
Received 14 July 2023, accepted 21 July 2023, date of publication 24 July 2023, date of current version 31 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298552

Holistic In-Network Acceleration for Heavy-Tailed
Storage Workloads
GYUYEONG KIM , (Member, IEEE)
Department of Computer Engineering, Sungshin Women’s University, Seoul 02844, Republic of Korea

e-mail: gykim@sungshin.ac.kr

This work was supported by the Sungshin Women’s University Research Grant of 2022.

ABSTRACT Storage workloads are typically heavy-tailed, and a small number of large requests incur a
burdensome performance overhead. To this end, we present NetStore, an in-network storage accelerator that
exploits the capability of emerging programmable switches. The key idea of NetStore is to directly process
large requests in the network by leveraging switches as an in-network request processor. NetStore not only
mitigates head-of-line blocking but also provides extra computational power for data storage. To overcome
the strict resource constraints of the switch ASIC, we take a holistic approach that carefully co-designs the
switch data plane and the switch control plane. Specifically, we design a custom control plane that acts as a
dedicated request processor and a custom data plane that performs size-aware request scheduling and large
object tracking. Our solution can be implemented on a commodity programmable switch at a line rate using
only 6.82% of the switch memory.We implement a NetStore prototype on an Intel Tofino switch and conduct
a series of testbed experiments. Our experimental results demonstrate that NetStore can improve throughput,
the median latency, and the 99th percentile latency by up to 1.19×, 21.29×, and 2.91×, respectively.

INDEX TERMS Programmable data plane, P4, in-network computing.

I. INTRODUCTION
Today’s online services like web search and social network-
ing require a number of data read to process user requests,
thereby highly relying on data storage, which is supported
by in-memory key-value stores like Redis [1]. For high avail-
ability, object data is typically replicated overmultiple servers
(typically 3-5 [2]) using replication protocols [3], [4]. Tomeet
strict user-facing Service Level Objectives (SLOs) [5], dis-
tributed storage should provide high throughput and low
latency [6], [7]. Therefore, recent replication protocols like
Hermes [2] and CRAQ [8] allow local reads in any storage
replica for scalable read performance.

Meanwhile, storage workloads are typically heavy-tailed
in object sizes [9], [10], [11], [12]. Most of the objects
are tens to hundreds of bytes, and only a few objects
are tens to thousands of kilobytes [9], [12]. In addition,

The associate editor coordinating the review of this manuscript and

approving it for publication was Petros Nicopolitidis .

the portion of the requests for large objects1 is less than
1% [9]. Although the portion of large requests is small, their
impact on the performance is substantial. Specifically, large
requests consume many computing resources because they
consist of multiple packets. Furthermore, they degrade the tail
latency of small requests by causing head-of-line blocking
in the storage server. Unfortunately, the existing replica-
tion protocols [2], [8] neglect the performance overhead of
large requests by implicitly assuming that every object is
small. While there are CPU scheduling solutions, they only
mitigate head-of-line blocking and still cannot reduce the
resource usage of large requests since they are intra-server
solutions [9], [13].

In this paper, we ask the following question: how can
we avoid performance overhead caused by large requests to
build high-performance replicated storage? As the answer
to the question, we present NetStore, an in-network stor-
age accelerator that exploits the capability of emerging

1We use the terms ‘requests for small/large objects’ and ‘small/large
requests’ interchangeably.

77416
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-0052-3568
https://orcid.org/0000-0002-5059-3145


G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

programmable networking hardware. The key idea of Net-
Store is to move large request processing into the network
by utilizing the high-performance programmable switch as
an in-network large request processor. This in-network accel-
eration offers two fundamental advantages. First, since large
requests are isolated, small requests are not blocked by
large requests in the storage server, reducing the latency of
small requests. Second, the switch provides extra computa-
tional power without adding a new server, thereby improving
throughput. Our idea is based on the following observa-
tions: 1) the switch is a centralized place that can observe
every message being exchanged between storage servers;
2) programmable switch ASICs like Intel Tofino [14] provide
flexibility and capability to parse and process application
messages by custom processing logic while supporting a
Tbps-scale throughput.

Although we have an opportunity for in-network storage
acceleration, it is hard to realize the idea due to strict resource
constraints of switch hardware. Commodity programmable
switch ASICs provide only a 10-20 MB on-chip memory
and a limited number of computational match-action stages,
making it hard to store and process large requests fully in
the switch data plane. To overcome this, we take a holis-
tic approach that exploits the synergy between the switch
data plane and the switch control plane. The control plane
has underutilized hardware components like a x86 proces-
sor and tens of GB memory. Considering the small portion
of large requests, the switch control plane is an attractive
place to process large requests without extra hardware costs.
Therefore, we expose the switch control plane as a dedi-
cated large request processor and make the switch data plane
schedule requests by dynamically tracking large objects. This
is a distinct feature that distinguishes NetStore from exist-
ing in-network solutions that only utilize the switch data
plane [6], [7], [15].

To partition request handling functions between the data
plane and the control plane carefully, we design custom data
and control plane modules. The switch data plane modules
include the size-aware read scheduling module and the large
object trackingmodule. The size-aware read schedulingmod-
ule forwards read requests to storage servers or the switch
control plane according to the requested object size. To distin-
guish large requests, the large object tracking module main-
tains the list of large object IDs by coordinating the switch and
storage servers. The module inserts the large object threshold
into the custom header, and the storage server sets the object
identification flag in the header after identifying large objects
by comparing the threshold and the object size. The module
inserts object IDs into the large object list only if the write
is committed to avoid reading the stale data. Meanwhile,
the request processing module in the switch control plane
maintains large objects and serves large requests, which are
forwarded by the switch data plane.

We implement a NetStore prototype on a commodity pro-
grammable switch with an Intel Tofino switch ASIC [14]
using P4 language [16]. Since we store not the object data

but the object IDs in the switch data plane, NetStore only uses
6.82% of the switch memory. To evaluate NetStore, we build
a testbed consisting of 8 commodity servers connected to a
6.5 Tbps Intel Tofino switch and conduct a series of exten-
sive experiments. Our key findings from experimental results
include that: 1) compared to Hermes [2], the state-of-the-
art replication protocol, NetStore improves throughput, the
median latency, and the 99th percentile latency by up to
1.19×, 21.29×, and 2.92×, respectively; 2) NetStore can
recover throughput rapidly in the presence of switch failures;
3) NetStore is robust to various system conditions like the
portion of large requests, access patterns, and hash table sizes.

In summary, this paper makes the following contributions.
• We present NetStore, an in-network storage accelera-
tor that supports high throughput and low latency for
heavy-tailed workloads in replicated storage by lever-
aging programmable switches as an in-network request
processor.

• We fully leverage the architectural opportunity of switch
hardware by taking a holistic approach that co-designs
the switch control plane and the switch data plane
carefully.

