IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 6 July 2023, accepted 21 July 2023, date of publication 25 July 2023, date of current version 1 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298672

== METHODS

Improvement and Optimization of Vulnerability
Detection Methods for Ethernet Smart Contracts

ZHONGJU YANG -, WEIXING ZHU, AND MINGGANG YU

Command and Control Engineering College, Army Engineering University of PLA, Nanjing, Jiangsu 210000, China

Corresponding author: Weixing Zhu (zwx @aeu.edu.cn)

This work was supported by project (No. KYZYJKKCJC23001).

ABSTRACT Smart contracts based on blockchain are widely used in finance, management, Internet
of Things, healthcare, and other fields. However, with the rapid development of smart contracts, the
corresponding security vulnerability attack cases occur frequently. Existing Ethereum smart contract
vulnerability detection tools based on static analysis techniques rely too much on expert rules, for this
reason, this paper proposes an Ethereum smart contract vulnerability detection method SCSVM based
on support vector machine technology. A representation of smart contracts is constructed based on the
word-to-vector technique, the features of Ethereum smart contracts are extracted based on the support
vector machine technique, and these features are combined to identify vulnerabilities. Experiments on
Smartbugs and Smartbugs-wild show that SCSVM is significantly effective. It achieves a detection accuracy
of 87.51%, outperforming five typical static analysis vulnerability detection tools in terms of Fl-score.
To alleviate the problems of deep learning methods over-relying on large-scale data to train models and
collecting a large number of smart contract attack samples in a short period, this paper proposes a basic
learner-meta-learner framework, SCLMF. solc-based acquisition of the bytecode of Ethereum smart contract
Solidity, on which smart contract representations are constructed via Python and the use of SCLMF
for vulnerability detection. The experiments on WScrawlD show that SCLMF has a certain detection
effect. Also, to further verify the effectiveness of SCLMF, experiments were conducted on Omniglot,
and the detection accuracy was 96.7% and 98.5% under 5-way 1-shot and 5-way 5-shot conditions,
respectively, which exceeded Memory-Augmented Neural Networks and CONVOLUTIONAL SIAMESE
NETS. In summary, the experiments proved the effectiveness of SCSVM and SCLMF in Ethereum smart
contract vulnerability detection.

INDEX TERMS Base learner-meta-learner, Ethereum, smart contracts, support vector machines,
vulnerability detection, word embedding.

I. INTRODUCTION the technology. The open and transparent, unchangeable,

Cryptographer Nick Szabo first introduced the term ““smart
contracts” to describe the automation of ordinary legal
contracts in the 1990s; specifically, contracts that utilize
computer language to record terms and are automatically
performed by a program [1]. However, the application and
development of smart contracts were once restricted by the
lack of a trusted execution environment. It wasn’t until
the advent of blockchain that a reliable environment for
smart contracts enabled for their efficient application on

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

and perpetual operation of blockchain data are properties of
smart contracts that have been deployed [2]. At the same
time, when the predefined requirements are satisfied, the
contract’s provisions, which were written in a computer
program, are automatically carried out, and the entire
process is independent of a third party. Smart contract
implementation strengthens the decentralized character of
blockchain platforms and boosts use cases for blockchain,
including the Internet of Things, banking, and healthcare [3].
However, because smart contracts oversee significant assets
like digital currencies, attackers are highly motivated to target
smart contracts in order to forcibly acquire and hold onto

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 11, 2023

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

78207

https://orcid.org/0009-0000-3280-7341
https://orcid.org/0000-0003-3264-185X

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

digital currency holdings. In addition to causing enormous
financial losses, smart contract security events also jeopardize
the blockchain-based credit system. To keep the blockchain
secure, it is necessary to find insecure contracts before they
are distributed, as smart contracts are difficult to change once
they are placed on the blockchain.It is important to research
the vulnerability detection of Ethernet smart contracts since,
among them, Ethernet is the most widely used blockchain
platform for running smart contracts.

Deep learning and machine learning are currently utilized
frequently and have advanced significantly in many indus-
tries, although they still have limits. Both rely on large-scale
data training to accomplish the target task but often fail
to achieve satisfactory results for real-world situations with
small sample sizes or annotated samples [4], [S]. However,
in the field of Ethereum smart contract vulnerability detec-
tion, the sample size of real-world vulnerable contracts is
small, and it is difficult for security agencies to collect
sufficient vulnerability samples in a short period. For this
reason, it is important to study the detection of Ethereum
smart contract vulnerabilities under small samples. The
study of Ethernet smart contract vulnerability detection is
concerned with the security of transactions on the Ethernet
platform and reducing the economic losses arising from
vulnerable contracts. Machine learning and deep learning
have played an important role in the field of Ethernet
smart contract vulnerabilities, with good results in terms of
detection speed and detection accuracy. However, there are
few examples of Ethereum smart contract vulnerabilities in
the real world, making it challenging for security agencies
to gather enough examples in a short amount of time.
As a result, researching small-sample learning techniques
becomes a crucial step in finding a solution and overcoming
other obstacles in the field of identifying smart contract
vulnerabilities.

To this end, this paper improves and optimizes the
current methods for detecting vulnerabilities in Ethernet
smart contracts, and the main contributions include the
following three topics. First, we study machine learning for
the detection of vulnerabilities in Ethernet smart contracts.
In order to improve the accuracy of Ether smart contract
vulnerability detection, we propose an SCSVM method based
on Word2Vec (a word embedding technique) and SVM (a
machine learning method). In addition, the SCSVM method
can alleviate the problem that current static analysis tools
for detecting smart contract vulnerabilities rely too much
on expert rules resulting in the inability to reuse rules
among different vulnerability types. The second one is based
on the open-source ScrawlD [7] and Smartbugs-wild [6]
datasets and the Python programming language to create
the WScrawlID Ethereum smart contract image dataset. This
can help Ether security agencies to conduct experimental
research on vulnerability identification more effectively. The
third is to study the vulnerability detection of Ethernet
smart contracts with fewer samples. By introducing meta-
learning into Ether smart contract vulnerability detection

78208

through the SCLMF method, which is based on the learner-
meta-learner framework, we hope to address the problem
of deep learning models over-relying on big data. Through
experiments, we show that our proposed SCSVM technique
has considerable benefits and practical value for identifying
vulnerabilities in Ethernet smart contracts. the SCLMF
method is the first attempt to incorporate meta-learning into
Ethernet smart contract vulnerability detection and provides
an important reference value for future research on Ethernet
smart contract vulnerability detection methods under fewer
sample conditions.The research of SCSVM method and
SCLMF method is a complementary research, which can
effectively adapt to the detection of vulnerabilities of Ethernet
smart contracts in different scenarios and has great practical
significance.

Therefore, this study focuses on the problem of Ethernet
smart contract vulnerability detection and proposes a series
of improvement and optimization methods. We propose the
SCSVM method, which has been experimentally validated on
the publicly available datasets Smartbugs-wild and ScrawlD.
The results demonstrate that the SCSVM method has
a significant performance advantage in the detection of
Ethernet smart contract vulnerabilities. Additionally, we sug-
gest the SCLMF method based on small-sample learning
techniques, which employs meta-learning to address the issue
of deep learning models overly depending on large-scale data,
allowing the identification of small-sample Ethereum smart
contract vulnerabilities. The contribution of this study will
make an important contribution to improving the security
of transactions on the Ether platform, safeguarding the
functionality that smart contracts were originally designed
to achieve, and maintaining a blockchain-based credit
system.

The research of the SCSVM method and SCLMF method
is generally complementary. The SCSVM method focuses on
alleviating the problem that current static analysis tools rely
too much on expert rules when detecting vulnerable contracts
and it is difficult to reuse rules among different vulnerability
types; the SCLMF method focuses on alleviating the problem
that deep learning methods rely on large-scale data when
detecting vulnerable contracts. This complementary research
can effectively adapt to different scenarios of Ethernet smart
contract vulnerability detection, and different solutions of
SCSVM and SCLMF methods can be selected according
to different Ethernet smart contract vulnerability detection
needs. In addition, as the SCSVM method and SCLMF
method are research works for different realistic problems
in the field of Ethernet smart contract vulnerability detec-
tion, they should be relatively more effective in solving
the corresponding problems. The selection and application
of the two methods are more relevant in the case of
different Ethernet smart contract vulnerability detection
needs.

This work is organized as follows: in Section II,
we describe research on vulnerability identification and
small-sample learning for Ethernet smart contracts. We shall

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

go over our strategy in Section III. The dataset and execution
performance comparison are included in Section IV of our
presentation of the experimental approach. In Section V,
we wrap up the entire essay.

Il. RELATED WORK

A. WORD EMBEDDING TECHNIQUES

Word embedding is a technique for mapping words into
vector space, which plays an important role in natural lan-
guage processing. By representing words as low-dimensional
vectors, word embeddings can better express the semantic
relationships between words and thus achieve efficient and
accurate results in NLP tasks such as text classification,
sentiment analysis, and machine translation. Commonly used
word embedding generation techniques include Word2vec,
GloVe, etc. They can be widely used in different fields,
such as recommendation systems, cross-language translation,
etc. In addition, word embeddings can be combined with
other machine learning techniques and linguistic resources
to further improve model performance, such as combining
knowledge bases and corpora to generate better word
embedding models. Singular value decomposition (SVD) and
other methods have been used in several research to minimize
the dimensionality of sparse word-context matrices [8].
Word2vec refers to two language models that produce dense
vector representations of words based on the Mikolov et al.
neural network [9].

