K. Kasmarik, ‘‘A better set of object-oriented
design metrics for within-project defect prediction,’’ in Proc. Eval. Assess-
ment Softw. Eng., Apr. 2020, pp. 230–239, doi: 10.1145/3383219.3383243.

[60] P. K. Goyal and G. Joshi, ‘‘QMOOD metric sets to assess quality of Java
program,’’ in Proc. Int. Conf. Issues Challenges Intell. Comput. Techn.
(ICICT), Ghaziabad, India, Feb. 2014, pp. 520–533, doi: 10.1109/ICI-
CICT.2014.6781337.

[61] C. M. S. Couto, H. Rocha, and R. Terra, ‘‘A quality-oriented approach
to recommend move method refactorings,’’ in Proc. XVII Brazilian Symp.
Softw. Quality, Oct. 2018, pp. 1–10, doi: 10.1145/3275245.3275247.

[62] Banking System Management. Accessed: Aug. 25, 2020. [Online]. Avail-
able: https://github.com/derickfelix/BankApplication

[63] Source Code & Projects. Accessed: Aug. 18, 2019. [Online]. Avail-
able: https://code-projects.org/library-management-system-in-java-with-
source-code/

[64] Payroll Management System. Accessed: Feb. 11, 2021. [Online]. Available:
https://cutt.ly/Xn36RLP

[65] JHotDraw Files. Accessed: Jul. 25, 2019. [Online]. Available: https://
sourceforge.net/projects/jhotdraw/files/JHotDraw/5.2/

[66] Jedit Files. Accessed: Nov. 25, 2019. [Online]. Available: https://
sourceforge.net/projects/jedit/files/jedit/5.5.0/

[67] D. E. Perry, A. A. Porter, and L. G. Votta, ‘‘Empirical studies of
software engineering: A roadmap,’’ in Proc. Conf. Future Softw. Eng.,
May 2000, pp. 345–355. [Online]. Available: https://dl.acm.org/doi/pdf/
10.1145/336512.336586

[68] Eclipse Foundation. Accessed: Jul. 25, 2019. [Online]. Available:
https://www.eclipse.org/downloads/

[69] E. L. G. Alves, M. Song, T. Massoni, P. D. L. Machado, and M. Kim,
‘‘Refactoring inspection support for manual refactoring edits,’’ IEEE
Trans. Softw. Eng., vol. 44, no. 4, pp. 365–383, Apr. 2018, doi:
10.1109/TSE.2017.2679742.

[70] Metrics 3—Eclipse Metrics Plugin Continued ‘Again’. Accessed: Aug. 5,
2019. [Online]. Available: https://github.com/qxo/eclipse-metrics-plugin

[71] A. Kaur and M. Kaur, ‘‘Analysis of code refactoring impact on software
quality,’’ in Proc. MATEC Web Conf., 2016, pp. 1–15, doi: 10.1051/mate-
cconf/20165702012.

[72] R. Lincke, J. Lundberg, and W. Löwe, ‘‘Comparing software metrics
tools,’’ in Proc. Int. Symp. Softw. Test. Anal., Jul. 2008, pp. 131–142, doi:
10.1145/1390630.1390648.

[73] N. Alsolami, Q. Obeidat, and M. Alenezi, ‘‘Empirical analysis of object-
oriented software test suite evolution,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 11, pp. 89–98, 2019, doi: 10.14569/IJACSA.2019.0101113.

[74] K. M. Eisenhardt, ‘‘Building theories from case study research,’’ Acad.
Manage. Rev., vol. 14, no. 4, pp. 532–550, Oct. 1989. [Online]. Available:
https://journals.aom.org/doi/abs/10.5465/AMR.1989.4308385

[75] P. P. Maglio and C. Lim, ‘‘Innovation and big data in smart service sys-
tems,’’ J. Innov. Manage., vol. 1, pp. 1–11, May 2016, doi: 10.24840/2183-
0606_004.001_0003.

[76] M. Ketokivi and T. Choi, ‘‘Renaissance of case research as a scientific
method,’’ J. Operations Manage., vol. 32, no. 5, pp. 232–240, Jul. 2014,
doi: 10.1016/j.jom.2014.03.004.