• We implement a NetStore prototype on a commodity
switch and conduct extensive experiments to demon-
strate that NetStore provides better performance and is
robust to switch failures and various system conditions.

FIGURE 1. Impact of large requests on throughput and latency.

The remainder of the paper is organized as follows.
In Section II, we describe the motivation of this work.
Section III and Section IV provides the design rationale and
design of NetStore, respectively. We present implementa-
tion and evaluation results in Section V and Section VI,
respectively. We discuss related work in Section VII. Lastly,
we conclude our work in Section VIII.

II. BACKGROUND AND MOTIVATION
A. HEAVY-TAILED OBJECT SIZE DISTRIBUTIONS
Modern online services depend on highly-available replicated
data storage, which is supported by in-memory key-value
stores like Redis [1]. A typical workload characteristic is that
the object size distribution is heavy-tailed [10], [12], [17].
Most of the objects are small and only a few objects are
large. For the Facebook workload [12], 55% of the objects
are less than 128 bytes but 10% are between 1024 bytes
to 1 MB. Similarly, in the Wikipedia workload [18], most
of the objects are small, but 1% of the objects span from

VOLUME 11, 2023 77417



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

4096 bytes to 1 MB. The portion of the requests for large
objects is less than 1% [9].

B. PERFORMANCE OVERHEAD CAUSED BY LARGE
REQUESTS
Although only a few objects are large, large requests can have
a significant impact on storage performance, as described
below. First, large requests require more CPU resources than
small requests. This is because the server has to process mul-
tiple packets to handle a single large request, as the requested
object size typically exceeds the maximum transmission unit
(MTU) size of network interfaces. Second, large requests
degrade the tail latency of small requests by causing head-of-
line blocking, in which small requests wait excessively while
large requests are processed by CPUs.

To motivate our work, we perform testbed experiments.
The testbed setup is described in Section VI in detail. We use
four clients and four storage replicas using Hermes [2], the
state-of-the-art replication protocol. We use a heavy-tailed
workload that has a bimodal distribution consisting of 128-B
and 256-KB objects. The objects represent byte-scale small
and KB-scale large objects [9], respectively. We use 40Gbps
for the line speed of NICs and the performance bottleneck
is CPUs. Figure 1 (a) and Figure 1 (b) show the median and
tail read latency as throughput grows with and without large
requests, respectively. Hermes (0.25%) means that 99.75%
and 0.25% of the requests are for 128-B objects and 256-KB
objects, respectively. We can clearly see that the throughput
and latency are significantly degraded although the portion
of large requests is only 0.25%. This is because, as we have
aforementioned, the small requests are stuck by the large
requests in the servers.

For replicated storage, we need a cluster-level solution
that mitigates head-of-line blocking and reduces resource
usage for large requests at the same time. However, existing
works do not achieve the requirements. Recent replication
protocols [2], [8] significantly improve the performance of
replicated storage by allowing local reads, but they neglect
the performance overhead of large requests in heavy-tailed
workloads. Meanwhile, there exist multicore CPU schedul-
ing solutions. For example, Shinjuku [13] uses preemption
among requests and Minos [9]) isolates large requests in
dedicated cores. These solutions are effective for head-of-line
blocking in a single server, but they do not reduce the resource
usage of large requests since the server still processes large
requests.

III. A CASE FOR IN-NETWORK STORAGE ACCELERATION
A. DESIGN GOAL AND KEY IDEA
Our goal is to build replicated storage that supports high
throughput and low latency simultaneously by minimiz-
ing the performance overhead of large request processing.
To achieve the goal, we process large requests in the net-
work instead of storage servers by leveraging switches as an
in-network request processor. The switch is a central place

that has a clairvoyant view of every message being exchanged
between interconnected storage servers. This implies that
the switch has an inherited chance to process large requests
with a global view. Furthermore, emerging programmable
switches provide enough flexibility and capability to handle
large requests with custom processing logic.

Figure 2 illustrates the programmable switch architecture.
For the switch data plane, programmable switch ASICs like
Intel Tofino [14] provide a Tbps-scale processing throughput
while allowing us to program the packet processing pipeline,
which includes the packet parser, the Match-Action (M-A)
stages, and the packet deparser. By customizing the parser
and the M-A stages, the switch can identify custom storage
messages and perform custom packet processing. Along with
the switch data plane, the programmable switch contains the
switch control plane consisting of an x86 CPU, DRAM, and
SSD, which can perform general-purpose computing.

FIGURE 2. Programmable switch architecture. Both the switch control
plane and the switch data plane provide opportunities to accelerate
heavy-tailed storage workloads.

B. HOLISTIC IN-NETWORK ACCELERATION
Despite the flexibility, commodity programmable switch
ASICs have fundamental resource constraints and timing
requirements to support a Tbps-scale packet processing
throughput. The switch ASICs provide only 10-20 megabytes
of on-chip memory and a limited number of M-A stages
for custom data processing. In each M-A stage, a small
amount of memory and ALUs are statically allocated [19].
This indicates that it is hard to handle large requests fully in
the switch data plane because the packet processing pipeline
cannot handle data larger than k × n bytes where k is the
supported number of M-A stages and n is the maximum data
size that can be processed by ALUs per stage. For example,
suppose that a switch ASIC is with k = 8 and n = 16. This
means that the packet processing pipeline can handle data up
to 128 bytes, which are not enough to store and read large
objects.2

To overcome the constraints, we leverage the capability
of the switch control plane as well, not only relying on
the switch data plane. Specifically, we expose the switch
control plane as a dedicated request processor that serves
large requests. Meanwhile, the switch data plane acts as a
request scheduler that tracks large object IDs and forwards

2The specific numbers for k and n depend on the switch architecture and
cannot be publicly available due to the Non-Disclosure Agreement (NDA).

77418 VOLUME 11, 2023



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

read requests to the switch control plane if the requested
object is large. Our holistic approach is based on the following
observations.
• The switch control plane is generally underutilized. The
primary job of the switch control plane is to update
entries of the local packet forwarding table. However,
the forwarding table of the switch in distributed stor-
age is rarely updated because storage clusters have a
transparent and static network topology.

• The switch control plane is increasingly equipped with
high-performance hardware components. For example,
the APS Networks APS7232Q switch offers options
for the switch control plane that includes an Intel
8-core Xeon CPU@2.7 Ghz and 64 GB DRAM. The
Edgecore CSP-7550 is even with high-performance
server-grade components that include two Intel 16-core
Xeon Gold 5218 CPU@2.3 Ghz and 256 GB DRAM.

• The portion of large objects in heavy-tailed workloads
is small, and the portion of large requests is also small.
Therefore, although the control plane hardware compo-
nents may have relatively lower computational power
than the high-performance storage server, the switch
control plane is suitable to serve large requests.

