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ABSTRACT Machine Learning (ML) algorithms process input data making it possible to recognize and
extract patterns from a large data volume. Likewise, Internet of Things (IoT) devices provide knowledge in a
Federated Learning (FL) environment, sharing parameters without compromising their raw data. However,
FL suffers from non-independent and identically distributed (non-iid) data, which means it is heterogeneous
data and has biased input data, such as in smartphone data sources. This bias causes low convergence for
ML algorithms and high energy and bandwidth consumption. This work proposes a method that mitigates
non-iid data through a FedAvg-BE algorithm that provides Federated Learning with the border entropy
evaluation to select quality data from each device by cross-device in a non-iid data environment. Extensive
experiments were performed using publicly available datasets to train deep neural networks. The experiment
result evaluation demonstrates that execution time saves up to 22% for the MNIST dataset and 26% for the
CIFAR-10 dataset, with the proposed model in Federated Learning settings. The results demonstrate the
feasibility of the proposed model to mitigate non-iid data impact.

INDEX TERMS Big data, collaborative learning, federated learning, machine learning, non-IID.

I. INTRODUCTION
Collaborative Learning is inspired by an educational
approach to teaching and learning that involves groups of
students working together to solve a problem, complete a task
or create a product. This concept is expanded to Machine
Learning (ML) [1], using agents that collect information from
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the environment to learn patterns according to some model
established in a parallel and distributed architecture.

ML is one of the most important areas of Artificial Intel-
ligence. It makes it possible to learn a model or a pattern
of behavior for a given machine to perform tasks. An ML
algorithm allows you to process input data with appropriate
patterns to generate output data. Thus, it is possible to recog-
nize and extract patterns from a large volume of data (Big
Data) to build a learning model [2], serving for predictive
modeling and decision-making. In a distributed architecture
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it is possible to use consensus mechanisms to manage data
consistency [3].

As is widely discussed in the literature when talking about
Big Data, data production grows exponentially and quickly
daily due to various sources and new emerging technolo-
gies [4]. There are smart devices as the main component of
data sources, generating a large data volume. Some of these
data sources have spatio-temporal characteristics, such as
urban mobility, with a high degree of randomness [5]. In ML
and data analysis, having homogeneous data independent
and identically distributed (iid) with the same probability
distribution and independent of each other is one of the com-
mon assumptions for hypothesis testing. However, objects,
values, attributes, and everyday life are heterogeneous,
non-independent, and identically distributed (non-iid) [6].
In practice, the training data may be insufficient due to
recording errors or limited measurement conditions [7].
Non-iid data have a high degree of uncertainty, and the
concept of entropy serves to measure this disorder in
the data [8].
The initial hypothesis is that non-iid data is related to

entropy. Using entropy computation to select quality data
from heterogeneous data with lower entropy in Collaborative
Learning (CL) models allows for a computation reduction
time without substantial effect on accuracy. The exchange
of information between devices can occur in a federated
environment, which provides privacy for sensitive data such
as medical and financial data [9]. The Federated Learning
(FL) [10] environment provides raw data analysis without
sharing it with other partners.

This paper proposes to evaluate the influence of entropy
on data quality in IoT devices to reduce the impact of
non-iid data, which normally have a problem of imbalance
class distributions, in Federated Learning algorithms, using
ML concepts and tools in federated distributed system envi-
ronments. In the literature, some scientific articles present
studies on those FL models to identify types of algorithms
and experiments to obtain a better percentage of accuracy on
heterogeneous data. Nevertheless, these solutions also suffer
from non-iid data.

In addition, extensive experiments were performed, using
publicly available datasets, with the proposed method that
mitigates non-iid data impact through FedAvg-BE algorithm.
This proposed algorithm provides Federated Averaging with
the border entropy evaluation by selecting quality data with
lower entropy from devices with non-iid data. This results in
good computation and mitigation of the non-iid data effect in
a FL environment. The experiment results demonstrate that
our proposal enables an execution time reduction up to 22%
forMNIST dataset and 26% for CIFAR-10 dataset, in the best
cases.

