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ABSTRACT Accurate real-time power system disturbance classification is beneficial in avoiding system
faults. However, in the process of disturbance detection, the quality of data obtained from the synchronous
phase measurement unit (PMU) can be problematic, seriously affecting its application in disturbance
classification. Moreover, existing methods are unable to accurately classify data with excessive noise.
To address this problem, a disturbance classification method based on ensemble empirical mode decompo-
sition, Transformer neural network, and support vector machine (EEMD-Transformer-SVM) was proposed.
First, considering the nonlinear and non-stationary characteristics of microgrid disturbance data, using
ensemble empirical mode decomposition to extract data features could effectively reduce the difficulty
of fitting nonlinear fluctuation patterns in machine learning models, while avoiding interference between
local features. Moreover, to capture and amplify the effective information in the data, a Transformer with a
multilayer self-attention encoder network was proposed, which could further transform the data features after
EEMD. Finally, the features were classified using a support vector machine. Based on the Consortium for
Electrical Reliability Technology Solutions (CERTS) microgrid system, the proposed method was tested
under different disturbance data to verify its accuracy and efficiency. By testing the data classification
performance in different scenarios, the method demonstrated a high level of generalization.

INDEX TERMS Disturbance classification, empirical mode decomposition, Transformer-based, self-
attention, support vector machine, CERT, generalizability.

I. INTRODUCTION
A. RELATED WORK
With the enormous use of nonlinear loads—such as high
proportional power electronic devices within the power
sector—the power-quality problem is becoming increasingly
prominent, having a great impact on the stable operation of
power systems. Therefore, to manage power quality problems
and to improve the quality of power supply, it is important to
identify and classify power quality disturbances accurately
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and efficiently, and to provide sufficient information for fur-
ther proposed remedial measures.

Most of the power quality disturbances are non-smooth
signals, and different methods of feature extraction combined
with classifiers are often used to solve the power quality dis-
turbance classification problem [1], [2]. The main methods of
feature extraction include the S-transform (ST) [3], discrete
wavelet transform (DWT) [4], short-time Fourier transform
(STFT) [5], and Hilbert–Huang transform (HHT) [6], [7].
The ST has good noise immunity and performance in time-
frequency analysis, but is still limited byHeisenberg’s inaccu-
racy principle and has poor real-time performance. The DWT
has variable time-frequency resolution, but its analysis can
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be influenced by the number of decomposition layers and
wavelet basis selection.

In recent years, scholars have proposed new improved fea-
ture extraction methods, such as successive variational mode
decomposition (SVMD) [8] and multi-scale fluctuation-
based dispersion entropy (MFDE) methods [9]. After feature
extraction, the extracted features need to be entered into
the classifier model. Most of the existing studies use the
direct multi-classification method, but this strategy is only
applicable to the identification of single disturbances and a
small number of composite disturbances.With increasing dis-
turbance types, the classifier faces dimensional disaster and
the classification efficiency and accuracy is greatly reduced.
For this reason, using a support vector machine (SVM) [10]
for classification, the idea of multi-label classification [11]
was introduced into the disturbance classification problem,
its implementation methods being specifically divided into
two categories—that is, algorithmmodification strategies and
problem transformation strategies. For example, the artificial
neural network (ANN) [12] effectively uses deep learning to
solve the classification problem end-to-end. The disturbance
signal can be converted into a two-dimensional image [13]
through a phase space reconstruction algorithm, with the
generated two-dimensional image being used as the convo-
lutional neural network (CNN) training and testing dataset to
achieve power quality disturbance classification. The original
signal of power quality disturbance is grayed out [14], the
generated grayed-out featuremap then being used as the input
dataset of the CNN model, and the grayed-out feature data
being automatically extracted by the CNN to recognize power
quality disturbances.

A combination of a self-encoder and CNN [15] can be used
to recognize disturbances, mapping the high-dimensional
input feature data to the low-dimensional hidden variable
features through the self-encoder and using the output hidden
variable features as the input features of the CNN to complete
the classification of power quality disturbances. The recursive
graph method [16] can be used to generate a two-dimensional
trajectory map of power quality disturbance signals, building
a long short-termmemory (LSTM) network as a classification
model, and using the classification model to extract deep
features of power quality disturbance; simulations proved that
the algorithm could effectively realize the classification of
power quality disturbance.

The power quality disturbance signal can be constructed
as a time-frequency matrix [17] by using an incomplete
S-transformation algorithm, from which a variety of effective
classification features can be extracted as the sample dataset
of a deep feedforward network, a dropout regularization
layer being added to optimize the neural network model to
improve the classification accuracy; simulations proved that
the method could effectively achieve a total of 17 distur-
bance types—including single and compound disturbances.
The power quality (PQ) composite disturbances were identi-
fied based on the modified multi-label radial basis function
(MLRBF) neural network and three-layer Bayesian Network

(TLBN) [18], [19], respectively, which could fully exploit
the association between the disturbance labels to improve the
classification effect, but normally at an enormous compu-
tational cost. Additionally, combining the LSTM and broad
learning system (BLS) algorithms [20] or the particle swarm
optimization (PSO) and BLS algorithms [21] could further
improve the classification accuracy of the model. The binary
relevance (BR) method [22] has been used to convert the
multi-label problem into multiple binary classification sub-
problems, the time complexity of the algorithm being greatly
reduced, its classification accuracy being largely dependent
on the generalization performance of each sub-classifier.