To calculate dense vector representations of words from
extremely large datasets continuous vector representations of
words, Mikolov et al. offer two novel model designs. In a
word similarity task, the effectiveness of these representa-
tions was evaluated, and the findings were contrasted with
those obtained from earlier best representation methods based
on various types of neural networks. It was demonstrated
that there was a significant increase in accuracy at a much
reduced computational cost. In contrast to the prediction
model Word2vec, Peng et al.’s Global Vectors for Word
Representation (GloVe) decreases the dimensionality of the
co-occurrence matrix of word-word types produced by a
fixed-dimensional local context window. The name GloVe
comes from the fact that the model directly captures the
statistics of the entire corpus (at the global level) [10].
Additionally, it performs better and is more competitive than
other cutting-edge techniques in tasks including named entity
identification, word analogies, and word similarity. One of
the main applications of word embeddings is the semantic
similarity evaluation of words in several languages, which
essentially dates back to the first application stage of natural
language processing. In this sense, the paper [11] proposes
a model called Bi-lingual Word Embedding Word Skipping
(BWESG), which introduces a multilingual vector space to
embed word representations, queries, and even complete
documents, to jointly learn bilingual embeddings based only
on comparable data consisting of aligned documents in
two different languages. In a similar vein, Glavas et al. [12]
suggest a different method for comparing the textual semantic

VOLUME 11, 2023

similarity of documents written in various languages. This
method uses fewer resources and is represented by a linear
transfer of words from the vector space to the language of
the vector space’s language origin. GloVe and CBOW were
utilized to create the word embeddings used in this study.
Word embeddings have also been suggested for languages
like Arabic that use extremely particular alphabets. To give
the community access to word embeddings produced from
various domains, such as Arabic tweets, websites, and
Wikipedia articles, Soliman et al. [13] proposed a collection
of pre-trained word representation models for Arabic. Word
embeddings in Arabic have also been suggested as a way to
solve the problem of word disambiguation, a frequent task in
natural language processing.

Specifically, Laataretal. [14] suggested using this
approach to create a dictionary that illustrates the devel-
opment of the meaning and usage of Arabic words, which
would help to preserve the Arabic cultural heritage. The
word embedding generation technique involved is the
Word2vec architecture. Word embeddings can be merged
into recommender systems and Musto et al. [15] present
a preliminary investigation employing word embeddings
where both objects and user profiles are embedded in
a vector space for use in content-based recommender
systems.According to Greenstein et al. [16], it is possible
to translate the user’s desired item sequence into words
so that it can be projected into a vector space where
parallels and similarities between objects can be found. The
Word2vec and GloVe models are utilized to generate the
word embeddings. Word embeddings may also be utilized
in conjunction with other machine learning methods or
linguistic data. According to the paper [17], methods that
produce vector representations of words solely based on
data dispersed throughout the corpus do not take advantage
of the structure of semantic relations between words in
concurrent contexts; these structures are intricate knowledge
bases like ontologies and semantic vocabularies in which the
meaning of words is defined by the various relations that exist
between them. As a result, when utilizing word embeddings
to produce findings that support the premise, integrating
the corpus and knowledge base can enhance performance
on word similarity and analogies tasks. Liu [18] suggested
that in addition to creating vector representations of words
using the corpus as the source, intrinsic word components
such morphemes should also be taken into account. The
morphology of the original view and morphology of the
contextual view (MOMC) and morphology of the contextual
view (MC), which exceed baseline models in detecting word
similarity, including CBOW, are presented as two models for
creating word embeddings to achieve this goal.A method to
embed Word2vec-generated word embeddings into photos
and then use a convolutional neural network (CNN) to
classify the images as text was proposed by Gallo et al. [19].
Comparing the approach’s classification results to baseline
values (doc2vec vs. SVM), the method produced better
results.

78209

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

B. ETHERNET SMART CONTRACT VULNERABILITY
DETECTION

Machine learning and deep learning-based detection methods
significantly improve detection efficiency by automating
feature extraction and proper model training for different
forms of contract code, making them more generalizable
and applicable to more application scenarios, and improving
the detection accuracy of common vulnerabilities to a
certain extent compared to existing tools. While dealing
with the vulnerability detection problem, treating contracts
as different objects has corresponding different solutions. It is
noted in the paper that the data set used in the CBGRU model
study was relatively small at the time, but the deep learning
model can perform better detection on massive data sets. The
CBGRU model proposed in the paper [4] has high accuracy
in smart contract vulnerability detection tasks but still has
limitations. The CBGRU model study demonstrates that the
model’s performance is constrained by its excessive reliance
on data. A contract vulnerability detection approach called
SCVDIE, which is based on seven different neural networks
and employs contract vulnerability data for contract-level
vulnerability detection, is proposed in the paper [5]. SCVDIE
is different from general deep learning detection methods,
SCVDIE can achieve better detection results with reduced
dataset size, and it is pointed out in the paper that future
research work considers applying migration learning in this
area.SCVDIE can be regarded as the first exploration of
Ethereum smart contract vulnerability detection in small
samples, but it has not been studied in depth.

SVChecker [20] is a method that transforms the Ethereum
smart contract vulnerability detection problem into a text
classification problem processing, which consists of three
main phases according to the core modules: code fragment
extraction, deep learning model, and checker for the unknown
source code of smart contract solidity. In the code extraction
stage, irrelevant information from the contract source code
is disregarded, the source code is program-sliced, and the
resulting program slices are normalized, such that function
names are consistently named FUNI-N and variable names
are consistently named VARI-N, to obtain code fragments
and identify whether or not they are vulnerable. The code
fragment is encoded into the input form (vector) of the neural
network model using the transformer-encoder-based model
in the deep learning model stage after the word embedding
technique. Next, the fully connected layer transforms the
high-dimensional vector into a low-dimensional vector, and
the detection result is then output through the classification
function. The smart contract solidity’s source code is utilized
as input, extracted using code fragments, and trained using
a neural network model to produce the final classification
result. This is what is meant by the checker for the unknown
source code of the smart contract solidity. It is shown that
this system has higher detection accuracy compared to the
existing tools Oyente, Securify, Slither, and Smartcheck.
CodeNet [21] is a transformation of the Ethernet smart

78210

contract vulnerability detection problem into an image
classification and recognition problem processing, mainly to
alleviate the problem of ignoring its semantics and context
in the process of detecting smart contract vulnerabilities
based on deep learning techniques. CodeNet implementation
of smart contract vulnerability detection is mainly divided
into two phases, which are the preprocessing phase and the
detection phase. In the preprocessing phase, the source code
of the Ethereum smart contract solidity is transformed into
an image. The steps are as follows: firstly, compile the smart
contract source code into bytecode, and secondly, convert the
bytecode into an input image based on the smart contract,
while preserving the semantics and context of the smart
contract. In the detection phase, the smart contract-based
input image is analyzed using the proposed CodeNet-based
vulnerability detection method.

Peculiar [22] uses pre-training approaches to convert
the Ethernet smart contract solidity source code into a
non-Euclidean graph issue for processing and finds vulner-
abilities in Ethernet smart contracts based on important data
flow graphs. The key dataflow graph is less complex and does
not include unnecessary deep hierarchies when compared
to standard dataflow graphs that are currently employed
in existing methodologies, which makes it simple for the
model to concentrate on important properties. The model also
includes pre-training techniques as a result of the significant
advancements it has made in numerous NLP jobs. According
to the empirical findings, the Peculiar technique can identify
re-entry vulnerabilities in Ethereum smart contracts with an
accuracy rate of 91.80 percent and a recall rate of 92.40 per-
cent. This detection method greatly surpasses previous
cutting-edge methods for detecting reentrant vulnerabilities,
one of the most critical and prevalent Ethereum smart contract
issues. A unified platform for developing smart contracts
called SCStudio [23] seeks to make it simple for programmers
to use more secure smart contracts. The main concept is
to provide pattern-based learning-based real-time security-
enhanced suggestions and integrated testing-based security-
focused verification. scStudio is implemented as a VS code
plug-in. It has been included as a suggested development tool
by the FISCO-BCOS community and utilized as an official
development tool for WeBank. In actual use, it surpasses
currently available contract development environments like
Remix, enhancing the average word suggestion accuracy by
30 to 60% and assisting in the discovery of roughly 25%
of vulnerabilities. A multi-task learning-based vulnerability
detection methodology for smart contracts is suggested in
the study [24]. Setting auxiliary tasks to learn additional
directional vulnerability traits enhances the model’s detection
power, allowing for the detection and identification of
vulnerabilities. The model has two components and is based
on a hard-share concept. First, the semantic information of
the input contract is primarily learned from the underlying
common layer. The feature vector of the contract is learned
and extracted using an attention mechanism-based neural

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

network after the text representation is first turned into a
new vector by word and location embedding. Second, the
functionality of each task is primarily implemented using a
task-specific layer.

C. FEW-SHOT LEARNING

In recent years, to alleviate the problems of insufficient
generalization ability and over-reliance on large-scale data
for training models in the application of deep learning in
various fields, scholars have researched meta-learning. The
ability of deep learning models to generalize is enhanced by
meta-learning, which seeks to learn new knowledge using
existing knowledge. The following five categories can be
used to categorize meta-learning research techniques: Metric-
based meta-learning techniques, meta-learning techniques
based on initialized parameters with good generalizability,
meta-learning techniques based on gradient optimizers, meta-
learning techniques based on external memory units, and
meta-learning techniques based on data augmentation [29].
The metric-based meta-learning can construct suitable dis-
tance metrics on the training dataset to model answers
to practical questions, and the twin network proposed by
Koch et al. [30] is a typical representative of the metric-based
meta-learning methods aiming to solve the single-sample
learning image classification problem. The twin network
approach has shown far better performance compared
to the more effective classifiers on existing Omniglot
datasets.