The main contributions made in this work regarding the
answer to the research question and the established objectives
are summarized as follows.:
• Evaluation of entropy influence on non-iid data in a
Federated Learning environment.

• Elaboration of a methodology for evaluating and select-
ing data, without causing a major impact on the commu-
nication between the devices.

• Development of a solution model that allows the cre-
ation of Federated Learning applications that evaluate
the quality of the data in the client.

• Creation of an information processing algorithm that
extends the Federated Learning application model by
mitigating the effects of non-iid data.

This work is organized as follows. Section II provides
a little background. Section III covers related work and an
overview of some federated learning models. Section IV
shows in detail the proposed model. The methodology, main
experiments, and results are shown in Section V, and finally,
Section VI presents the final considerations and future work.

II. BACKGROUND
This Section provides three main backgrounds: Non-iid Data,
Entropy, and Federated Learning. A Federated Learning
approach allows devices to learn a shared ML model collab-
oratively while maintaining data privacy. Non-iid data is the
assumption that the data is unstructured, with a high degree
of randomness. Entropy is a measure of a disorder found in
the data; that is, it measures the degree of randomness of a
variable.

A. IID VERSUS NON-IID DATA
In statistics, a set of random variables is iid when the data
have the same probability distribution and are independent.
In other words, data is more homogeneous [11]. For example,
if it flips a coin 100 times, we would get heads 53 times and
tails 47 times. However, if we toss the same coin for the 101st
time, the likelihood is the same at 50% for each other. This
means the result will still be heads or tails even if it does not
save information from previous results.

Having independent and identically distributed data is one
of the common assumptions for machine learning, statistical
procedures, and hypothesis testing. However, in a Federated
Learning environment, the devices are typically IoT devices
composed of heterogeneous sensors that can get data with
some associated bias. Due to this, non-iid data is a reality in
this environment [12].

On the other hand, non-iid data is the assumption that the
data is unstructured or loosely structured with a high degree
of randomness. Objects, values, attributes and other everyday
aspects are essential non-iid [13]. Figure 1 illustrates the
difference between iid and non-iid data in an example dataset.

B. ENTROPY
The concept of entropy, which is part of one of the ideas of
information theory, will be used throughout this work, as it
is used to characterize probability distributions or quantify
the similarity between information probability distributions.
In computing, entropy measures the degree of randomness of
data [8]. Therefore, it can be said that the higher the entropy,
the more the data is non-iid. Figure 2 shows a visual example
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FIGURE 1. Illustration of IID vs. Non-IID datasets.

to represent entropy. Suppose there are three pots, one with
red balls, one with yellow balls, and the third empty. The
empty pot is filled with yellow balls; on top, the red balls are
separated and organized by color. When shaking the jar, the
balls mix so that there is no more separation, and they will
hardly return to the initial state organized. That is, it became
a system with a disorder, meaning an increase in entropy.

FIGURE 2. Entropy example with marbles in jars.

The chart in Figure 3 shows entropy for a database in which
the classification is binary, with two possible values. It is also
possible to calculate entropy for any number of values. TheX-
axis represents the probability of one of the classes occurring
in the dataset. The Y axis is the result of the entropy of the
dataset. The distribution is almost deterministic when p is
closer to 0 because the random variable is almost always 0.
The distribution is virtually deterministic when p is closer
to 1 because the random variable is almost always 1. When
p = 0.5, the entropy is maximum because the distribution is
uniform over the results of the number of values.

The amount of uncertainty in an integer probability dis-
tribution can be quantified using the Shannon entropy for-
mula. Therefore, the Shannon entropy of a distribution is the
expected amount of information in an event extracted from
that distribution, as illustrated in the equation below.

H = −
m∑
i=1

Pi. log2(Pi) (1)

FIGURE 3. Entropy chart for binary classification (adapted from [8].

where:
H = Entropy, measurement of the degree of information

uncertainty.
Pi= Probability that a fraction of records belong to class i

in a dataset.
m = dataset size.

C. MACHINE LEARNING
In ML, types of Neural networks are widely studied due
to their ability to analyze massive data sets. Convolutional
Neural Network (CNN), for instance, is a chain where mul-
tiple convolution layers can make the network capable of
recognizing complex constructs in large datasets [14]. This
work chose to use CNN as a neural network model, as it is a
type widely used in the literature for image recognition and
processing pixel data.