[77] C. Lim, K. Kim, and P. P. Maglio, ‘‘Smart cities with big data: Refer-
ence models, challenges, and considerations,’’ Cities, vol. 82, pp. 86–99,
Dec. 2018, doi: 10.1016/j.cities.2018.04.011.

[78] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wess-
lén, Experimentation in Software Engineering. Cham, Switzerland:
Springer, 2012.

[79] T. D. Cook, D. T. Campbell, and A. Day, Quasi-Experimentation: Design
and Analysis Issues for Field Settings. Boston, MA, USA: Houghton
Mifflin, 1979.

ABDULLAH ALMOGAHED received the B.S.
degree in engineering and information technology
from Taiz University, Yemen, in 2009, and the
M.S. degree in information technology and the
Ph.D. degree in computer science with a major
in software engineering from Universiti Utara
Malaysia (UUM), Malaysia, in 2017 and 2021,
respectively. He is currently a Postdoctoral Fellow
of the Faculty of Computer Science and Infor-
mation Technology, Universiti Tun Hussein Onn

Malaysia (UTHM), Johor Bahru, Malaysia. His research interests include
software refactoring, empirical software engineering, software quality, soft-
ware maintenance, security, applied machine learning, and wireless net-
works.

HAIRULNIZAM MAHDIN is currently an Asso-
ciate Professor with the Faculty of Computer Sci-
ence and Information Technology, Universiti Tun
Hussein Onn Malaysia. He has published more
than 100 journal and conference papers indexed
by various indexes, including WOS, Scopus, and
Google Scholar. His research interests include the
Internet of Things (IoT), data management, and
artificial intelligence (AI). He has an extensive
background in computer science and has been

actively involved in many conferences internationally, serving in various
capacities including chairman, program committee, general co-chair, and
vice-chair.

MAZNI OMAR received the Ph.D. degree from
Universiti Teknologi MARA,Malaysia. Her Ph.D.
thesis was on the empirical studies of agile
methodology in humanistic aspects. She is cur-
rently an Associate Professor with the School of
Computing (SOC), College of Arts and Sciences,
Universiti Utara Malaysia (UUM), where she is
a Research Fellow of the Institute for Advanced
and Smart Digital Opportunities (IASDO). She has
published several articles in Scopus and indexed

journals, conference papers, and other publications, such as the book of
chapters and technical reports. Shemanaged to secure several research grants
from the university, national, international, and industry grants. Her research
interests include software engineering, knowledge management, and data
mining.

NUR HARYANI ZAKARIA received the Ph.D.
degree in computing science from Newcastle Uni-
versity, U.K. She is currently an Associate Profes-
sor with the School of Computing (SoC), College
of Arts and Sciences, Universiti Utara Malaysia
(UUM). She has published several articles in Sco-
pus and indexed journals, conference papers, and
other publications, such as the book of chapters
and technical reports. Besides that, she involves in
several research and consultation activities from

the university, national, international, and industry grants. Her research
interests include usable security, information security, cybersecurity, and
computer forensics. She is an Editorial Board Member of the Journal of
Information and Communication Technology (JICT).

78916 VOLUME 11, 2023

http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1007/s10664-013-9291-7
http://dx.doi.org/10.1145/3383219.3383243
http://dx.doi.org/10.1109/ICICICT.2014.6781337
http://dx.doi.org/10.1109/ICICICT.2014.6781337
http://dx.doi.org/10.1145/3275245.3275247
http://dx.doi.org/10.1109/TSE.2017.2679742
http://dx.doi.org/10.1051/matecconf/20165702012
http://dx.doi.org/10.1051/matecconf/20165702012
http://dx.doi.org/10.1145/1390630.1390648
http://dx.doi.org/10.14569/IJACSA.2019.0101113
http://dx.doi.org/10.24840/2183-0606_004.001_0003
http://dx.doi.org/10.24840/2183-0606_004.001_0003
http://dx.doi.org/10.1016/j.jom.2014.03.004
http://dx.doi.org/10.1016/j.cities.2018.04.011