C. WHY NOT A SERVER-BASED SOLUTION?
Wemay implement the idea of NetStore using a storage server
instead of programmable switches. In this design, a dedicated
storage server processes large requests, and each client sched-
ules requests in a distributed manner. However, this approach
has two limitations as follows.
• Large objects are partially tracked by each client. Due to
the partial information, a client forwards large requests
to storage servers, though the requested object is already
known as large by another client. Contrastively, Net-
Store uses the switch as a centralized scheduler, hence
every client sees the global tracking information for
large objects.

• The server-based solution wastes computing resources
since the dedicated server does not process small
requests that take most of the requests (>99%). The
server consumes switch resources as well by occupy-
ing a switch port. However, our switch-based solution
can naturally augment the system performance without
adding a new server and every storage server can process
any type of request.

D. CHALLENGES
While conceptually simple, it is not straightforward to trans-
late the idea into a working system because of various tech-
nical challenges. The addressed challenges are as follows.
• What is the storage system architecture to realize the
idea of in-network large request processing?

• How does the switch process requests efficiently based
on the object size?

• How does the switch data plane track large object IDs?
• How can we handle various types of failures?

FIGURE 3. Replicated storage rack with NetStore.

FIGURE 4. NetStore packet format.

IV. NetStore DESIGN
A. NetStore ARCHITECTURE
The NetStore architecture consists of the switch control
plane, the switch data plane, storage servers, and clients.
We illustrate the architecture in Figure 3.

1) SWITCH CONTROL PLANE
The switch control plane acts as the in-network large request
processor that contains two modules, which are the switch
management module and the request processing module.
The switch management module establishes a communica-
tion channel between the control plane and the data plane.
In addition, the module inserts table entries of M-A tables
and system configuration values that are stored in registers
(e.g., the large object threshold). The request processing
module handles read and write requests for large objects by
maintaining large objects in memory.

2) SWITCH DATA PLANE
The switch data plane acts as the request scheduler that con-
sists of three modules as follows. The L2/L3 routing module
performs traditional packet forwarding functions through port
lookup for both NetStore packets and normal packets. The
size-aware read scheduling module determines the destina-
tion of read requests depending on the size of the requested
object. In particular, while small requests are forwarded
to a storage server determined by the replication protocol,
large requests are delivered to the switch control plane for
in-network processing. The large object tracking module
maintains the list of large object IDs by coordinating the
switch data plane and storage servers. The module removes
the object ID from the list (if exists) when handling write

VOLUME 11, 2023 77419



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

Algorithm 1 Packet Processing in Data Plane
− pkt: Packet to be processed
− Obj: List of large objects
− Srv: List of storage servers
− Th: Large object threshold

1: if pkt.op == READ-REQUEST then
2: pkt.flag← Th ▷ Insert threshold
3: if pkt.id ∈ Obj then ▷ Read for large object
4: pkt.dst ← Control Plane ▷ Update destination
5: end if
6: else if pkt.op == WRITE-REQUEST then
7: pkt.flag← Th ▷ Insert threshold
8: if pkt.id ∈ Obj then ▷ To prevent consistency issue
9: Obj.Remove(pkt.id) ▷ Remove object ID

10: end if
11: else if pkt.op ==READ-REPLY orWRITE-REPLY then
12: if pkt.flag == True then ▷ Large object
13: Obj.Insert(pkt.id) ▷ Add object ID to list
14: end if
15: end if
16: Forward(pkt)

requests and inserts the ID again when committing the write.
This prevents the client from reading outdated data in the
switch control plane when pending writes for the requested
object exist.

3) STORAGE SERVERS AND CLIENTS
NetStore requires only marginal modifications on servers
and clients. Since NetStore does not get involved in write
coordination and load balancing of read requests, the data
storage can use existing replication protocols like Hermes [2]
and CRAQ [8]. Clients basically send requests and receive
replies. The only thing that the client does for NetStore
is to insert the metadata (e.g., the operation type and the
object ID) into the NetStore header between the UDP header
and the data payload. Storage servers perform GET and PUT
operations and stamp the object size identification flag to
distinguish large objects. In addition, storage servers replicate
only large objects in the switch control plane when handling
write requests.

B. PACKET FORMAT
Figure 4 shows the packet format of NetStore. NetStore uses a
custom L7 protocol message. We reserve a UDP port number
for NetStore so that the switch can apply different packet
processing logic for NetStore packets and normal packets.
Normal packets are forwarded to a matched output port based
on standard L2/L3 routing without being processed through
NetStore stages, which means that NetStore is compatible
with existing functions. The NetStore message has a header
that consists of four fields as follows.

noitemsep

Algorithm 2 Object Size Identification in Storage Server
1: if pkt.op == READ-REQUEST then
2: data← GET (pkt.id) ▷ Read data
3: if Len(data) > pkt.flag then ▷ Is object large?
4: pkt.flag← True ▷ Yes, large
5: else
6: pkt.flag← False ▷ No, small
7: end if
8: else if pkt.op == WRITE-REQUEST then
9: if pkt.size > pkt.flag then ▷ Is object large?

10: pkt.flag← True ▷ Yes, large
11: else
12: pkt.flag← False ▷ No, small
13: end if
14: end if

• OP: the message operation type, which can be
READ-REQUEST, WRITE-REQUEST, READ-REPLY,
WRITE-REPLY. We also use additional types like
WRITE-UPDATE, WRITE-ACK, which are used to
update storage servers and the switch control plane
during write coordination of replication protocols.

• ID: the ID of a requested object.
• FLAG: the identification flag for the object size. True
means the requested object is large, whereas False indi-
cates it is a small object. We also use this field to carry
the large object threshold from the switch to the storage
server.

• SIZE: the size of the requested object. Since read
requests cannot know the object size in advance, this
field is used only for write requests.

C. REQUEST PROCESSING
NetStore has a different processing logic depending on
the type of message as follows. Algorithm 1 describes the
pseudocode of request processing in the switch data plane.

1) READ REQUESTS
Upon receiving a read request, the switch data plane first
inserts the large object threshold into the flag field to deliver
the threshold to storage servers (line 2). Next, the switch data
plane checks whether the requested object is included in the
large object list (line 3). If the object is in the list, the switch
data plane forwards the request to the switch control plane for
further handling (line 4). Otherwise, the request is forwarded
to a storage server. Since NetStore is not a load balancing
solution, we rely on replication protocols to determine the
initial destination server. We currently use Hermes [2] that
selects a random replica at the client for both read and write
requests. The switch data plane finishes read processing by
forwarding the packet (line 16).

When the switch control plane receives the read request,
the switch control plane simply returns the requested object
data to the client. The storage server works similarly to the

77420 VOLUME 11, 2023



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

FIGURE 5. Examples of request processing in NetStore.

switch control plane. One difference is that the storage server
compares the object size and the threshold to check whether
the object is large or not.