Some algorithms are used to optimize the computation of
neural networks, for example, Stochastic Gradient Descent
(SGD), Adam, and RMSprop. SGD is a popular algorithm
in various ML systems. SGD is a set of steps to achieve a
minimum for a determined function [8]. Algorithms based
on SGD minimize a defined loss function on model out-
puts, which adapt model parameters in the negative gradient
direction. Gradient descent is called stochastic because the
gradient is computed from an individual sample random
subset of the training data [15]. Adaptive Moments (Adam)
is an adaptive optimization algorithm for learning rate. The
momentum parameter is incorporated directly as a first-order,
exponentially weighted gradient estimate. This algorithm
includes bias corrections for first- and second-order moment
estimations for taking in to count at startup [16]. RMSprop
is an algorithm that performs best in the non-convex con-
figuration, changing the gradient buildup in an exponentially
weighted moving average. In some algorithms, when applied
to a non-convex function to train the neural network, learning
can go throughmany different structures and arrive in a region
where it is convex, like a bowl, so the learning rate may have
become too small before reaching this region. The RMSProp
algorithm uses an exponentially decaying average to discard
extreme history so that it can quickly converge after finding
a convex area, as it has a hyperparameter that controls the
length of the moving average [8].
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D. FEDERATED LEARNING
FL systems can be deployed where multiple parties jointly
learn an accurate deep neural network, keeping the data
itself local and confidential. There are scenarios where it is
beneficial or even mandatory to isolate different subsets of
training data from each other to maintain data privacy [15].
FL approaches allow formore intelligent models, low latency,
lower power consumption, and guaranteed privacy. It works
without storing user data in the Cloud Computing (CC).

In FL, each device trains its ML model locally in this
approach. The update of parameters and weights is sent to
the CC in encrypted form. In the CC, it is averaged with
other user updates, thus improving the shared model [10].
Figure 4 illustrates how an FLmodel works. The data remains
on the local device, and no sensitive data from the device is
offloaded to the CC.

FIGURE 4. Federated Learning.

An example of FL application is the next-word prediction
task on a cell phone. To perform this task, preserving the
privacy of the text data and reducing the stress on the network,
it is necessary to train a predictor in a distributed way instead
of sending the raw data to a central server. In this configura-
tion, remote devices periodically communicate with a central
server to learn a global model. On each communication
round, a subset of selected phones perform local training on
their non-identically distributed user data and send these local
updates to the server. After incorporating the updates, the
server pushes the new global model back to another subset of
devices. This iterative training process continues throughout
the network until convergence is achieved [17].

The communication protocol comprises selection, config-
uration, reporting, training, and aggregation. However, this
approach has data based on user usage. Thus, the datasets can
suffer from non-iid, have an unbalanced behavior, be mas-
sively distributed, and present a limited communication chan-
nel. Therefore, decision-making may not reflect a global

scenario, and the result may differ when selected devices
perform many local update rounds.

Several examples of FL algorithms exist in the literature.
The Federated Averaging algorithm (FedAvg) was proposed
in 2016 byMcMahan [18] based on data parallelism. FedAvg
eliminates the need to upload sensitive user data to a central-
ized server, allowing edge devices to train a shared model
locally on their local dataset. It aggregates local model
updates (gradients), and FedAvg fulfills the essential privacy
protection and data security requirements.

III. RELATED WORK
FL is a distributed machine learning approach that can
achieve the purpose of collaborative learning from a large
amount of data belonging to different parties and thus pre-
serve the privacy of that data. The article [19] presents
theoretical concepts and a brief survey of existing studies on
FL and its use in data from wireless vehicular IoT sensors.

Studies have indicated that a deterioration in FL accuracy is
almost inevitable with non-iid data. The performance degra-
dation can be mainly attributed to the weight divergence of
local models resulting from non-iid [20]. When divergence
increases, it causes slower convergence, making learning
worse.