The MAML model [31] is a typical example of initialized
parameter-based meta-learning methods based on strong
generalization, where the task data used in the process of
optimizing the loss function and the network parameter
gradient descent optimization process are separated to
improve generalization capability. MAML has a wide range
of application areas, such as classification, regression, and
reinforcement learning, so MAML models are called model-
independent meta-learning models. The meta-learner model
proposed by Ravietal. [32] is a typical representative of
gradient optimizer-based meta-learning methods, aiming to
solve the problem of training another learner neural network
classifier in the case of small samples. Santoro et al.’s [33]
memory enhancement model is a typical representative of
meta-learning methods based on external memory units,
aiming to solve the problem of relying on the existence
of deep multilayer neural networks prone to overfitting
by introducing external storage modules.By combining
meta-learning techniques with GAN generation models,
MetaGAN [34] achieves the process of differentiating true
data from false data in order to find tighter decision
boundaries for the model and further improve the feature
extraction capability of the model.

In this paper, we build a text-based representation of
Ethernet smart contracts using Word2Vec, a word embedding
technology. We then convert the problem of detecting
vulnerabilities in Ethernet smart contracts into a text
classification problem and suggest a SCSVM framework.

VOLUME 11, 2023

In this study, we build an image-based representation of
Ethernet smart contracts based on bytecode and RGB image
transformation technology, transform the small-sample Eth-
ernet smart contract vulnerability detection problem into a
small-sample image classification problem processing, and
suggest the SCLMF framework based on the learner-meta-
learner foundation to realize the small-sample Ethernet smart
contract vulnerability detection.

In this paper, we conduct a complementary research
work which consists of a joint research work on the
SCSVM method and the SCLMF method. Analyzed from the
perspective of the selected research problem, the real-world
problems that we address in this research work are both
key challenges in the current field of vulnerability detection
for Ethereum smart contracts. This shows that our selected
problem is of great practical significance. Analyzed from
the perspective of the technical route, our proposed SCSVM
method and SCLMF method are validated experimentally
on publicly available smart contract datasets and compared
with other typical methods. In other words, the experiments
conducted validate that our complementary research can
alleviate the key challenges in the area of vulnerability
detection for Ethernet smart contracts. The core idea of the
SCSVM method is to transform the Ethernet smart contract
vulnerability detection problem into a textual classification
problem, based on support vector machine technology,
to achieve the detection of Ethernet smart contract vulnera-
bilities. The core idea of the SCLMF method transforms the
Ethernet smart contract vulnerability detection problem into
an image classification problem and proposes a meta-learning
framework to achieve the detection of Ethernet smart contract
vulnerabilities under small sample conditions. This is the first
attempt to study the detection of vulnerabilities in Ethernet
smart contracts under small-sample conditions, which is of
great reference significance for future work on the same or
similar topics.

Ill. GENERAL FRAMEWORK
A. SCSVM FRAMEWORK
1) THE OVERALL MODEL ARCHITECTURE OF SCSVM
The SCSVM’s general model architecture is shown in Fig. 1.
The model mainly consists of the following steps:

1.The regularization approach is used to the source code of
the Ethernet smart contract, removing any unnecessary data
like as comments.

2.The pre-processed smart contract is transformed into
word vector form by word embedding technique as the model
input.

3.In order to get results for vulnerability detection, an SVM
model is built for extracting the features of smart contracts,
the loss is calculated using the cross entropy loss function,
and vulnerability classification is accomplished using a
decision function.

The smart contracts are categorized using a support vector
machine (SVM), and the model’s objective is to identify
weaknesses in Ethernet smart contracts. The smart contract

78211

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

A

[

Vulnerability detection results

Classification layer

T

Classification

Feature extraction

Feature extraction layer

T

The construction of SVM model

Word embedding layer

Word embedding
(Word2Vec)

A

L

Smart contracts after regularization

Pre-processed dataset

1

Regularization methods
(Removing irrelevant information)

The source code of smart contract

. Original dataset

FIGURE 1. The overall model architecture of SCSVM.

source code is preprocessed in this model using the word
embedding technique before being transformed into word
vector form as an input to the SVM model. After computing
the loss with a cross-entropy loss function, the vulnerability
detection findings are derived by applying a decision function
to categorize the vulnerabilities.

2) WORD EMBEDDING LAYER

The detection model proposed in this paper uses the
Continuous Bag of Words (CBOW) model in the Word2Vec
model for word pre-training. The Word2Vec model is used to
convert smart contract text data into word vectors. the CBOW
model predicts the current value by contextual information,
and its network model is shown in Fig.2. This CBOW network
model has window=3, w(¢) is the central word of the input
layer, and w(t —3), w(t —2), w(t —1), w(t+1), w(z+2), w(t+3)
are the contexts of w(¢). The following briefly describes the
various layers of the CBOW network model:

Input layer: The context word’s one-hot encoding is used
as input. Assume that the context word window has a size of
C and that the word vector space has a dimension of. So C*V
is the input size.

78212

INPUT PROJECTION ouTPUT

Wt-3)

W(t-2)

wi(t-1) SUM

W)
W+1)

W(t+2)

W(t+3)

FIGURE 2. Model architecture of CBOW.

Hidden layer: Suppose the final output of the hidden layer
is a word vector with dimension size N. The weight matrix
between the input layer and the hidden layer is, and V*N
denotes the size of W. Multiply each vector in vector group

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

(wal w2z . W€} e PV with w e VN to get
vector group {W‘“, wdz, ...,Wdc} e XN o get vector
Wd c l><N.

Output layer: initialize the output weight matrix

W e N ><V.

The vectors W¥¢ € XN and W° e V<V of the hidden layer
are multiplied and processed with Softmax to output vector
W’ e 1*V Each dimension in vector W’ e !V represents a
word in the lexicon. The prediction target corresponds to the
word represented by the index with the highest probability.

3) SVM NETWORK LAYER

Support Vector Machine (SVM) is a commonly used machine
learning algorithm, mainly for classification and regression
problems. Among neural networks, the SVM network layer
is a special variety of network layers used for classification
tasks. The input of the SVM network layer is a vector
and the output is the probability that the vector belongs
to different categories. The SVM network layer works by
mapping the input vector into a high-dimensional space and
then finding a hyperplane in the high-dimensional space
to separate the vectors of different categories.The SVM
network layer works by mapping the input vector into a
high-dimensional space and then finding a hyperplane in the
high-dimensional space to separate the vectors of different
categories. The advantage of the SVM network layer is that it
can handle high-dimensional data and nonlinear data and has
better generalization ability.

In this experiment, we implemented the process of text
classification for Ethernet smart contracts using support
vector machine (SVM) and word vector techniques through
code. The precise implementation of each stage in this
process, which includes activities like data preprocessing,
model training, and evaluation, is detailed below. First, the
training and test sets’ text data are read from the specified
file. Next, word vector features are created for the training
set’s text data using the Word2Vec algorithm. Finally, the
word vectors for each sample are averaged to create the
feature vector representation of the sample and are saved in
the DataFrame object of pandas. The word vector features
and label data are read straight from the pre-processed
word vector file if one already exists. Next, the feature
vectors and label information are extracted from the training
and test sets, and the feature vectors are processed using
normalization and normalization methods to make the feature
distribution of the data more normally distributed with little
scale difference. The SVM model’s hyperparameters, or the
values of the C and gamma parameters, are then optimized
using a genetic algorithm to boost the model’s performance
by identifying the ideal combination of hyperparameters.
The accuracy of the model acquired by cross-validation is
known as the fitness function, and the GA library iteratively
tests various combinations of hyperparameters in accordance
with its own internal rules. Finally, the output is the best
result. Next, the SVM model is retrained with the best
hyperparameters, predictions are made using the test set data,

VOLUME 11, 2023

and evaluation metrics such as accuracy and classification
reports are calculated for the model on the test set. Finally,
the best hyperparameter combination, model accuracy, and
classification report are outputs.

B. SCLMF FRAMEWORK

1) THE OVERALL MODEL ARCHITECTURE OF SCLMF

The overall SCLMF model architecture is shown in Fig. 3.
The model mainly consists of the following steps:

1. The source code of the Ethernet smart contract is
compiled by the solc tool to get the hexadecimal bytecode.

2. Get the corresponding RGB image from the hexadecimal
bytecode in Python programming language.

3. Create the fundamental structure for learner-meta-
learners to implement few-shot identification of vulnera-
bilities in ether smart contracts. The basic learner is a
convolutional neural network, and the meta-learner is the
MAML algorithm.

The importance of conducting static analysis work for
Ethereum smart contracts [39], [40], [41]. On the one
hand, for the security and vulnerability detection of smart
contracts, carrying out static analysis of smart contracts can
identify potential vulnerabilities and security weaknesses in
the contracts and identify typical programming errors and
vulnerabilities in the code. Through static analysis, problems
in the contract can be detected and fixed in advance before
the contract is deployed on the blockchain, thus avoiding or
reducing the occurrence of security incidents. On the other
hand, for the reliability and quality assurance of smart con-
tracts, conducting static analysis of smart contracts can detect
errors, anomalies, and inefficient operations in the contracts
and improve the reliability and quality of the contracts. Static
analysis can help developers identify problems such as dead
code, uninitialized variables, and unsafe type conversions in
the code and provide recommendations for fixing them, thus
improving the maintainability and robustness of the contract.
Therefore, it is also valuable and meaningful to use ““solc” in
our research work.

The purpose of this model is to detect vulnerabilities
in Ethernet smart contracts using deep learning techniques
including convolutional neural network and meta-learner
MAML. it can handle small sample data and shows good
performance on this task.