2) WRITE REQUESTS
Upon receiving the write request, the switch data plane inserts
the large object threshold into the NetStore header (line 7).
Next, the switch removes the object ID from the large object
list if the requested object exists in the list (lines 8-10).
This is to prevent the client from reading the stale object
data. Without this, the client may read the old object data
in the switch control plane if there exists an ongoing write
for the object. Furthermore, this also resolves cases where
the object known as large becomes small with a new write
because writes will not be forwarded to the switch control
plane anymore. The switch data plane finishes write handling
by forwarding the request to a storage server (line 16).

3) READ AND WRITE REPLIES
Upon receiving reply messages, the switch data plane inserts
the object ID into the list if the object has the flag with
True (i.e., large object) (lines 12-13). After that, the packet
is forwarded to the client (line 16).

D. LARGE OBJECT TRACKING
To schedule read requests, the switch data plane needs to
identify whether the object is large. However, we cannot
know the object size in advance since the requested object
size can be obtained in the storage server only. Therefore,
we maintain the list of large objects in the switch data plane
by leveraging register arrays. We only store the object ID in
the list since the object data is returned by the switch control
plane.

To track large object IDs, NetStore coordinates the switch
data plane and storage servers. Specifically, we put the large

object threshold into the FLAG field in the NetStore header
when handling requests to deliver the threshold to storage
servers. The threshold is stored in a data plane register and
can be configured easily by the operator at run time. When
sending replies, the storage server updates the FLAG field to
True or False by checking the object size.

Algorithm 2 shows the object size identification process in
the storage server. The only difference between read requests
and write requests is where the object size comes from. Read
requests obtain the object size from key-value stores (line 2)
whereas write requests get the object size in the SIZE field
in the header (line 9). Note that the size identification process
for write requests applies only to the last packet of the request.
We note that the switch data plane does not have enough com-
putational capability to directly compare the object size in
the SIZE field and the threshold metadata in the switch data
plane. That is whywe utilize storage servers for write requests
as well even if the request contains the size information in the
header.

As we have shown in Algorithm 1, the switch data plane
inserts the object ID into the list when the FLAG field of the
reply is True. It is not surprising for read requests because we
can only know the exact object size after visiting the storage
server. For writes, the write reply means the commitment
of the ongoing write operation. Therefore, the insertion of
object ID also means that the switch control plane and storage
servers have the latest data. One limitation is that the first
read request for a large object is forwarded to the storage
server, but we believe that this is tolerable since the object
is generally repeatedly requested.

E. EXAMPLES
We now show operational examples of request processing in
NetStore. Figure 5 (a) shows how small requests are handled.
Since object A is small, the large object list does not contain

VOLUME 11, 2023 77421



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

the object ID. Therefore, the switch forwards the request
to server 1, which is determined by replication protocols.
Figure 5 (b) shows how the write request for object D is
processed. To avoid reading the stale data of the next requests,
the switch data plane first removes the object ID from the
list if it exists. The switch control plane is updated during
the write coordination. When the storage server commits the
write by sending the reply, the switch data plane inserts the ID
of object H into the list again. In Figure 5 (c), we can see that
the read request for object B is processed in the switch control
plane because the object is large and tracked by the switch
data plane. Figure 5 (d) shows how NetStore handles read
requests for untracked large objects. In this example, object D
is maintained in the switch control plane, but the switch data
plane does not have object D in the list. This can happen for
various reasons like ongoing write operations, packet drops,
and switch failures. In this case, the switch simply forwards
the request to server 2 using replication protocols.

F. FAILURES HANDLING
1) DROPPED MESSAGES
Request messages can be dropped either in the switch or the
NIC. Basically, the dropped messages can be detected and
retransmitted using application-level timeout mechanisms.
The primary concern is whether consistency is violated when
a write message is lost. NetStore can preserve strong con-
sistency because we only insert the object ID into the list
when committing the write request. Let us assume that a write
request for a large object is dropped at the packet buffer in the
switch before reaching the storage server. In this case, since
the switch data plane already removes the object ID from the
list, read requests are forwarded to storage servers, thereby
preserving strong consistency.

2) SWITCH FAILURES
Switch failures are rare in distributed storage. For example,
the average number of switch failures per year is 1.1 [20].
When the switch fails, we can reboot the switch or replace it
with a backup switch. During downtime, in-network request
processing is unavailable because the switch cannot handle
packets. However, it takes only tens of seconds to reboot the
switch process. We note that the NetStore mechanism itself
does not have an impact on switch failures because we only
modify packet processing logic. We also note that the ToR
switch is a single point of failure for any rack-scale system,
regardless of our mechanism.

Similar to the case for dropped messages, the primary
concern here is also consistency because the switch loses
large objects in the control plane and the object tracking
information in the data plane. Fortunately, clients do not read
the stale data in the control plane, since the switch forwards
large requests to storage servers where the latest data is stored.
Furthermore, the switch can rapidly recover the information
of large object IDs since the switch detects large objects
when handling every read/write request. For the switch

configuration, the configuration data is not lost because the
data is stored in the disk, not memory.

3) SERVER FAILURES
Server failures are a generic problem in distributed systems,
and NetStore does not cause a specific issue. Therefore,
server failures can be handled by existing services like
Apache Zookeeper [21] and etcd [22].

G. DEPLOYMENT ISSUES
1) SCALING TO MULTIPLE RACKS
While we basically target a storage rack where all storage
replicas are co-located in the same rack, the current Net-
Store design also supports multi-rack deployment where each
replica is located in different racks without modifications.
This is because large objects in a rack are tracked by its
ToR switch only. Each ToR switch can track large objects of
each replica in a single replication group. One pitfall is that
this makes switches track duplicate large objects. This may
be resolved by making aggregation switches track object as
well but is beyond the scope of this work. In addition, the
critical path of a read request always contains the ToR switch
connected to the storage server where the request object is
stored. Therefore, aggregation switches only need to forward
packets between the racks.

2) MULTIPLE REPLICATION GROUPS
There can exist multiple replication groups with different
datasets in distributed storage. Similar to the multi-rack
deployment, NetStore supports replicated storage with mul-
tiple replication groups. This is because, unless the requested
object is large, NetStore does not specify the destination of
requests regardless of replication groups. This means that
NetStore is orthogonal to data partitioning techniques like
consistent hashing [23] and request forwarding mechanisms
based on the hash key.

H. DISCUSSION
We now discuss several issues related to the NetStore design.

1) CAPABILITY OF THE SWITCH CONTROL PLANE
Since the portion of large requests is small, the amount of
requests that the switch control plane should handle is not
large as well. However, the switch control plane might be
saturated if a workload contains more large objects, making
the switch the performance bottleneck. To avoid this, we can
limit the portion of requests processed in the switch control
plane by adjusting two system configuration parameters. One
is the large object threshold and the other is the size of the
large object list. Specifically, as we increase the threshold,
more requests are forwarded to storage servers. In addition,
if we reduce the large object list size, some requests do
not visit the switch control plane even if the object is large
because the object ID may not be stored in the list due to the
lack of available slots.