In FL, various models have been proposed for collabora-
tive learning of large amounts of data, which preserve data
privacy. The authors in [18] present the FederatedAveraging
(FedAvg) model. It is a practical method for Federated Learn-
ing of deep networks based on iterative averaging, which
performs extensive empirical evaluation. They demonstrate in
experiments that the approach is robust for unstructured and
non-iid data distributions. Communication costs are the pri-
mary constraint and show a reduction in required communi-
cation rounds between 10 and 100 compared to synchronized
SGD.

The work of Sahu [21] presents a framework, FedProx,
to deal with heterogeneity in federated networks. FedProx
can be seen as a generalization and reparameterization of
FedAvg. However, this reparameterization makes only minor
modifications to the method itself. The authors claim that
FedProx allows for more robust convergence than FedAvg on
a set of heterogeneous datasets, and FedProx demonstrates
more stable and accurate convergence behavior.

Federated optimization models such as FedAvg are often
difficult to tune and exhibit negative convergence behav-
ior. The article by [22] proposes a model in the federated
version of adaptive optimization, called FedOpt, where its
convergence is analyzed in the presence of heterogeneous
data for a non-convex configuration. The authors performed
experiments and showed that adaptive optimizations improve
accuracy in the Federated Learning environment.

When data is non-iid, the FedAvg model can drift on the
client, resulting in instability and slow convergence. The arti-
cle by Karimireddy [23] proposes a model with a stochastic
controlled mean algorithm called SCAFFOLD, which uses
control variables to reduce variance and correct for customer
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deviation in its local updates. This model requires fewer
communication rounds and is not affected by data hetero-
geneity. It uses the similarity in customer data, resulting in
faster convergence. According to the authors, SCAFFOLD
outperforms FedAvg in non-convex experiments.

In data analysis, it is always assumed that the training data
are iid. This assumption is sometimes incompatible with the
real world because the data in users is often non-iid and may
have a different probability distribution. Other recent research
has addressed Federated Learning challenges with non-iid
data. Recent works try to improve various aspects such as
energy consumption of devices [36], data privacy [35] and
entropy [37] to improve model effectiveness and accuracy
based on basic FL structure and non-iid training data. Most
works use CNN neural network model and use accuracy as
a metric. Table 1 shows the list of related works and their
characteristics.

Among the works that try to improve data entropy, the
authors of [25] present an FL method called FedEntropy with
a dynamic device grouping scheme, which considers the dis-
tribution of heterogeneous devices and contributions of local
models based on the judgment of maximum entropy. The
work of [37] proposes an FL method with semi-supervised
learning called DS-FL that improves the outputs with mean
entropy reduction to prevent non-iid data from leadingmobile
devices to ambiguity and decreasing training convergence,
this way the devices exchange these aggregated model out-
puts, instead of exchanging model parameters, to reduce
communication cost. Both work do not propose filtering the
non-iid data in the client with the lowest entropy concerning
the average entropy of the labels, which is the proposal of this
work.

The entropy measure can be directly related to non-iid data
to optimize the SGD calculation and this work propose to use
entropy computation as a data selection criterion to define
training set and reduce model execution time.

IV. MODEL
The IoT enables several critical services, such as self-driving
cars in vehicular edge computing applications, where FL
is a core for AI computation. The non-iid data influence,
in this case, might contribute to slow make-decisions in crit-
ical situations conducting to live risk. Because of this, it is
need providing algorithms and applications that mitigate such
effects.

This work proposes a model that uses entropy computing
as a data selection criterion in the local edge device by cross-
device, defining a training set to avoid non-iid data. Thus, the
amount of data is of higher quality due to lower entropy and
can have lower uncertainty. The algorithm called FedAvg-
BE, Federated Averaging Learning with the border entropy
evaluation shows amethodology to evaluate border data using
entropy to identify similar data with low aggregated infor-
mation and select the best data into the dataset, which will
provide relevant learning information for the computing of
Federated Learning model.

FIGURE 5. Proposed model.

Table 2 summarizes the notation used throughout this pro-
posal method.