2) THE BASE LEARNER

The convolutional neural network CNN, which has four
convolutional layers and one fully connected layer, is the
key tool used in this project to define a base learner.
The variable of type ‘“nn.ParameterList” called “self.vars”
contains all the tensors that need to be optimized and is of
the name “‘self.vars”. The weights and biases of the fully
connected and convolutional layers in this model are kept in
“self.vars”. “‘nn.ParameterList”, which contains the running
means and variances of all BatchNorm layers that do not
need to be optimized, so their “‘requires_grad” property is set
to “False”. “‘nn.Parameter()”’ function to create the tensor to

78213

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

A

1

Vulnerability detection results

Classification layer

1

Classification

Train the MAML algorithm and
calculate the loss function

T

Initializing Neural Networks

Load the constructed dataset

Feature extraction layer

T

Defining the Meta-Learner MAML

1

Defining the base learner CNN

A

F

The construction of basic learner-
meta-learner framework (SCLMF)

A

1.

I

Pre-processed dataset

(Hex to RGB in Python)

RGB images

"

t

Hexadecimal byte code

Compilation T

Solc Compiler Tool

Original dataset The source code of smart contract

FIGURE 3. Overall model architecture of SCLMF.

be optimized, and “‘nn.init.kaiming_normal_()** function to
initialize the weights. We also use the “nn.BatchNorm2d()”
function to create the BatchNorm layers and store their
running means and variances in “‘self.vars_bn”. The
“nn.BatchNorm2d()” function is used here instead of
calculating the BatchNorm layers manually because PyTorch
provides this function, which already implements the stan-
dard BatchNorm calculation method. The final layer we
define has an input size of 64 and an output size of 5. Instead

78214

of employing the BatchNorm layer in this fully-connected
layer, we just utilize a linear transformation. Fig. 4 depicts
the precise model parameter structure.

3) META-LEARNER

Algorithm 1 Meta Learner describes the process of the
meta-learning algorithm Meta Learner. First, in each task,
the prediction result “y_hat” for the support set images is
calculated by forward propagation, and the cross-entropy loss

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

Convolutional layers of
Conv2d

v

BatchNorm layer

v

Convolutional layers of
Conv2d

v

BatchNorm layer

v

Convolutional layers of
Conv2d

v

BatchNorm layer

v

Convolutional layers of
Conv2d

v

BatchNorm layer

v

linear layer

FIGURE 4. Model parameter structure of the base learner.

“loss” is calculated. Then, the gradient “grad” is calculated
based on the loss. Next, the fast weights “fast_weights”
are updated by using the gradient descent method, where
“theta” is the initial weight and “‘alpha” is the learning
rate. Then, forward propagation is performed again to
obtain the prediction result “y_hat_before” for the query set
images, and the cross-entropy loss “loss_qry_before™ and the
accuracy “‘correct_before” are calculated. In the next inner
loop, “‘num_inner_updates” are performed. In each inner
update, the prediction result “y_hat_inner” for the support
set images is calculated by forward propagation, and the
cross-entropy loss “loss_inner”” and gradient ‘““grad_inner”
are calculated. Then, the fast weights ‘““fast_weights” are
updated using the gradient descent method, where ““base_Ir”
is the learning rate of the inner update. After completing the
inner loop, forward propagation is performed again to get
the prediction result ““y_hat_after” for the query set images,
and the cross-entropy loss “loss_qry_after” is calculated.
In each inner loop, the cumulative loss ‘“‘loss_qry_after”
and the accuracy ‘“‘correct_after” are accumulated, and then
the average loss “‘loss_qry_sum’ and the average accuracy
“accuracy_sum”. After all task cycles are completed, the
average task loss “loss_qry_final” is calculated, and then the
meta-model “meta_model” is updated by back-propagation.
Finally, the loss and accuracy of “num_inner_updates’’ sub-
internal cycles are calculated.

VOLUME 11, 2023

Algorithm 1 Meta Learner
Input:
Support set images, X_spt;
Support set label, y_spt;
Query set images, X_qry;
Query set label,y_qry;
Update steps,k;
Number of tasks,task_num;
meta-optimizer,meta_optim;
Initial learning rate of internal update step,base_lr;
Output:
“accuracy” used for both internal and external loops,acc;
“query loss” during internal loops,loss;
1: for (i=1 to task_num) do
2 y_hat = forward_prop(x_spt, base_model);
3 loss = cross_loss(y_hat, y_spt);
4: grad = compute_gradient(loss);
5. fast_weights = theta - alpha * grad;
6
7
8

y_hat_before = forward_pro(x_qry, base_model);
loss_qry_before = cross_loss(y_hat_before, y_qry);
correct_before = compute_acc(y_hat_before, y_qry);

9: for (i=1to k) do

10: y_hat_inner = forward_pro(x_spt, fast_weights);
11: loss_inner = cross_loss(y_hat_inner, y_spt);

12: grad_inner = compute_gradient(loss_inner)

13: fast_weights = fast_weights - base_Ir * grad_inner;
14: y_hat_after = forward_pro(x_qry, fast_weights);
15: loss_qry_after = cross_loss(y_hat_after, y_qry);
16: accumulate(loss_qry_after, correct_after);

17: loss_qry_after = cross_loss(y_hat_after, y_qry);

18: loss_qgry_sum = sum_loss_qry_after / k;

19: accuracy_sum = sum_correct_after / k;

20: accumulate(loss_qry_sum, loss_list_qry);

21: for (i=1 to task_num) do

22: loss_gry_final = loss_qry_sum / num_tasks;

23: backward_pro(loss_qgry_final, meta_model);

24: calculate_acc(num_inner_updates, loss_list_qry);
25 calculate_loss(num_inner_updates, loss_list_qry);
26: return acc,loss;

4) MODEL FINE-TUNING

Algorithm 2 Finetuning describes that during model fine-
tuning. First, we need to get the dimension of the
input data x_spt, which can be done by calling the
“get_input_dim(x_spt)”’ function. Then, we need to calculate
the size of the query data, which can be done by calling
the ‘‘calculate_query_size()”” function. Next, we create
an empty ‘‘correct_list” that stores the correct rate after
each update. Then, we copy the base network “net”
and create a new network ‘“new_net”’. Next, we perform
forward and backward propagation to calculate the loss and
gradient of the new network ‘“new_net” on the training
data “x_spt”, which can be done by calling ‘“forward_

78215

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

Algorithm 2 Finetuning

Input:
Support set images, x_spt;
Support set label, y_spt;
Query set pictures, x_qry;
Query set label,y_qry;
Update steps,k;
Basic Network Model,net;
New Network Model, new_net;
Initial learning rate of internal update step,bs_Ir;
Output:
List of correct rates used for both internal and external
loops,accs;
: input_dim = get_input_dim(x_spt);
: query_size = calculate_query_size();
. correct_list = [];
new_net = copy_network(net);
: loss, grad = forward_backward_prop(new_net, x_spt);
. fast_weights = update_fast_weights(theta, alpha, grad);
: correct_before = forward_prop(net, x_query);
: correct_after = forward_prop(new_net, X_query);
: correct_list.append((correct_before, correct_after));
: for (k=1 to num_inner_updates) do
loss, grad = forward_back_prop(fast_weights, x_spt);

—_ =
—_ O

_
»

f_w = update_fast_weights(fast_weights, bs_Ir, grad);

13: correct_after = forward_prop(f_w, x_query);

14: correct_list.append(correct_after);

15: delete_network(new_net);

16: accs = [correct / query_size for correct in correct_list];
17: return accs

backward_propagation(new_net, x_spt)”’ function to achieve
this. Then, we use the gradient and the learning rate parameter
“alpha” to update the fast weights ‘““fast_weights”, which
can be done by calling “update_fast_weights(theta, alpha,
grad)” function to achieve this. Next, we calculate the
correct_before rate of the underlying network “‘net” on the
query data “x_query”’. Then, we enter a loop that performs
an internal update “k’’ times. In each loop, we again perform
forward and backward propagation to compute the loss and
gradient of the fast weights “fast_weights” on the training
data “x_spt”. Then, the fast weights “f_w” are updated
using the base learning rate “‘bs_Ir”” and the gradient. Then,
we calculate the correct rate “‘correct_after” of the fast
weight “f_w” on the query data “x_query”’, and add it to
the ““correct_list” to the list of correct rates. At the end of
the loop, we delete the new network ‘“‘new_net”. Finally,
we calculate the percentage of each correct rate value in
the ‘“‘correct_list” as a percentage of the query data size
“query_size” and store the result in the list “accs”. This
algorithm’s goal is to enhance network performance for better
training and testing results.

78216

IV. EXPERIMENTS AND RESULTS ANALYSIS

A. SCSVM EXPERIMENTS AND RESULT ANALYSIS

1) EXPERIMENTAL ENVIRONMENT AND DATASET

The hardware configuration for SCSVM experiments is an
Intel i7-10875H processor under Windows 11 operating
system, running memory of 8 GB, and a graphics card
of RTX3070. The Pytorch deep learning library is version
1.10.2, and the Python programming language is version
3.8. To further evaluate the generalization performance of
the model and avoid overfitting or underfitting phenomena,
the fitness function of the SCSVM approach includes
cross-validation techniques in addition to the random loss
function (Hinge) during the training data.

The Smartbugs [6] and Smartbugs-wild [6] public datasets
are used to implement the SCSVM approach. One of
them, Smartbugs-wild, has 47,587 genuine and exclusive.sol
files and is created in the solidity programming language.
Based on the [20] division approach, the Ethereum smart
contract data is split into two categories: susceptible data
and non-vulnerable data. There are two basic causes for
vulnerable data: (1) Incorrect variable operations, such as
integer overflow. (2) Inappropriate usage of API function
calls, including timestamp dependencies and reentrance.