77422 VOLUME 11, 2023



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

FIGURE 6. Insertion, search, and deletion in the multi-stage hash table to track large object IDs.

2) LARGE OBJECT THRESHOLD CONFIGURATION
We currently support a static configuration model where
the system operator configures the threshold in the switch
control plane by analyzing the collected workload traces.
Typically, the threshold can be set to the object size at the tail
(e.g., the 99th percentile request size). Since workloads can
change over time, the threshold should be updated as well.
To improve the maintainability, we may design a dynamic
threshold configuration mechanism that adaptively changes
the threshold value, and we currently investigate this for
future work.

3) DYNAMIC LOAD BALANCING
NetStore relies on replication protocols to determine the des-
tination server of read requests. For example, Hermes [2] sim-
ply picks a random replica. However, there exist various load
balancing mechanisms like the join-the-shortest-queue (JSQ)
and the power-of-k-choices, which can be implemented in
the switch data plane [15]. Since NetStore does not have its
own load balancing mechanism, we can integrate existing
in-network load balancing mechanisms like RackSched [15].
Specifically, the switch basically forwards read requests to
storage servers using the basic load balancing module but
updates the destination to the switch control plane if the
object is in the list.

V. IMPLEMENTATION
In this section, we describe how we implement a prototype of
NetStore on the switch and the client-server application.

A. SWITCH CONTROL PLANE AND SERVERS/CLIENTS
1) THE SWITCH CONTROL PLANE
The switch control plane application is written in Python
3.9.12 using the Barefoot Runtime API. When we run the
control plane application, the switch management mod-
ule initializes the switch data plane with pre-configured
table entries and register values. After that, the request
processing module of the application waits for incoming
requests.

2) CLIENT-SERVER APPLICATION
To measure the performance of distributed storage, we make
an open-loop client-server application with the official Redis
API. We use pypacker library [24]. The pypacker

library allows us to define and manipulate packet head-
ers easily and provides high-performance packet processing
capabilities as well. The client can measure the throughput
and latency by generating read and write requests at a given
request sending rate. The server stores objects and serves
read and write requests. The application performs packet seg-
mentation/desegmentation in user space, allowing for custom
processing of multi-packet requests in the switch.

B. DATA PLANE IMPLEMENTATION
Our switch data plane is written in P416 [16] and is compiled
with Intel P4 Studio SDE 9.7.0 for Intel Tofino [14].

1) PACKET PROCESSING PIPELINE
The packet processing pipeline consists of the ingress
pipeline, the egress pipeline, and the packet buffer between
them. We implement our data plane modules in the ingress
pipeline because NetStore determines the output port using
a custom packet forwarding policy for in-network request
processing. NetStore is a lightweight solution because it con-
sumes only 6 M-A stages, which are less than the available
resource budget of the switch. Our work uses only 6.82% of
the switch memory, most of which is used to keep track of
large object IDs.

2) MULTI-STAGE HASH TABLE WITH REGISTER ARRAYS
To track large object IDs in the switch data plane, we leverage
register arrays. In an ideal implementation, we should provide
a dedicated register slot for each object. However, the switch
memory is limited and the size of register arrays must be
determined at compile time. Therefore, similar to existing
works [6], [7], we store object IDs in a hash table that uses the
hashed object ID for indexing. The hash index is computed
internally in the switch data plane. When using a hash table,
we should address hash collisions because the hash table
size may be smaller than the number of large objects that
are requested at least once. Furthermore, since only a small
amount of switch memory is allocated for each M-A stage,
the maximum number of hash slots per stage is also limited.
To address hash collisions and increase the number of hash
slots, we implement the hash table usingmultipleM-A stages.

Figure 6 shows an example of our multi-stage hash table
using 3 M-A stages. We use a single hash function, hence
the object index is the same for every stage. To insert a new

VOLUME 11, 2023 77423



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

object into the table, the switch finds a vacant slot across the
tables. In Figure 6 (a), object A is inserted into the table in
stage 3 since the hash slots in the previous stages are already
occupied by objects F and H. Similarly, for search operations,
the switch finds an occupied slot whose stored value is the
same as the requested object ID (Figure 6 (b)). The deletion
of object IDs is also similar, but it is different in that the switch
removes the object ID from the slot, as in Figure 6 (c).

VI. EVALUATION
A. EXPERIMENT METHODOLOGY
1) TESTBED SETUP
To evaluate NetStore, we build a testbed consisting of
8 commodity servers, which are connected by an APS Net-
works BF6064X-T switch. The switch data plane is based on
a 6.5 Tbps Intel Tofino switch ASIC [14]. The switch control
plane is with an 8-core CPU (Intel Xeon D-1548@2.0 Ghz)
and 32 GB of memory. The servers are with a 10-core
CPU (Intel i5-12600K@3.7 Ghz), 32 GB of memory, and
a single-port Ethernet NIC (NVIDIA MCX515A-CCAT
ConnectX-5) where we set the link speed to 40 Gbps. The
switch control plane runs Ubuntu 20.04 LTS with Linux
kernel 5.4.0-generic. The servers also run Ubuntu 20.04 LTS,
but are with Linux kernel 5.13.0-generic. Unless specified,
4 servers act as clients and the remaining 4 servers act as
storage servers. The performance bottleneck is at storage
servers.

TABLE 1. Configuration settings.

FIGURE 7. Throughput vs. latency.

2) WORKLOADS
To show the performance of reads and writes clearly, we use
the read-only workload and the write-only workload. Our
default workload is the read-only workload since NetStore
mostly affects the read performance and many production
workloads are ready-heavy with a 95:5 read:write ratio [6].
We also use 1M objects with 32-bit IDs and uniform distri-
butions for the data access pattern. For objects, we consider

a bimodal distribution with 99.75% of 128-B objects and
0.25% of 256-KB objects. This represents a typical workload
that shows heavy-tailed object size distributions in the cumu-
lative distribution function (CDF). Therefore, the portion of
large requests is only 0.25%. The large object threshold is
configured to 200 KB to consider 256-KB objects as large.
The inter-arrival time between two consecutive requests of a
client follows an exponential distribution. We summarize our
settings in Table 1.

3) COMPARED SCHEME
We compare our work against Hermes [2], the state-of-the-
art replication protocol that allows local reads and concurrent
write coordination. We implement the basic read and write
processing logic of Hermes. In our experiments, NetStore
indicates ‘Hermes with NetStore’. We can observe the impact
of NetStore clearly by using Hermes as the baseline. To do
this, we integrate NetStore with Hermes by making Her-
mes support the NetStore packet header and the object size
identification mechanism.