The method is composed of two main steps. The first step
before running the training is data preparation. In this step,
input data are images that will be transformed into numerical
index matrices. These arrays will be randomly partitioned
for each client into a file with an array of indexes called
IDX, in Figure 5a. These indexes represent the images from
the input data in non-iid format. From the partitioned data,
the entropy is calculated for training data for each client,
then this value is uploaded to the server, and the mean from
all clients is computed to be saved as a global mean. After
data partitioning, data processing on the client side performs,
where each IDX index is transformed into a matrix of tensors.
Then the tensor data will be split into training and validation
data in 80% - 20% proportion. The proportion is an AI
assumption and provides a consistent data analysis from the
SGD computation model.

In the second step, in Figure 5b, the algorithm FedAvg-BE
performs the entropy computation that will be compared with
a global mean entropy and evaluated for each client before
training execution. Data with lower entropy than the mean of
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TABLE 1. Related works and their characteristics.

the global entropy will be selected and trained locally. On the
other hand, it is discarded and not processed. After local train-
ing, accuracy is calculated from validation data. The local
parameters will be obtained in the CC and sent to the server.
On the server side, with the parameters received from each
client, the global hyperparameters, including global accuracy,
will be calculated and sent to the clients to retrain the data
and obtain the local parameters. This cycle will be repeated

for pre-defined epochs and rounds, and at the end of these,
the result of the model’s global accuracy calculation will be
obtained.

Algorithm 1 presents the detailed steps to be implemented
in the proposed model. First, the admin server initializes the
global weight. For each round, the number of participating
clients is determined. The client’s data are selected based on
the entropy computation, represented by equation 1.
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TABLE 2. Notation adopted for the model description.

TABLE 3. Datasets adopted for the experiments.

Each selected client batch performs local training and
returns the weights optimized by the ClientUpdate(k,w)
training function. This function creates batches or partitions
of customer data with many local epochs. For each epoch
and partition, it trains the model locally. After receiving the
parameters of each client, the global model is updated in the
administrator. The proposed model in Figure 5 does not alter
the computation of the Federated Learning model but adds
a step in the pre-processing data on the client side, avoiding
non-iid computing by the client. This strategy minimizes the
non-iid influence of the Federated Learning model without
providing substantial complexity to the current model.

V. RESULTS AND EVALUATIONS
A total of 115 experiments were performed to validate the
hypothesis that lower entropy implies better data quality to
mitigate non-iid data impact in a federated learning envi-
ronment, using two publicly available datasets, MNIST and
CIFAR-10, that consists of images in 10 classes.

Table 3 summarizes the datasets used in the experiments
throughout this work.

For the experiment setup, the following items were used
to generate the results of the experiments and thus allowing
comparisons between the FL models:

Algorithm 1 FedAvg-BE. The K Clients Are Indexed by k;
B Is the Local Minibatch Size, E Is the Number of Local
Epochs, and η Is the Learning Rate
Require:
1: initialize w0
2: meanEntropy← GetMeanEntropy(K )
3: for each round t = 1,2,. . . do
4: m← max(C .K , 1) ▷ Select the participated clients

data
5: St ← m (set of m clients)
6: for k ∈ St do
7: wkt+1← ClientUpdate(k, wt ) ▷ Update client

model
8: wt+1←

∑K
k=1

nk
n
wkt+1 ▷ Update the global model

9: function ClientUpdate(k,w) ▷ Local computations
10: β ← (split Pk into batches of size B)
11: for each local epoch i from 1 to E do
12: for batch b ∈ β do
13: Hbatch← Entropy(b) ▷ Entropy

computation
14: if Hbatch < meanEntropy then
15: w← w− η∇ℓ(w; b) ▷Model training
16: return w to server
17: function GetMeanEntropy(k) ▷ Global entropy
18: meanEntropy← 0.0
19: totalEntropy← 0.0
20: for each client c ∈ k do
21: Hclient ← Entropy(c) ▷ Local entropy

computation
22: totalEntropy← totalEntropy+ Hclient

23: meanEntropy←
totalEntropy

k
▷ Global entropy

computation
24: return meanEntropy
25: function Entropy(d) ▷ Entropy dataset computation
26: H ←−

∑
d p(d) log2 p(d)

27: return H

• Centralized model, where execution is carried out on
only one client, that is, not distributed, for comparison
purposes with the following models;