In the study of the SCSVM approach, a typical public
dataset of smart contracts is used for experimental validation
in the paper. The dataset contains typical contract vulner-
abilities, such as “Reentrancy”, “Unchecked LL Calls”,
“Unchecked LL Calls™, “Tx.origin”’, etc. After experimental
verification, the SCSVM method demonstrates better detec-
tion results compared to other smart contract vulnerability
detection methods covered in the paper. Therefore, our
proposed SCSVM method is effective for typical Ethereum
smart contract vulnerability detection methods. Our current
work on validating the effectiveness of the SCSVM method
takes typical, prone, and more harmful types of vulnerable
contracts as the target of our research. We believe that such
research is valuable and significant.

2) PERFORMANCE COMPARISON AND RESULT ANALYSIS

To demonstrate the efficacy of the proposed SCSVM method,
we compare the performance with popular static analysis
tools Mythrill [20], Osiris [21], Oyente [22], Security [23],
and Slither [24] and evaluate the effectiveness of the SCSVM
method using accuracy, precision, recall, and F1-score typical
metrics. It is shown that the SCSVM method suggested
in this paper is effective. The average performance of five
well-known static analysis tools on the smartbugwild dataset
for Mythrill, Osiris, Oyente, Security, and Slither is displayed
in Table 1 [25]. In addition, the values in Table 1 are in the
form of percentages. To further compare typical tools with
our proposed SCSVM approach, we computed the average
performance against four vulnerability types, Reentrancy,
Unchecked LL Calls, Tx.origin, and Timestamp Dependency.
The reason we take this approach for comparison is
that the SCSVM method is used to do smart contract

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

TABLE 1. Average performance of 5 well-known static analysis tools on the smartbugwild dataset.

detection Reentrancy Unchecked LL Calls Tx.origin Timestamp Dependency
method Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
Mythrill[20] 69.02 79.14 49.69 61.05 7145 9985 4136 5849 73.07 9746 4694 6337 N/A N/A N/A N/A
Osiris[21] 75.42 100 49.69 6639 N/A N/A N/A N/A N/A N/A N/A N/A 5672 9754 9.62 17.52
Oyente[22] 95.65 100 91.10 9534 N/A N/A N/A N/A N/A N/A N/A N/A 5354 8813 3.14 6.07
Security[23] 82.71 94.17 68.87 79.56 84.16 100 67.43 80.54 8249 99.62 6495 78.64 N/A N/A N/A N/A
Slither[24] 9351 9320 93.54 9337 77.80 87.14 63.77 73.65 9473 9575 93,52 9462 87.16 97.18 7530 84.82

vulnerability detection by dividing two types of datasets,
which are the dataset with vulnerabilities and the dataset
without vulnerabilities, where the dataset with vulnerabilities
contains improper use of API function calls, i.e., it contains
vulnerabilities such as Reentrancy. We contrast the typical
performance with the SCSVM technique we have suggested.
Table 2 compares the average performance of identifying a
particular vulnerability.

The SCSVM approach suggested in this paper performs
well in the discovery of vulnerabilities in Ethernet smart
contracts, according to a comparison of the average perfor-
mance of vulnerability detection presented in Table 2. The
SCSVM method’s detection accuracy, recall, and F1-Score
are specifically 87.55 percent, 87.68 percent, 87.46 percent,
and 87.51 percent, respectively. The Fl-score, a statistic
that combines precision and recall and shows the overall
performance of the model, is the largest for the SCSVM
approach when compared to the five other methods, Mythrill,
Osiris, Oyente, Security, and Slither. In the classification
problem, the recall rate is used to gauge the percentage of
samples with positive predictions that actually come true,
while the precision rate gauges the percentage of samples
with positive predictions that actually do.Since F1-score takes
both precision rate and recall rate into account, it can be
used to solve problems involving multiclass classification
as well as unbalanced data sets. The experiments show
that the SCSVM method performs brilliantly in terms of
recall, with a recall rate of 87.46%, which is higher than
all the remaining vulnerability detection tools; in terms of
accuracy, it is only slightly worse than Slither but better
than the other detection methods. These results show how
the suggested SCSVM method may successfully improve
the precision and effectiveness of vulnerability identification
while reducing the security concerns connected with smart
contracts. Besides, we also compare the SCSVM method with
other deep learning methods, such as DeeSCVHunter [36],
DA-GCN [37], and DR-GCN [38], to further thesis the
effectiveness of the SCSVM method. The SCSVM method
also shows more excellent detection results compared to three
deep learning methods such as DeeSCVHunter, DA-GCN,
and DR-GCN in terms of four aspects: accuracy, precision,
recall, and F1-score analysis. This shows that the SCSVM
method is positive and effective.

From the perspective of data set selection, most of
the data we selected are from real contracts deployed

VOLUME 11, 2023

on the blockchain, which can reflect the vulnerability of
smart contracts in the real world. From the perspective
of metrics selection, we selected accuracy, precision, com-
pleteness, and F1-score, which are reasonable and effective.
From the perspective of the comparative experimental
setup, we compare the SCSVM method with existing
static analysis methods and typical deep learning methods,
and such a setup is reasonable and effective. From the
perspective of experimental results, the SCSVM method
demonstrates better detection results compared with existing
static analysis methods and typical deep learning methods,
which confirms the effectiveness and value of the SCSVM
method.

B. SCLMF EXPERIMENTS AND RESULTS ANALYSIS

1) EXPERIMENTAL ENVIRONMENT AND DATASET

The hardware setup for the SCLMF experiment in question
includes an Intel i7-10875SH CPU running Windows 11,
8 GB of running memory, an RTX3070 graphics card, and
GPU-accelerated training models. The Pytorch deep learning
library is version 1.10, and the Python programming language
is version 3.8.2. The cross entropy loss function is used as
the loss function in the proposed SVM-based Ethernet smart
contract vulnerability detection technique SCSVM during the
training data.

The dataset used for the implementation of the SCLMF
method is based on the publicly available datasets Smartbugs-
wild [6] and ScrawlD [7] and the Python programming
language to propose the Ethernet smart contract image
dataset WScrawlD, which can be used as a small sample
Ethernet smart contract vulnerability detection experimental
study. The Ethernet smart contract image dataset WScrawlD
contains six vulnerability types, namely ARTHM, LE,
RENT, TimeM, TimeO, and UE. ARTHM, RENT, TimeM,
TimeO, and UE vulnerability types correspond to SWC-101,
SWC-107, SWC-116, SWC-114, and SWC-104, respec-
tively. To ensure the effectiveness of vulnerability detection,
all contracts in the WScrawlD dataset are uniquely tagged,
i.e., each contract corresponds to only one vulnerability
type tag. In addition, small-sample image classification
experiments are conducted using the publicly available
dataset Omniglot [35] to compare the SCLMF method
with the typical meta-learning algorithms MANN [33] and
CONVOLUTIONAL SIAMESE NETS [30], as further proof
of the effectiveness of the SCLMF method.

78217

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

TABLE 2. Comparison of the average performance of vulnerability detection.

Tools/Methods
Average performance
evaluation criteria Mythrill Osiris Oyente Security Slither SCSVM DeeSCVHunter DA-GCN DR-GCN
Mean_Accuracy 71.18% 66.07% 74.60% 83.12% 88.3% 87.55% 80.50% 87.54% 81.47%
Mean_Precision 92.15% 98.77% 94.07% 97.93% 93.32% 87.68% 85.53% 87.15% 72.36%
Mean_Recall 4599% 29.66% 47.12% 67.08% 81.53% 87.46% 74.86% 82.25% 80.89%
Mean_F1-score 60.97% 41.96% 50.71% 79.58% 86.62% 87.51% 79.84% 84.63% 76.39%

In our work to validate the effectiveness of the SCLMF
approach, we strive to ensure that we use broad, diverse, and
high-quality training data to reflect real-world smart contract
vulnerabilities. The datasets we selected are from publicly
available datasets and the majority of smart contract data is
real and deployed on Ether. Therefore, the data we selected
is real and valid and can reflect the real-world smart contract
vulnerability situation.

Our proposed smart contract image dataset WScrawlD is
built based on a reasonable and feasible technical approach.
Our research work on the SCLMF method aims to propose
a method for detecting vulnerabilities in Ethereum smart
contracts under small sample conditions, and the currently
constructed smart contract image dataset WScrawlD is
sufficient to provide experimental data to verify the effec-
tiveness of the SCLMF method. Because the core idea of
meta-learning is to gain the ability to generalize to new tasks
by learning old ones.

2) COMPARISON OF PERFORMANCE AND INTERPRETATION
OF EXPERIMENTAL FINDINGS

We evaluate the effectiveness of the SCLMF method by
accuracy typical metrics and compare the performance with
typical meta-learning algorithms MANN [33], CONVOLU-
TIONAL SIAMESE NETS [30]. The dataset used for the
comparison experiments with MANN, CONVOLUTIONAL
SIAMESE NETS algorithm is Omniglot [35]. For the
classification effect of MANN on Omniglot refer to the
paper [35] and for CONVOLUTIONAL SIAMESE NETS on
Omniglot refer to the paper [30].