FIGURE 8. Breakdown of the load per server in NetStore.

FIGURE 9. Performance across different object sizes.

B. EXPERIMENTAL RESULTS
1) THROUGHPUT VS. LATENCY
We first evaluate the latency as a function of the achieved
requests per second (RPS). In this experiment, the clients
generate requests to the storage servers, and measure the
median latency and the 99th percentile latency at different
throughput levels.

Figure 7 (a) shows the median latency for NetStore and
Hermes. We can see that the latency of NetStore rapidly
increases when the throughput reaches close to 152 KRPS.
On the other hand, NetStore maintains a low median latency
over 150 KRPS. The saturated throughput of NetStore is
roughly 181 KRPS, which is better than Hermes by 1.19×.
This is because NetStore provides extra computational power

77424 VOLUME 11, 2023



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

FIGURE 10. Throughput vs. latency (Write 100%).

FIGURE 11. Scalability experiments.

for replicated storage through request processing in the
switch control plane. In addition, storage servers can han-
dle more requests per second, since most large requests are
not processed by storage servers. Figure 7 (b) shows the
result for the 99th percentile latency. We can also observe
that NetStore achieves lower tail latency than NetStore. The
performance gap is 2.91× when the achieved throughput is
roughly 152 KRPS. This stems from that NetStore efficiently
mitigates the head-of-line blocking caused by large requests.
Our results imply that NetStore is an effective mechanism to
improve the median and tail latency at higher throughput.

2) ROOT OF PERFORMANCE GAINS
Figure 8 and Figure 9 show the root of performance gains
in detail. We break down the load in packets per second
(PPS) across storage servers and the switch in Figure 8. Note
that the Y-axis is presented on a logarithmic scale. The load
for the storage servers seems similar in both Hermes and
NetStore. However, NetStore has a slightly lower load for
each storage server since large requests are forwarded to the
switch control plane. In NetStore, the switch control plane
processes large requests. Since read requests for the large
object return multiple packets, the Tx throughput is higher
than the Rx throughput.

Figure 9 (a) and (b) show the 99th percentile latency for
small requests and large requests, respectively. Since large
requests are generally processed in the switch, NetStore
maintains stable tail latency for small requests, whereas
Hermes shows a rapid growth curve. Meanwhile, NetStore
degrades the tail latency of large requests as expected. As the
throughput increases, the tail latency rapidly grows as well.
This is because each large request faces a long latency in
the switch control plane, which is crowded by multiple large
requests. We believe that this trade-off between the perfor-
mance of small requests and large requests is reasonable
because we can significantly improve the performance of

99.75% of the requests by sacrificing only 0.25% of the
requests. We also note that the performance degradation of
large requests can be mitigated by limiting the portion of
requests considered as large.

3) WRITE PERFORMANCE
Figure 10 shows the median latency and the 99th percentile
latency across different throughput levels when the write
ratio is 100%. In replicated storage, the write performance is
always limited to the single server performance, since every
storage server should update the requested object data. Net-
Store slightly degrades the write performance because repli-
cation protocols need to update the switch control plane when
handling writes for large objects. However, since the portion
of large requests is too small, the performance degradation
is marginal. Furthermore, production workloads typically
have 5% of write ratio, which means that the performance
overhead caused by NetStore for write requests is small.

FIGURE 12. Performance under switch control plane failures.

4) SCALABILITY
Next, we evaluate the scalability of NetStore in the con-
text of the number of storage servers and the dataset size.
We vary the number of storage servers from 1 to 4 and also
vary the dataset size from 1K to 1M. We then measure the
saturated throughput. Figure 11 (a) shows the throughput
according to the number of servers. We can see that NetStore
and Hermes provide near-linear scalability. This is owing to
the local reads enabled by Hermes. NetStore shows higher
throughput than Hermes across all the number of servers,
and this is because NetStore improves throughput through
in-network large request processing. Figure 11 (b) shows that
the throughput of NetStore is higher than Hermes, and the
throughput is almost the same across the dataset sizes. This
is because the dataset size itself does not affect the portion of
requests.

5) PERFORMANCE WITH CONTROL PLANE FAILURES
We conduct an experiment to examine how NetStore behaves
in switch control plane failures. In this experiment, we mea-
sure the Rx throughput of a client and the Tx throughput of
the switch control plane. To simulate a control plane failure,
we deactivate the switch port of the control plane at 4 seconds
and reactivate the port at 9 seconds. In Figure 12, we can
see a slight drop in the client throughput during the failure.

VOLUME 11, 2023 77425



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

FIGURE 13. Performance under switch data plane failures.

FIGURE 14. Impact of the portion of large requests (%).

This is because the switch control plane does not return the
replies for large requests to the client. In a similar vein, we can
also observe an increase in the client throughput when the
switch port is reactivated. Meanwhile, the switch throughput
is rapidly recovered when we reactivate the switch port.

6) PERFORMANCE WITH DATA PLANE FAILURES
We conduct an experiment to inspect the performance of Net-
Store under switch data plane failures. To simulate a switch
failure, we stop the switch process at 6 seconds and restart it at
9 seconds.Wemeasure network-level throughput bymonitor-
ing the network interface of a storage server. Figure 13 shows
how NetStore deals with the data plane failure. When the
switch is stopped, throughput drops to zero rapidly. However,
throughput is recovered after roughly 14 seconds. The time to
run the switch data plane depends on the switch architecture,
and the NetStore mechanism has no impact on the time.
We expect that the downtime can be decreased in the future
with better switch architectures.

C. DEEP DIVE
1) IMPACT OF THE PORTION OF LARGE REQUESTS
We now inspect the impact of the portion of large requests.
In this experiment, we vary the portion of large requests
from 0.1% to 1%. Figure 14 shows the results, and we can
know that NetStore is robust to the portion of large requests.
It is easy to see that Hermes is sensitive to the portion of
large requests. For example, as expected, Hermes shows the
worst performance when 1% of the requests are large. On the
other hand, NetStore shows similar performance regardless
of the portion of large requests. This is because the switch
has enough capability to handle the given portion of large
requests.

FIGURE 15. Performance with skewed workloads (Zipf-0.99).

FIGURE 16. Throughput with different hash table sizes.

2) IMPACT OF ACCESS PATTERNS
We next evaluate the NetStore latency as a function of
throughput for skewed workloads. To perform the experi-
ment, the clients generate requests with a zipfian distribution
with the parameter 0.99. Similar to an existing work [9],
we use the zipfian distribution for small objects only to avoid
pathological cases where the most frequently accessed object
is a large object, which is rare in practice. Figure 15 (a)
shows the median latency. We can see that NetStore provides
better throughput than Hermes even with skewed workloads.
In Figure 15 (b), we can see that NetStore results in better
tail latency than Hermes across all the measured throughput
levels.