• Four Federated Learning models: FedAvg [18],
FedProx [21], FedOpt [22], Scaffold [23];

• The proposed FL model with entropy computing:
FedAvg-BE;

• Software: Python 3.8 [38]
• Software to generate graphics: TensorBoard 2.10.0 [39]
• Framework: PyTorch 1.13.1 [40] – Framework that
allows running with GPU and CPU, using the function
called ‘‘cuda’’;

• Software Development Kit (SDK): NVFlare 2.0
[41] – NVIDIA Federated Learning Application Run-
time Environment is an extensible, open source, domain-
independent SDK for Federated Learning. This SDK
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uses the Job concept, which allows you to run several
experiments in an organized and agile way. In each Job,
the application is deployed, in which the experiment will
be executed;

• Neural Network: CNN – The choice of this type of
neural network was because it is ordinarily chosen for
images recognition and processing pixel data. Therefore,
each dataset used in this work will have a customized
CNN model. Figure 6 represent the neural network
model to be implemented for the datasets. MNIST is
a simpler dataset in GrayScale, so 3 convolutional lay-
ers were used. For CIFAR-10, 3 blocks of layers were
needed and each block has 1 convolutional layer and
1 residual layer;

• Optimization Algorithms: SGD, Adam and RMSprop;
• Cloud: Openstack.
• Versioning: Github – to version and make publicly
available the source codes in python of the Federated
Learning applications, used for the study and experi-
ments of this work.

The steps to implement the environment architecture for
Federated Learning used in this work will be as follows.

Virtual Machines (VMs) were created in the OpenStack
tool, one server and nineteen clients on the same network.
Each VM had 4 CPUs, Linux Ubuntu 18.04.4 LTS operating
system, and Python 3.8 software installation. The VM config-
urationwas as follows. The server had 8GBRAMand 100GB
storage. All 19 clients had 4GB RAM and 100 GB storage.
The network engine was defined with NVFlare SDK and
PyTorch framework.

Applications were developed for each Federated Learning
model, including the FedAvg model adapted with entropy
calculation. The Python classes were implemented in each
application in NVFlare’s network engine. For example,
a Python file contains the CNN neural network model
functions, and another includes the learner class, where vari-
ables are initialized, data is normalized and split into train-
ing and validation data. The code implementation files are
available on https://github.com/fernanda-orlandi/dm-nvflare-
fedavg-entropy.

A centralized service was established to manage training
sessions. The application’s config_fed_server.json file serves
to configure server parameters to run the application with
NVFlare. In this server file, the follow variables are defined:
number of rounds, number of clients and a class of the Neural
Network model. A client system was established to coor-
dinate model parameters with the central service and share
the best weights for entropy calculation. The application’s
config_fed_client.json file serves to configure the client’s
parameters to run the application with NVFlare. In this client
file, the follow variables are defined: number of epochs,
learning rate and a class of the Learner Executor.

A. RESULTS
The 115 experiments were performed with the datasets
and models mentioned in the previous section on

FIGURE 6. CNN summary for adopted datasets.

experiment setup. For the MNIST dataset, the accuracy aver-
age experiments were 98%, and for CIFAR-10, the average
was 80%.

The strategy of doing the first experiments with theMNIST
dataset was adopted, because the images are simpler to
process in the neural network to make adjustments and sta-
bilize the model algorithm with entropy calculation. Further-
more, the configuration consisted of 10 clients, 10 epochs,
50 rounds, SGD optimization algorithm, learning rate 0.01,
CNN neural network class adjustments, and preparation of
non-iid data for each client. In some experiments, themomen-
tum value was modified between 0.9 and 0.98. First, the
experiments were performed with the FedAvg model with-
out entropy. Then, the model was changed to calculate the
average entropy across all clients and select the data, with
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entropy less than the average, within the training method of
each client. Hence, all clients continued to run in the federated
environment and shared their parameters until the end of
execution. Table 4 shows the accuracy and total time of these
experiments.

TABLE 4. First experiments with adjustments to the CNN model and
entropy computing for non-iid data.