According to our understanding, the current research
progress on the detection of vulnerabilities in Ethereum
smart contracts under small sample conditions is limited,
and it is difficult to find a comparable comparison method.
The SCLMF method is a meta-learning algorithm by
nature, and comparing it with other typical meta-learning
algorithms can verify the effectiveness of the method to
a certain extent. Therefore, this paper conducts an empir-
ical comparison between the SCLMF method and typical
meta-learning algorithms ‘“MemoryAugmented Neural Net-
works” and “CONVOLUTIONAL SIAMESE NETS”. The
empirical comparison of the SCLMF method with typical
meta-learning algorithms ‘“MemoryAugmented Neural Net-
works” and “CONVOLUTIONAL SIAMESE NETS” is
conducted to further verify the effectiveness of the SCLMF
method. Meanwhile, the omniglot dataset is often used

78218

TABLE 3. WScrawlD Few-shot classification.

SCLMF 2-way I-shot

72.36%

2-way 2-shot
68.16%

Accuracy

as an important dataset to compare the advantages and
disadvantages of meta-learning algorithms. Therefore, the
omniglot dataset is chosen as the experimental dataset in this
paper to further demonstrate the effectiveness of the SCLMF
method.

Table 3 shows the small sample classification of the
SCLMF method on the WScrawlD dataset. The SCLMF
method performs with an accuracy of 72.36% on the
2-way 1-shot experiment and 68.16% on the 2-way 2-shot
experiment. Due to the small number of categories and the
small number of samples, only 2-category small sample
experiments were performed.We examined the experimental
data, and found that the main factor contributing to the 2-way-
Ishot’s superior accuracy over 2-way-2shot was the study’s
primary goal, which was to enhance model performance by
utilizing fewer training samples. However, the performance
of the 2-way 1-shot model is superior in comparison when
there are few training examples.

It can be shown that the model performs reasonably well on
all test sets by looking at the 5-way 1-shot and 5-way 5-shot
model training processes of the SCSVM approach using
the Omniglot dataset in Fig. 5. Additionally, the SCLMF
approach obtains 96.7 percent accuracy and 98.5 percent
accuracy under 5-way 1-shot and 5-way 5-shot conditions,
respectively, according to the experimental data, which
further supports the model. This further demonstrates the
model’s superior performance. For the overfitting problem,
SCLMF adopts a feature selection algorithm based on L1
regularization to control the model complexity and uses an
early stopping strategy during the model training process to
prevent overfitting. Through these measures, SCLMF can
better resist the risk of overfitting.

The SCLMF method’s small-sample classification results
for the Omniglot dataset are displayed in Table 4. In the
5-way 1-shot trial and the 5-way 5-shot experiment, the
SCLMF technique is 96.7 percent accurate. As can be
shown, the SCLMF approach performs better than the
MANN, CONVOLUTIONAL SIAMESE NETS algorithm
for classifying tiny data.

The Omniglot dataset, in contrast, has 1623 characters
(classes) from 50 other alphabets. There are 20 samples in

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

5-way 1-shot
1.0
0.8
0.6
—— Accuracy
—— loss
0.4
0.2
0.0 +— T T T T T T
0 10 20 30 40 50 80
Epochs
5-way 5-shot
1.0
0.8
0.6
—— Accuracy
—— Loss
0.4 4
D2
0.0
0 10 20 30 40 50 60
Epochs
FIGURE 5. 5-way n-shot model training process.
TABLE 4. Omniglot Few-shot classification.
Detection method 5-way 1-shot 5-way 5-shot
SCLMF 96.7 % 98.5%
MANN 82.8% 94.9%
CONVOLUTIONAL SIAMESE NETS 96.7% 98.4%

each class, each drawn by a different person. The WScrawlD
dataset has limited categories and numbers, i.e., it contains
only 6 category vulnerabilities and each category vulnerabil-
ity contains only 10 images, so the classification effect has a
certain gap compared with that on the Omniglot dataset due
to the small number of categories of Ethernet smart contract
vulnerabilities and the relatively weak learning to. To further
improve the WScrawlD dataset and our method’s detection
performance, in future work we will examine other types
of Ethereum smart contract vulnerabilities. Although there
is a small gap in the detection impact of this experiment,

VOLUME 11, 2023

it is confirmed that our suggested technique is efficient
because the SCLMF method outperforms the MANN [33]
and CONVOLUTIONAL SIAMESE NETS [30] algorithms
on the Omniglot dataset.

Our proposed smart contract image dataset WScrawlD is
built based on a reasonable and feasible technical approach.
The smart contract data selected for the dataset WScrawlD
are all from publicly available datasets and most of the smart
contract data are existed and deployed on Ether. Therefore,
the data we selected are real and valid and can reflect the
real-world smart contract vulnerability situation. The core
idea of the SCLMF method is to transform the Ethernet
smart contract vulnerability detection problem into an image
classification problem, so it is reasonable and effective to
choose the accuracy rate as the metric. To further validate
the effectiveness of the SCLMF method, we also conduct
an empirical study of the SCLMF method with a typical
meta-learning algorithm on the public dataset Omniglot.
The main reason for comparing the SCLMF method with
typical meta-learning algorithms is that the SCLMF method
is also a meta-learning algorithm by nature. The results of the
study demonstrate the effectiveness and value of the SCLMF
method.

V. CONCLUSION

In this paper, we propose an SVM-based vulnerability
detection method for Ethereum smart contracts, SCSVM,
which alleviates the problem of relying on expert rules
when static analysis tools detect contract vulnerabilities and
the difficulty of reuse among different vulnerability types.
Compared with typical static analysis methods and deep
learning methods, our method has high accuracy and good
classification performance with the highest F1 score. These
results further emphasize the effectiveness and superiority of
our proposed SCSVM approach in identifying vulnerabilities
in Ethernet smart contracts. In addition, we propose SCLMF,
a vulnerability detection method for Ethernet smart contracts
based on the underlying learner-meta-learner framework,
which alleviates the problem of relying on large-scale
data when training models using deep learning methods.
We combine the public dataset Smartbugs-wild with ScrawlD
to build the Ethernet smart contract image dataset WScrawlD.
In addition, we use WScrawlD to conduct a small-sample
smart contract vulnerability detection study and achieve cer-
tain detection results. To further demonstrate the effectiveness
of the SCLMF method, we conducted experiments using the
method on the publicly available dataset Omniglot, which is
a typical small-sample image dataset that better reflects the
advantages and disadvantages of small-sample algorithms,
and the experiments show that the SCLMF method exhibits
excellent classification results, proving the effectiveness of
the method from this perspective.

In general, the two methods proposed in this paper
use technologies that belong to machine learning; both
methods are centered on the study of Ethereum smart
contract vulnerability detection and have achieved certain

78219

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

detection results; the two methods are a complementary
study on Ethereum smart contract vulnerability detection
methods; the two methods target the difficult problems from
different perspectives and can be adapted to smart contract
vulnerability detection in different scenarios.

APPENDIX

WE OUTLINE SIX REPRESENTATIVE EXAMPLES OF
SMART CONTRACT VULNERABILITIES, SUCH AS ARTHM,
LE, RENT, TimeM, TimeO, AND UE

A. RENT

List 1 shows the RENT vulnerability smart contract. It is
one of the more frequent and deeper threat types of smart
contract vulnerabilities. Smart contracts make calls to other
contracts during execution via function calls or transfers of
Ether. However, there is a risk that these external calls could
be exploited by a malicious attacker, causing the contract to
be forced to execute the rest of the code, a process that can
be thought of as reentry. The vulnerability typically occurs
when a transfer function is used in the course of a smart
contract. The vulnerability can lead to the theft or denial of
service of tokens from the attacked contract account. The
ReentranceAttack contract is shown with a simple set of
code samples to analyze the reentry vulnerability. the main
function of the code examples shown in the Reentrance
contract is similar to the public wallet function, deposit()
implements the deposit function, withdraw() implements the
withdrawal function, and balanceof() implements the balance
inquiry function of the Reentrance contract. In the code
example shown in the ReentranceAttack contract, deposit()
deposits Ether into the Reentrance of the attacked contract
(step 1), withdraw() is called through attack() to realize
the withdrawal operation (step 2), the code shown in the
Reentrance contract makes a request() conditional judgment
(step 3), the Reentrance contract calls call.value() to take the
money, triggering the fallback function in the code shown
in the ReentranceAttack contract (step 4), and the fallback
function in the code shown in the ReentranceAttack contract
is called and continues to call the ReentranceAttack contract
withdraw() in the code shown to continue the withdrawal
(steps 5 6), and repeat steps 3 and 4 until step 3 is not satisfied.