3) IMPACT OF HASH TABLE SIZE
Wenowmeasure the saturated throughput by varying the hash
table size per each M-A stage. This is to inspect how much
of the switch memory is required to track large objects in
the switch data plane. Figure 16 shows the throughput as the
hash table size grows. We can see that NetStore only requires
about 4096 hash slots to achieve performance close to the
best performance. 4096 hash slots with 3 M-A stages con-
sume 48 KB of memory. By default, we use 128K hash slots
per stage to accommodate higher request rates. Note that we
can increase the hash table size using more stages, and the
maximum number of stages depends on switch ASICs, not
the NetStore mechanism.

VII. RELATED WORK
We now discuss existing works related to NetStore.

A. REPLICATION PROTOCOLS
Replication protocols can be categorized into leader-based
protocols and leaderless protocols. The primary backup (PB)

77426 VOLUME 11, 2023



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

[4] is the basic leader-based protocol in that the stable leader
handles all requests, while followers exist for only backup.
CR [3] improves the performance by using a dedicated server
for read processing and replica chaining. CRAQ [8] allows
local reads by maintaining the object cleanness in each stor-
age server. Hermes [2] is the state-of-the-art leaderless repli-
cation protocol that allows local reads and concurrent write
coordination. Thanks to these features, Hermes provides the
best performance between the replication protocols. NetStore
is orthogonal to the replication protocol, since NetStore only
addresses in-network read processing and do not modify the
replication process.

B. IN-NETWORK SOLUTIONS FOR STORAGE SYSTEMS
Several works have investigated how to improve the
performance of distributed storage using programmable
switches [15], [25], [26], [27]. NetCache [25] shows that
caching objects in the programmable switch can resolve
the load imbalance problem. However, it can cache only
tiny objects and occupy over half of the switch memory.
IncBricks [26] and PMNet [27] also cache objects in hard-
ware. These work use FPGA-based hardware while NetCache
utilizes commodity hardware. All the works do not miti-
gate the performance overhead of large requests because
they assume that every object has the same and small size.
RackSched [15] shows that we can balance request loads
through in-network load balancing. Although RackSched
can mitigate the head-of-line blocking, it still makes large
requests processed in the storage server. NetStore is com-
plementary to RackSched because RackSched concerns load
balancing whereas NetStore relies on replication protocols
for load balancing.

Harmonia [7] provides near-linear scalability by detecting
read-write conflicts in the network for replicated storage.
NetLR [6] moves the entire replication function into the
network by leveraging the switch as an in-network replication
coordinator. Since the above two works concern the replica-
tion function, they are orthogonal to NetStore, which only
concerns in-network read processing. In addition, one distinct
contribution of NetStore is to discover the acceleration oppor-
tunity of the switch control plane, not relying on the switch
data plane.

C. RPC ACCELERATION
Storage access between clients and servers is typically done
by Remote Procedure Calls (RPCs), and there are recent
works trying to accelerate RPC calls. ALTOCUMULUS [28]
uses direct messaging between NIC and registers to mitigate
the RPC scheduling overhead. nanoPU [29] paves a fast data
path between the NIC and applications to bypass the cache
and memory hierarchy. Similarly, RPCValet [30] uses shared
caches to bypass slow PCIe paths. Meanwhile, eRPC [31]
accelerates RPC applications by optimizing several com-
mon performance degradation factors by software tech-
niques. NetRPC [32] is a generic RPC system for in-network
solutions that provides a lightweight software interface while

maintaining comparable performance to existing in-network
solutions. mRPC [33] is an RPC system that provides RPC
marshalling and policy enforcement as a service, not a library
linked to applications to achievemanageability and efficiency
at the same time. Since NetStore is an in-network solu-
tion and the above works are server-side solutions, they are
complementary.

VIII. CONCLUSION
This paper presented NetStore, an in-network storage accel-
erator for replicated storage to provide high throughput
and low latency without the performance overhead of large
requests. NetStore leverages the programmable switch as
an in-network request processor to mitigate the head-of-line
blocking and reduce server resource usage of large requests.
We showed the co-design of the switch control plane and
the switch data plane to overcome the strict resource con-
straints of commodity switch ASICs. We have implemented
a NetStore prototype on an Intel Tofino switch and con-
ducted testbed experiments to demonstrate that NetStore can
accelerate replicated storage. We believe that this work can
contribute to the research community by demonstrating that
leveraging the architectural opportunities of switch hard-
ware in a holistic manner leads to significant performance
acceleration for heavy-tailed storage workloads.

For future work, we have two directions as follows. First,
the current NetStore design requires network operators to
update the large object threshold manually. If we automa-
tize the threshold update by designing an adaptive thresh-
old update mechanism, the maintainability of the system
can increase dramatically. Second, NetStore currently uses
a random load balancing algorithm to select a destination
storage server. However, there exist better load balancing
algorithms like the join-the-shortest-queue algorithm, which
can be implemented in the switch data plane. Therefore, inte-
grating a new in-network load balancing mechanism and the
NetStore pipeline may be an attractive direction to increase
the performance gain of NetStore.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their insightful comments and constructive feedback and also
would like to thank Jiyoon Bang for her help in drafting the
evaluation section.

REFERENCES
[1] Redis Key-Value Store. Accessed: Jul. 26, 2023. [Online]. Available:

https://redis.io/
[2] A. Katsarakis, V. Gavrielatos, M. R. S. Katebzadeh, A. Joshi,

A. Dragojevic, B. Grot, and V. Nagarajan, ‘‘Hermes: A fast, fault-
tolerant and linearizable replication protocol,’’ in Proc. 25th Int. Conf.
Architectural Support Program. Lang. Operating Syst., Mar. 2020,
pp. 201–217.

[3] R. Van Renesse and F. B. Schneider, ‘‘Chain replication for supporting high
throughput and availability,’’ in Proc. USENIX OSDI, San Francisco, CA,
USA, Dec. 2004, pp. 91–104.

[4] P. A. Alsberg and J. D. Day, ‘‘A principle for resilient sharing of distributed
resources,’’ inProc. ICSE,Washington, DC, USA: IEEEComputer Society
Press, Oct. 1976, pp. 562–570.

VOLUME 11, 2023 77427



G. Kim: Holistic In-Network Acceleration for Heavy-Tailed Storage Workloads

[5] J. Dean and L. A. Barroso, ‘‘The tail at scale,’’ Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[6] G. Kim and W. Lee, ‘‘In-network leaderless replication for distributed
data stores,’’ Proc. VLDB Endowment, vol. 15, no. 7, pp. 1337–1349,
Mar. 2022.