A. Almogahed et al.: Refactoring Classification Framework for Efficient Software Maintenance

SALAMA A. MOSTAFA received the B.Sc. degree
in computer science from the University of Mosul,
Iraq, in 2003, and the M.Sc. and Ph.D. degrees in
information and communication technology from
Universiti Tenaga Nasional (UNITEN), Malaysia,
in 2011 and 2016, respectively. He is currently
a Senior Lecturer with the Department of Soft-
ware Engineering, Faculty of Computer Science
and Information Technology, Universiti Tun Hus-
sein Onn Malaysia (UTHM). His research inter-

ests include soft computing, data mining, software agents, and intelligent
autonomous systems.

SALMAN A. ALQAHTANI (Member, IEEE) is
currently a Professor with the Department of Com-
puter Engineering, King Saud University, Riyadh.
His research interests include 5G networks, broad-
band wireless communications, radio resource
management for 4G and beyond networks (call
admission control, packet scheduling, and radio
resource sharing techniques), cognitive and coop-
erative wireless networking, small cell and het-
erogeneous networks, self-organizing networks,

SDN/NFV, 5G network slicing, smart grids, the intelligent IoT solutions
for smart cities, dynamic spectrum access, co-existence issues on hetero-
geneous networks in 5G, industry 4.0 issues, the Internet of Everything,
mobile edge and fog computing, cyber sovereignty, performance evaluation
and analysis of high-speed packet switched networks, system model and
simulations, and integration of heterogeneous wireless networks. Mainly
his focus is on the design and optimization of 5G MAC layers, closed-
form mathematical performance analysis, energy-efficiency, and resource
allocation and sharing strategies. He has been authored two scientific books
and authored/coauthored around 76 journals and conference papers in the
topic of his research interests, since 2004. He serves as a reviewer for several
national and international journals.

PRANAVKUMAR PATHAK received the Ph.D.
degree in AI. He is currently a Renowned
Researcher and an Academician from Montreal,
Canada. With extensive experience in teach-
ing, research, and academia, he has showcased
his expertise across diverse Computer Science
courses. He remains dedicated to professional
development, staying updated with the latest
advancements in the field. He holds certifications
in AI, IT, and networking, including Cisco and

cloud computing. His research interests include artificial intelligence, big
data, and networking.

SHAZLYN MILLEANA SHAHARUDIN received
the bachelor’s degree in industrial mathematics
and the Ph.D. degree in statistics from the Uni-
versity of TechnologyMalaysia (UTM), Malaysia,
in 2010 and 2017, respectively. She is currently
a Senior Lecturer with the Department of Mathe-
matics, Faculty of Science and Mathematics, Uni-
versiti Pendidikan Sultan Idris (UPSI), Malaysia.
Her research interests include dimensions reduc-
tionmethods applied to climate informatics, which

analyzes huge climate-related datasets using data mining techniques. Addi-
tionally, she is focusing her current research on the development of a
prediction model for hydrological, environmental, microbiological, and edu-
cational data. The majority of the research is using historical data and deals
with high dimensional data. Her approach to solving the problems in the
study involves the use of multivariate analysis approaches combined with
time series methods and machine learning techniques. She have a wide
range of experience in multivariate analysis, such as Principal Component
Analysis (PCA) and Factor Analysis (FA), for time series analysis she uses
Singular Spectrum Analysis (SSA), and for machine learning techniques
she specialize in Support Vector Machine (SVM), Relevant Vector Machine
(RVM), and Random Forest. As a Statistician with a view toward data
science, she believes that the skills she have acquired throughout her research
experience would be a valuable asset to the research committee.

RAHMAT HIDAYAT (Member, IEEE) received the
M.Sc.IT. degree in information technology (sys-
tem science and management) from the National
University of Malaysia, Bangi, Malaysia, in 2013.
He is currently pursuing the Ph.D. degree in infor-
mation technology from Universiti Tun Hussein
Onn,Malaysia. He joined the Department of Infor-
mation Technology, Politeknik Negeri Padang,
Indonesia, as a Lecturer, in 2015. His research
interests include data classification, bioinformat-

ics, machine learning, and deep learning.

VOLUME 11, 2023 78917