B. ARTHM

Listing 2 shows the ARTHM vulnerable smart contracts,
which refer to arithmetic error vulnerable contracts, in this
case, integer overflow vulnerabilities, i.e., integer overflow
and integer underflow. The integer overflow vulnerability
corresponds to the smart contract vulnerability library SWC-
101 and CWE-682, which indicates “incorrect computa-
tion”, the vulnerability contains both integer overflow and
integer underflow, integer overflow refers to the storage
of values greater than the maximum support value, integer
underflow refers to the storage of values less than the
minimum support value. The integer overflow vulnerability
is caused by the failure to logically validate the computation

78220

1 pragma solidity 70.4.19;
2 contract Reentrance{
3 address _owner;
4 mapping (address => uint256) balances;
5 function Reentrance () {
6 _owner = msg.sender;
7 }
8 function deposit () public payable {
9 balances|[msg.sender] += msg.value;
10 }
11 function withdraw (uint256 amount)
public payable {
12 //3
13 require (balances [msg.sender] >=
amount) ;
14 require (this.balance >= amount) ;
15 msg.sender.call.value (amount) ();//4
16 balances [msg.sender] -= amount;
17 }
18 function balanceof (address addr)
constant returns (uint256) {
19 return balances [addr];
20 }
21 function wallet () constant returns
uint256 result) {
22 return this.balance;
23 }
24 }
25
26 pragma solidity 70.4.19;
27 import "./Reentrance.sol";
28 contract ReentranceAttack{
29 Reentrance re;
30 function ReentranceAttack (address
_target) public payable{
31 re = Reentrance (_target);
32 }
33 function wallet () constant returns (
uint256 result) {
34 return this.balance;
35 }
36 function deposit () public payable({
37 re.deposit.value (msg.value) ();
38 }//1
39 function attack () public {
40 re.withdraw(1 ether);
41 } //2
42 //5
43 function () public payable {
44 if (address (re) .balance >= 1 ether) {
45 re.withdraw (1l ether);
46 }Y//6
47 }
48 }

LISTING 1. RENT vulnerability.

results in advance before the smart contract is developed. The
vulnerability can have extremely serious consequences, such
as infinite token increment, which means that a malicious
attacker can use the integer overflow vulnerability to initiate
a transaction and send a large number of tokens to a specified
address with a small number of tokens. Tokens represent
digital assets in the blockchain. The maintenance and upgrade
of the blockchain require the participation of miners, and
tokens can be paid to miners as fees. The integer overflow
vulnerability is analyzed through a simple code sample. the

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

1 pragma solidity >=0.4.19;

2 contract OverFlowUnderFlow {
3 uint8 public a = 0;

4 uint8 public b = 2%x8-1;

5) function underflow () public {
6 a —=1;

7 }

8 function overflow() public {
9 b += 1;
10 }
11 }

LISTING 2. ARTHM vulnerability.

default value of a is set to O and the default value of b is
set to 255 in the code shown in the OverFlowUnderFlow
contract. The value of changes to 255 after the execution
of underflow() and the value of b changes to O after the
execution of overflow() in the OverFlowUnderFlow contract.
The change of a value is the integer underflow case, and the
change of b value is the integer overflow case.

C. UE

Listing 3 shows UE vulnerable smart contracts. UE vulner-
able smart contracts refer to unchecked calls to vulnerable
smart contracts, corresponding to the smart contract vul-
nerability library SWC-104, which may be vulnerable to
unchecked low-level calls when using low-level functions
such as send, call, callcode, and delegetecall. Because such
low-level functions do not resume previous execution when
the function execution fails, such an exploit could lead to
an unexpected side effect where Ether is reduced but not
sent out. An example of an unchecked invocation of a
smart contract vulnerability is a Locking Attack. Here is
a simplified example code: In the LockingAttack contract,
users can deposit Ether and get their money back at any time.
However, if the attacker passes a malicious contract address
when calling the withdraw function, the contract will never
be able to retrieve the deposit. Assuming the attacker has
the malicious contract MaliciousContract when the attacker
initiates a transaction to the contract LockingAttack and
calls its withdraw function, it will pass the above malicious
contract address and transfer some deposits at the same
time. Since the withdraw function uses the call function to
interact with the external contract, the attacker’s malicious
contract will be executed and will then throw an exception on
execution, causing the funds to be locked in the contract.

D. TimeM

List 4 shows TimeM vulnerable smart contracts. timeM
vulnerable smart contracts refer to timestamp-dependent
vulnerable smart contracts, which correspond to the smart
contract vulnerability library SWC-116 and CWE-829,
which indicates ‘“‘contains functionality from an untrusted
control domain”, which typically occurs when using This
vulnerability typically occurs in scenarios where timestamps
are used as a key element in the execution of critical events.
The vulnerability arises because when a timestamp is used as

VOLUME 11, 2023

1 contract LockingAttack ({

2 mapping (address => uint256) public
balances;

3 uint256 public totalSupply;

4 function deposit () public payable {

5 balances[msg.sender] += msg.value;

6 totalSupply += msg.value;

7 }

8

9 function withdraw (uint256 amount)
public {

10 require (amount <= balances|[msg.sender
], "Insufficient balance");

11 require (amount <= address (this)
.balance, "Insufficient balance
in contract");

12 // Here’s the locking attack

13 if (msg.sender.call.value (amount) ())
{

14 balances[msg.sender] —-= amount;

15 totalSupply —-= amount;

16 }

17 }

18 }

19

20 contract MaliciousContract {

21 fallback () external payable {

22 revert ("Ha ha! You can’t have your
money back!");

23 }

24 }

LISTING 3. UE vulnerability.

1 pragma solidity >=0.4.19;

2 contract Roulette {

3 uint public pastBlockTime;

4 constructor () public payable {}
5 function () public payable {

6 require (msg.value == 20 ether);
7 require (now != pastBlockTime) ;
8 pastBlockTime = now;

9 if (now % 10 == 0) {

10 ms.sender.transfer (this.balance);
11 }

12 }
13 }

LISTING 4. TimeM vulnerability.

a critical element in the execution of a critical event, a miner
can manipulate the timestamp in his favor in a short period
of time (less than 900 seconds). A simple code example
analyzes the timestamp vulnerability and the code shown in
the Roulette contract implements the function that if someone
is the first to transfer 20 ether to the smart contract in the block
whose timestamp is divisible by exactly 10, then he will get
all the bets previously transferred to the contract. The block
is generated by the miner, and the miner is able to know if the
timestamp of the next block is divisible by 5.

E. TimeO

List 5 shows the TimeO vulnerable smart contract, which
refers to the transaction order dependency vulnerability smart
contract, corresponding to the smart contract vulnerability

78221

IEEE Access

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

1 pragma solidity 70.4.19;

contract TransactionSequence{

3 bytes32 constant public hash=0
xb5pb5b97fafd9855eec9b41£f74dfb6c38£59
51141f9%9a3ecd7£44d5479b630ee0as

N

4 constructor () public payable{}

5 function solve(string solution) public
{

6 require (hash = = sha3(solution));

7 msg.sender.transfer (100 ether);

8 }

9 }

LISTING 5. TimeO vulnerability.

library SWC-114 and CWE-362, which indicates ‘“‘incorrect
synchronization when using shared resources in concurrent
execution”. Blockchain networks process transactions in
blocks, and it takes time for transactions to propagate
and for miners to agree on them. Malicious attackers
use this time to monitor the transactions of the attacked
contract and send their own transactions with higher
gas so that their transactions are in the same block as
the attacked contract transactions. The miners check the
transactions within the block and give priority to the
attacker contract transactions with higher gas. This results
in the malicious attacker benefiting from stealing the
contents of the attacked contract’s transactions and the
attacked contract suffering losses. The transaction order
dependency vulnerability is analyzed through a simple
code sample. the code shown in TransactionSequence has
100 ether in the contract account and finds the sha3 hash as
0xb5b5b97fafd9855eecOb41£74dfb6c38£5951141f9a3ecd 714
4d5479b630ee0a value “KEY” can get 100ether. a node A
in the blockchain could have used ‘“However, the malicious
attacker monitors the “KEY” submitted by A through
the monitoring transaction pool, and after checking its
correctness, the malicious attacker uses the higher gas to send
the “After checking its correctness, the malicious attacker
calls solve() with a higher gas to get the 100 ether that should
belong to node A first.

F LE

Listing 6 shows the LE vulnerability smart contract. le vul-
nerability refers to Ethereum locking. Here is a simple sample
code for EtherLock. In this contract, we define an EtherLock
contract with two parameters: beneficiary and release time.
the beneficiary is the recipient of the deposit, and release time
is the time that specifies when the deposit can be withdrawn.
In the withdraw function, we use the required statement to
check if the current time is later than the specified release
time. if the condition does not hold, the function throws
an exception and stops execution. Otherwise, the function
transfers all the balances in the contract to the specified
beneficiary address. This contract can be used to limit the use
of funds or delay the release of funds. For example, suppose
a project takes a certain amount of time to complete and
a payment needs to be made in advance. We can use the

78222

1 contract EtherLock {
2 address payable public beneficiary;
3 uint256 public releaseTime;
4 constructor (address payable
_beneficiary, uint256 _releaseTime)
{
5 beneficiary = _beneficiary;
6 releaseTime = _releaseTime;
7 }
8 function withdraw() public {
9 require (block.timestamp >=
releaseTime, "Not yet released");
10 uint256 amount = address (this)
.balance;
11 beneficiary.transfer (amount) ;
12 }
13 }

LISTING 6. LE vulnerability.

EtherLock contract to lock this payment until the project is
completed. This ensures that the money can only be used for
a specific purpose and prevents accidental or misuse.

ACKNOWLEDGMENT

The results of this work are motivated by the project
(No. KYZYJKKCJC23001). We would like to thank Ming-
gang Yu, who was deeply involved in this work and provided
many valuable suggestions and opinions to promote the
smooth progress of this work. Thanks are also due to the
other colleagues in the project team, who spared no effort in
providing care and help for this work.

REFERENCES

[1] N. Szabo, “Formalizing and securing relationships on public networks,”
1st Monday, vol. 2, no. 9, pp. 1-10, Sep. 1997.

[2] Q. Wang, F. Li, Z. Wang, G. Liang, and J. Xu, “Principles and key
technologies of blockchain,” J. Comput. Sci. Explor., vol. 14, no. 10,
pp. 1621-1643, Oct. 2020.

[3] S. Zeng, R. Huo, T. Huang, J. Liu, S. Wang, and W. Feng, “A survey

of blockchain technology: Principles, advances, and applications,” J.

Commun., vol. 41, no. 1, pp. 134-151, Jan. 2020.

L. Zhang, W. Chen, W. Wang, Z. Jin, C. Zhao, Z. Cai, and H. Chen,

“CBGRU: A detection method of smart contract vulnerability based on

a hybrid model,” Sensors, vol. 22, no. 9, p. 3577, May 2022.