With the adjustments in the neural network model and
entropy calculation, new experiments were carried out to
compare some optimization algorithms with SGD. The algo-
rithms chosen for the comparative tests were Adam and
RMSprop. For these two algorithms, the Learning Rate
parameter needed to be modified to 0.001, while in the SGD,
it was set to 0.01 for the MNIST dataset. The experiments
were also conducted to compare the FedAvg model results
with the proposed FedAvg-BE model.

For the CIFAR-10 dataset, several experiments were also
carried out with the FedAvg model with and without entropy,
running with the variation of the optimization algorithms
SGD, Adam, and RMSprop. The adjustment for the neural
network model was more complex for this dataset, so several
tests were necessary to obtain an adequate neural network.
Image processing of the CIFAR-10 dataset requires a neu-
ral network model with three blocks. Each block has two
convolutional layers, one of which is a residual layer, which
requires a longer processing time, but provides greater accu-
racy. There was better convergence when the Leaning Rate
parameter was changed to 0.001 in the execution with the
SGD algorithm and to 0.0001 in the execution with the Adam
and RMSprop algorithms. For Adam and RMSprop, momen-
tum parameter was not configured. For both models, with
and without entropy calculation, the SGD algorithm showed
better accuracy results for the CIFAR10 dataset.

Table 5 presents the results of the most relevant exper-
iments for 10 clients with the MNIST and CIFAR-10
datasets, which compares the optimization algorithms and
some parameter variations for the datasets. Compared to the
SDG, Adam, and RMSprop optimization algorithms, it is
noted that the SGD algorithm obtained better accuracy, both
for the MNIST dataset and for the CIFAR-10 dataset, consid-
ering the non-iid data in each client.

For both datasets, it was observed that there was perfor-
mance degradation when changing the following parameters:
Learning Rate, Momentum, number of epochs.

TABLE 5. Most relevant experiments for MNIST and CIFAR-10 datasets,
using non-iid data in 10 clients.

The Figures 7 and 8 represent comparative results of exper-
iments with FedAvg model and proposed FedAvg-BE model
for the MNIST dataset. The Figures 9 and 10 represent com-
parative results for the CIFAR-10 dataset. These experiments
were performed with the configuration of 10 epochs and
50 rounds, in 10 clients. The non-iid data are heterogeneous
and responsible for the high oscillation in the loss function
results.

In both Figures, in the Global Accuracy and Loss Function
lines, it is possible to visualize the graphs and compare the
result of the FedAvg model with the same model adapted
with entropy calculation, FedAvg-BE. When the entropy cal-
culation is applied, it is possible to observe in the graphs
that oscillation occurs in the convergence of the optimization
algorithm and the loss function. This was expected, as fewer
data is processed in training, regardless of the dataset type.

Note results for Jobs 28 and 31 in Table 5 for the MNIST
dataset, that there was a reduction in execution time of
12 minutes, which represents a reduction of around 22%, and
a reduction of 0.38% for accuracy. For the CIFAR-10 dataset,
in Table 5 is possible to see the results for Jobs 51 and 54,
where there was a reduction in execution time of around
2 hours, which represents a reduction of around 26%, and a
reduction of 4.62% for accuracy.

The graphs 8 and 10 with the Global Accuracy and Loss
Function showed a slight difference in the convergence of
the SGD optimization algorithm and in the loss function due
to data selection when entropy calculation was applied. With
this, it is possible to compare the results of the experiments
with the FedAvg model and with the model adapted with
entropy calculation, FedAvg-BE, to select data with lower
entropy.

There was an increase in the number of clients to 19,
maintaining 10 epochs and 50 rounds, adjustments in the
CNN neural network model class, and new preparation of
Non-IID data for each client. The Learning Rate parameter
was set to 0.01 for SGD, while for Adam and RMSprop,
it was set to 0.001 for both datasets. After these changes,
tests were performed with the FedAvg model without
entropy changes and then with entropy calculation for each
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FIGURE 7. Results for MNIST non-iid with SGD in 10 clients - Job 28.

FIGURE 8. Results for MNIST non-iid with SGD in 10 clients - Job 31.

optimization algorithm. Again, with and without entropy cal-
culation, the SGD algorithm showed better accuracy results
for the CIFAR-10 dataset. Table 6 lists the sequence of
experiments performed with 19 clients for the MNIST and
CIFAR-10 datasets.