[7] H. Zhu, Z. Bai, J. Li, E. Michael, D. R. K. Ports, I. Stoica, and X. Jin,
‘‘Harmonia: Near-linear scalability for replicated storage with in-network
conflict detection,’’ Proc. VLDB Endowment, vol. 13, no. 3, pp. 376–389,
Nov. 2019.

[8] J. Terrace and M. J. Freedman, ‘‘Object storage on CRAQ: High-
throughput chain replication for read-mostly workloads,’’ inProc. USENIX
ATC, 2009, p. 11.

[9] D. Didona and W. Zwaenepoel, ‘‘Size-aware sharding for improving tail
latencies in in-memory key-value stores,’’ in Proc. USENIX NSDI, Boston,
MA, USA, 2019, pp. 79–94.

[10] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, andM. Paleczny, ‘‘Workload
analysis of a large-scale key-value store,’’ in Proc. 12th ACM SIGMET-
RICS/PERFORMANCE Joint Int. Conf. Meas. Modeling Comput. Syst.,
Jun. 2012, pp. 53–64.

[11] M. Blott, L. Liu, K. Karras, and K. Vissers, ‘‘Scaling out to a single-
node 80 Gbps memcached server with 40terabytes of memory,’’ in Proc.
USENIX HotStorage, 2015, pp. 8–12.

[12] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, ‘‘Scaling memcache at Facebook,’’ in Proc. USENIX
NSDI, Berkeley, CA, USA, 2013, pp. 385–398.

[13] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, ‘‘Shinjuku: Preemptive scheduling for µsecond-scale tail
latency,’’ in Proc. USENIX NSDI, Boston, MA, USA, MA, Feb. 2019,
pp. 345–360.

[14] Tofino Programmable Switch. Accessed: Jul. 26, 2023. [Online]. Available:
https://github.com/barefootnetworks/Open-Tofino

[15] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Stoica, and X. Jin,
‘‘RackSched: A microsecond-scale scheduler for rack-scale computers,’’
in Proc. USENIX OSDI, Nov. 2020, pp. 1225–1240.

[16] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, ‘‘p4:
Programming protocol-independent packet processors,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

[17] Z. Cao, S. Dong, S. Vemuri, and D. H. C. Du, ‘‘Characterizing, modeling,
and benchmarking RocksDB key-value workloads at Facebook,’’ in Proc.
USENIX FAST, Santa Clara, CA, USA, Feb. 2020, pp. 209–223.

[18] K. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch, ‘‘Thin
servers with smart pipes: Designing SoC accelerators for memcached,’’ in
Proc. 40th Annu. Int. Symp. Comput. Archit., Jun. 2013, pp. 36–47.

[19] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard,
F. Mujica, and M. Horowitz, ‘‘Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for SDN,’’ in Proc. ACM
SIGCOMM Conf. SIGCOMM, Aug. 2013, pp. 99–110.

[20] P. Gill, N. Jain, and N. Nagappan, ‘‘Understanding network failures in
data centers: Measurement, analysis, and implications,’’ in Proc. ACM
SIGCOMM Conf., Aug. 2011, pp. 350–361.

[21] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ‘‘Zookeeper: Wait-free
coordination for internet-scale systems,’’ in Proc. USENIX ATC, 2010,
p. 11.

[22] ETCD Key-Value Store. Accessed: Jul. 26, 2023. [Online]. Available:
https://etcd.io/

[23] D. Karger, E. Lehman, T. Leighton, R. Panigrahy,M. Levine, andD. Lewin,
‘‘Consistent hashing and random trees: Distributed caching protocols for
relieving hot spots on the world wide web,’’ in Proc. 29th Annu. ACM
Symp. Theory Comput. (STOC), 1997, pp. 654–663.

[24] Pypacker: The Fastest and Simplest Packet Manipulation Lib
for Python. Accessed: Jul. 26, 2023. [Online]. Available: https://
gitlab.com/mike01/pypacker

[25] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim, and I. Stoica,
‘‘NetCache: Balancing key-value stores with fast in-network caching,’’ in
Proc. 26th Symp. Operating Syst. Princ., Oct. 2017, pp. 121–136.

[26] M. Liu, L. Luo, J. Nelson, L. Ceze, A. Krishnamurthy, and K. Atreya,
‘‘Incbricks: Toward in-network computation with an in-network cache,’’
in Proc. ACM ASPLOS, New York, NY, USA, 2017, pp. 795–809.

[27] K. Seemakhupt, S. Liu, Y. Senevirathne, M. Shahbaz, and S. Khan,
‘‘PMNet: In-network data persistence,’’ in Proc. ACM/IEEE 48th Annu.
Int. Symp. Comput. Archit. (ISCA), Jun. 2021, pp. 804–817.

[28] J. Zhao, I. Uwizeyimana, K. Ganesan, M. C. Jeffrey, and N. E. Jerger,
‘‘ALTOCUMULUS: Scalable scheduling for nanosecond-scale remote
procedure calls,’’ in Proc. 55th IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2022, pp. 423–440.

[29] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim, and
N. McKeown, ‘‘The nanoPU: A nanosecond network stack for datacen-
ters,’’ in Proc. USENIX OSDI, Jul. 2021, pp. 239–256.

[30] A. Daglis, M. Sutherland, and B. Falsafi, ‘‘RPCValet: NI-driven tail-
aware balancing of µs-scale RPCs,’’ in Proc. 24th Int. Conf. Architectural
Support Program. Lang. Operating Syst., Apr. 2019, pp. 35–48.

[31] A. Kalia, M. Kaminsky, and D. G. Andersen, ‘‘Datacenter RPCs can be
general and fast,’’ in Proc. USENIX NSDI, 2019, pp. 1–16.

[32] B. Zhao, W. Wu, and W. Xu, ‘‘NetRPC: Enabling in-network computation
in remote procedure calls,’’ in Proc. USENIX NSDI. Boston, MA, USA:
USENIX Association, Apr. 2023, pp. 199–217.

[33] J. Chen, Y. Wu, S. Lin, Y. Xu, X. Kong, T. Anderson, M. Lentz, X. Yang,
and D. Zhuo, ‘‘Remote procedure call as a managed system service,’’ in
Proc. USENIXNSDI. Boston,MA,USA:USENIXAssociation, Apr. 2023,
pp. 141–159.

GYUYEONG KIM (Member, IEEE) received the
B.S. and Ph.D. degrees in computer science from
Korea University, South Korea, in 2012 and 2020,
respectively. In 2022, he joined as a Faculty Mem-
ber with Sungshin Women’s University, Seoul,
South Korea, where he is currently an Assistant
Professor with the Department of Computer Engi-
neering. Before joining the Sungshin Women’s
University, he was a Research Professor with
the Future Network Center, Korea University.

His research interests include networked systems, in-network computing,
scriptable network stack, and HW-SW co-design.

77428 VOLUME 11, 2023