[5] L. Zhang, J. Wang, W. Wang, Z. Jin, C. Zhao, Z. Cai, and H.
Chen, “A novel smart contract vulnerability detection method based on
information graph and ensemble learning,” Sensors, vol. 22, no. 9, p. 3581,
May 2022.

[6] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of

automated analysis tools on 47,587 Ethereum smart contracts,” in Proc.

IEEE/ACM 42nd Int. Conf. Softw. Eng. (ICSE), Montreal, QC, Canada,

Oct. 2020, pp. 530-541.

C. Sujeet Yashavant, S. Kumar, and A. Karkare, “ScrawID: A dataset of

real world Ethereum smart contracts labelled with vulnerabilities,” 2022,

arXiv:2202.11409.

[8] O. Levy and Y. Goldberg, ‘“Dependency-based word embeddings,” in
Proc. 52nd Annu. Meeting Assoc. Comput. Linguistics, Baltimore, MD,
USA, 2014, pp. 302-308.

[9] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

[10] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proc. Conf. Empirical Methods Natural Lang.
Process. (EMNLP), Doha, Qatar, 2014, pp. 1532-1543.

[11] 1. Vuli¢ and M.-F. Moens, ‘“Monolingual and cross-lingual information
retrieval models based on (bilingual) word embeddings,” in Proc. 38th Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr., Santiago, CL, USA, Aug. 2015,
pp. 363-372.

[4

=

[7

—

VOLUME 11, 2023

Z. Yang et al.: Improvement and Optimization of Vulnerability Detection Methods

IEEE Access

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

G. Glavas, M. Franco-Salvador, S. P. Ponzetto, and P. Rosso, ‘A resource-
light method for cross-lingual semantic textual similarity,” Knowl.-Based
Syst., vol. 143, pp. 1-9, Mar. 2018.

A. B. Soliman, K. Eissa, and S. R. El-Beltagy, “AraVec: A set of Arabic
word embedding models for use in Arabic NLP,” Proc. Comput. Sci.,
vol. 117, pp. 256-265, 2017.

R. Laatar, C. Aloulou, and L. H. Bilguith, ‘“Word sense disambiguation
of Arabic language with word embeddings as part of the creation of a
historical dictionary,” in Proc. LPKM, 2017, pp. 1-12.

C. Musto, G. Semeraro, M. De Gemmis, and P. Lops, “Learning word
embeddings from Wikipedia for content-based recommender systems,”
in Proc. 38th Eur. Conf. IR Res. (ECIR). Padua, Italy: Springer, vol. 38,
Mar. 2016, pp. 729-734.

A. Greenstein-Messica, L. Rokach, and M. Friedman, “Session-based
recommendations using item embedding,” in Proc. 22nd Int. Conf. Intell.
User Interfaces, Limassol, Cyprus, Mar. 2017, pp. 629-633.

M. Alsuhaibani, D. Bollegala, T. Maehara, and K.-I. Kawarabayashi,
“Jointly learning word embeddings using a corpus and a knowledge base,”
PLoS ONE, vol. 13, no. 3, Mar. 2018, Art. no. e0193094.

J. Liu, “Morpheme-enhanced spectral word embedding,” in Proc. SEKE,
Pittsburgh, PA, USA, Jul. 2017, pp. 551-556.

I. Gallo, S. Nawaz, and A. Calefati, “Semantic text encoding for text
classification using convolutional neural networks,” in Proc. 14th IAPR
Int. Conf. Document Anal. Recognit. (ICDAR), Kyoto, Japan, vol. 5,
Nov. 2017, pp. 16-21.

B. Mueller, J. Honig, and N. Parasaram. (2017). ConsenSys/Mythril.
Accessed: Jun. 25, 2019. [Online]. Available: https:/github.
com/ConsenSys/mythril

C. F. Torres, J. Schiitte, and R. State, “Osiris: Hunting for integer bugs
in Ethereum smart contracts,” in Proc. 34th Annu. Comput. Secur. Appl.
Conf., San Juan, Puerto Rico, Dec. 2018, pp. 664-676.

S. Badruddoja, R. Dantu, Y. He, K. Upadhayay, and M. Thompson,
“Making smart contracts smarter,” in Proc. IEEE Int. Conf. Blockchain
Cryptocurrency (ICBC), Vienna, Austria, May 2021, pp. 1-3.

P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Biinzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Toronto, ON, Canada,
Oct. 2018, pp. 67-82.

J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework for
smart contracts,” in Proc. IEEE/ACM 2nd Int. Workshop Emerg. Trends
Softw. Eng. Blockchain (WETSEB), Montreal, QC, Canada, May 2019,
pp. 8-15.

S.-J. Hwang, S.-H. Choi, J. Shin, and Y.-H. Choi, “‘CodeNet: Code-targeted
convolutional neural network architecture for smart contract vulnerability
detection,” IEEE Access, vol. 10, pp. 32595-32607, 2022.

H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and X. Mao,
“Peculiar: Smart contract vulnerability detection based on crucial data
flow graph and pre-training techniques,” in Proc. IEEE 32nd Int. Symp.
Softw. Rel. Eng. (ISSRE), Hong Kong, Oct. 2021, pp. 378-389.

M. Ren, F. Ma, Z. Yin, H. Li, Y. Fu, T. Chen, and Y. Jiang, “SCStudio:
A secure and efficient integrated development environment for smart
contracts,” in Proc. 30th ACM SIGSOFT Int. Symp. Softw. Test. Anal.,
Tokyo, Japan, Jul. 2021, pp. 666—669.

J. Huang, K. Zhou, A. Xiong, and D. Li, “Smart contract vulnerability
detection model based on multi-task learning,” Sensors, vol. 22, no. 5,
p. 1829, Feb. 2022.

L. Fanzhang, Y. Liu, P. Wu, E. Dong, Q. Cai, and Z. Wang, “A survey
on meta-learning,” J. Comput. Res. Develop., vol. 44, no. 2, pp. 422-446,
Feb. 2021.

G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks for
one-shot image recognition,” in Proc. ICML Deep Learn. Workshop, Lille,
France, vol. 2, no. 1, Jul. 2015, pp. 1-30.

C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for fast
adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn., Sydney,
NSW, Australia, Aug. 2017, pp. 1126-1135.

S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. Learn. Represent., Toulon, France, Apr. 2017,
pp. 1-11.

A. Santoro, S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap,
“Meta-learning with memory-augmented neural networks,” in Proc. Int.
Conf. Mach. Learn., New York, NY, USA, Jun. 2016, pp. 1842-1850.

VOLUME 11, 2023

(34]

(35]

(36]

(37]

(38]

(39]

[40]

(41]

R. Zhang, T. Che, Z. Ghahramani, and Y. Bengio, “MetaGAN: An
adversarial approach to few-shot learning,” in Proc. Adv. Neural Inf.
Process. Syst., Montréal, QC, Canada, vol. 31, Dec. 2018, pp. 1-10.

B. Lake, R. Salakhutdinov, J. Gross, J. Tenenbaum, and E. Gershman,
“One shot learning of simple visual concepts,” in Proc. Annu. Meeting
Cognit. Sci. Soc., Boston, MA, USA, vol. 33, no. 33, Jul. 2011, pp. 1-13.
X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “DeeSCVHunter: A deep
learning-based framework for smart contract vulnerability detection,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Shenzhen, China, Jul. 2021,
pp. 1-8.

Y. Fan, S. Shang, and X. Ding, “Smart contract vulnerability detection
based on dual attention graph convolutional network,” in Proc. Int.
Conf. Collaborative Comput., Netw., Appl. Worksharing, Virtual Event,
Oct. 2021, pp. 335-351.

Y. Zhuang, Z. Liu, P. Qian, T. Wang, J. Li, and X. Zhang, “Smart
contract vulnerability detection using graph neural networks,” in Proc.
29th Int. Conf. Int. Joint Conf. Artif. Intell. (IJCAI), Montreal, QC, Canada,
Aug. 2021, pp. 3283-3290.

Z. Liao, Z. Zheng, X. Chen, and Y. Nan, “SmartDagger: A bytecode-
based static analysis approach for detecting cross-contract vulnerability,”
in Proc. 31st ACM SIGSOFT Int. Symp. Softw. Test. Anal., Jul. 2022,
pp. 752-764.

C. Schneidewind, I. Grishchenko, M. Scherer, and M. Maffei, “EThor:
Practical and provably sound static analysis of Ethereum smart contracts,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 621-640.

A. Zhukov and V. Korkhov, “SmartGraph: Static analysis tool for solidity
smart contracts,” in Proc. Int. Conf. Comput. Sci. Appl., Greece, Athens,
Jul. 2023, pp. 584-598.

ZHONGJU YANG is currently pursuing the mas-
ter’s degree in software engineering with Army
Engineer University of PLA. His research interests
include requirements engineering and intelligent
software testing.

WEIXING ZHU received the Ph.D. degree from
the PLA University of Technology. He is cur-
rently an Associate Professor with the School
of Command and Control Engineering, People’s
Liberation Army, Army Engineering University.
His research interests include military require-
ments, software engineering, combat experiments,
and big data.

MINGGANG YU was born in Henan, in 1986.
He is an Associate Professor with the Institute of
Command and Control Engineering, Army Engi-
neering University of PLA. His research interests
include SoS engineering and theory of intelligent
command and control. He has published more
than 50 papers in important journals and academic
conferences in the research field, including 10 SCI
search, 15 EI searches, and he is also the author of
five books. He has chaired one National Natural

Science Foundation of China, participated in the research work of several
National Science and Technology Ministry Key Research and Development
plan, National Key Research and Development Program of China, China
Academy of Engineering Consulting Research Project, and received three
awards of the Scientific and Technological Progress.

78223