Considering the 19 clients, Figures 11 and 12 show com-
parisons of the results of the experiments with the FedAvg
model and the proposed FedAvg-BE model. Figure 11 rep-
resents results for the MNIST dataset, and Figure 12 for
the CIFAR-10 dataset. These experiments were performed
maintaining the configuration of 10 epochs and 50 rounds.
The non-iid data are heterogeneous and responsible for the
oscillation in the loss function results.

FIGURE 9. Results for CIFAR-10 non-iid with SGD in 10 clients - Job 51.

FIGURE 10. Results for CIFAR-10 non-iid with SGD in 10 clients - Job 54.

TABLE 6. Most relevant experiments for MNIST and CIFAR-10 datasets,
using non-iid data in 19 clients.

In both Figures, in the Global Accuracy and Loss Function
lines, it is possible to visualize the graphs and compare the
result of the FedAvg model with the FedAvg-BE model.
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FIGURE 11. Results for MNIST non-iid with SGD in 19 clients.

FIGURE 12. Results for CIFAR-10 non-iid with SGD in 19 clients.

There was oscillation in the convergence of the optimization
algorithm and the loss function. Increasing the number of
clients to 19 clients did not affect the results, which are similar
to those obtained with ten clients.

For the 19 clients, Table 6 and Figures 11 and 12 show
the variation of the results obtained with the SGD algorithm,
which showed a better result in accuracy, for the execu-
tion of the FedAvg model and for the FedAvg-BE model,
which includes entropy calculation. Note that for the MNIST
dataset, there was a reduction in execution time of 5 minutes,
representing a reduction of around 12% and a reduction of
0.57% for accuracy. For the CIFAR-10 dataset, there was
a reduction in execution time of approximately 30 minutes,

representing a reduction of around 8% and a reduction of
4.79% for accuracy. Again, the graphs shows a comparative of
the experiments results with the FedAvg model and FedAvg-
BE model.

With the increase in the number of clients and the prepa-
ration of non-iid data for them, there was a more significant
heterogeneity of the data distributed among the clients, which
did not affect the accuracy result, with only a slight difference
in the execution time between 10 and 19 clients, maintaining
the reduction of it. The runtime reduction helps to lower
energy consumption in an IoT device, for example. With
that, the results with the FedAvg model adapted with entropy
calculation, FedAvg-BE, proved acceptable and consistent.
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VI. CONCLUSION AND FUTURE WORK
This work presents an experimental evaluation of Feder-
ated Learning models to support the hypothesis that entropy
is directly related to non-iid data and compares Federated
Learning models, implementing entropy calculation, to miti-
gate the impact of non-iid data in training. With the imple-
mentation of the FedAvg model adapted with entropy cal-
culation, using the FedAvg-BE algorithm, experiments were
performed with a variation of a dataset, CNN neural network,
optimization algorithms, entropy calculation, and the number
of clients.

Most model training performed with the SGD optimization
algorithm tends to be more accurate than the Adam and
RMSprop algorithms for bothMNIST andCIFAR10 datasets.
When using entropy calculation, fewer data are selected and
processed, slightly reducing the accuracy between 1% and
5% and the execution time of the model between 12%
and 26%, regardless of the dataset.

Finally, it is safe to say that the FedAvg-BE model, com-
pared with the other FL models studied in this work, presents
itself as the best choice to reduce the execution time of
Federated Learning applications and helps to lower energy
consumption for IoT devices. The results of the experiments
were acceptable and consistent with the study proposal of this
work.

Although the presented results have fulfilled the previously
established objectives, future work is needed to optimize the
model’s accuracy and apply hardware with more resources
making using a dataset with larger images possible. Further-
more includes tuning the FedAvg-BE model to maximize
accuracy, perhaps combining another Federated Learning
model. It is also intended to perform experiments with new
available or customized datasets. Again, FedAvg-BE can be
applied in a configuration with processing support for GPU-
distributed training and with some tools to monitor power
consumption for future experiments.
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