B. CONTRIBUTION
However, there are still many aspects of the disturbance
data classification problem that need to be further improved.
Traditional microgrid disturbance detection methods rely on
manually designed features, which cannot fully cover the
complexity of measuring disturbance data. Moreover, the
combination of a certain feature extraction technique and a
certain classificationmodel is almost arbitrary. Consequently,
the process of feature design and feature selection lacks
generalizability. In this work, a data-driven deep learning
model was established to discriminate disturbance types.
To enhance the input features of the model and the classifier
model to effectively capture and amplify the valid infor-
mation in the data for fast and accurate classification and
identification of complex disturbances, this study proposed
a method that combined ensemble empirical mode decom-
position with a Transformer neural network and support
vector machine (EEMD-Transformer-SVM) for disturbance
data classification—in short, a class of data-driven machine
learning techniques used for efficient identification and cate-
gorization of disturbance types to enable swift protection and
remedial measures.

The contributions of this study can be outlined as follows:

1) This paper mined the maximum feature information
of disturbance data by combining EEMD with the
Transformer model, and addressed the challenge of dis-
turbance classification using a data-centric approach.

2) To further strengthen the classification effect of the
model, the tail of the model was connected with an
SVM to further classify the results of the Transformer
model.

3) The PSCAD simulation was used to produce distur-
bance data, compared and evaluated the effectiveness
of the proposed classification approach and conducted
a comparative analysis with existing methods.

C. WORK ORGANIZATION
This work is structured as follows: Section II introduces
the studied Microgrid(MG) system; Section III focuses on
the principles involved in the proposed model; Section IV
describes the overall architecture of the proposed model.
In Section V, the simulation results are discussed. Section VI
presents the conclusions.
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FIGURE 1. CERTS microgrid system structure [24].

TABLE 1. CERTS microgrid system parameters [22].

II. THEORY: MICROGRID SYSTEM
In this paper, an improved microgrid system based on the
CERTS microgrid is the research subject [23], [24], [25].
As shown in Fig. 1 and Fig. 2, the operating voltage of the
microgrid adopted is 0.48 kV and 50 Hz, which can support
grid-connected or islanded load modes and is controlled by
the common coupling point (PCC) switching state. Addition-
ally, loop switches enable the system to operate in either
radial or loop topology. Three distributed energy resources
(DER) is used in the system—that is, a battery storage sys-
tem (DER-Bt.S in Fig. 1) and two photovoltaic (PV) power
sources (DER-PV). The DER-Bt.S is connected to the system
via a current-controlled voltage-source inverter, its control
strategy switching to a frequency-controlled inverter in island
mode. The DER-PV controls the voltage-source converter
interface through current, maintaining its control strategy in
grid-connected and islanded modes.

The parameters of the load, transformer, and transmission
line is set according to the literature [22] and made sim-
ple improvements to some parameters. The specific CERTS
microgrid parameters are shown in Table 1. The construction
of the model in PSCAD simulation software is completed
and generated data, which were used to detect the type and

FIGURE 2. Disturbance data generated by microgrid systems.

location of disturbances. For further details about the simula-
tion construction, please refer to [26] and [27].

III. METHODOLOGY
A. THE ENSEMBLE EMPIRICAL MODE
DECOMPOSITION (EEMD)
Considering that traditional empirical mode decomposi-
tion [28] can suffer frommode mixing defects due to extreme
value mutations caused by transient pulses—resulting in the
loss of some time or frequency scales—thus causing errors in
the decomposed modal components which cannot perfectly
restore the characteristics of the original signal, affecting the
final disturbance discrimination effect. Consequently, in this
study, Ensemble empirical mode decomposition [29], [30]
is adopted to decompose the sequence into several intrinsic
mode functions (IMFs) and residuals of different frequen-
cies, each of which represents a local feature on a certain
time scale. The frequency components contained in each
decomposedmode component are different, which effectively
suppresses the phenomenon of mode mixing and avoids
mutual interference between local features. EEMD can help
the model more efficiently learn the data features of different
disturbance types and improve the accuracy of disturbance
discrimination.

The principle of the EEMD [31] method can be described
as follows: the added Gaussian white noise fills the entire
time-frequency space uniformly, promoting the natural sep-
aration of frequency scales, and reducing the occurrence
of mode overlap problems due to IMF discontinuities in
the EMD method. The EEMD method can be described as
follows:

Step 1: Initialize the EMDmethod. Set the original signals’
processing M times. Add random white noise of different
amplitudes to each of theseM original signals to form a new
series of signals. The amplitude coefficient of the noise is k ,
and the execution number is m = 1.
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Step 2: The numerically generated white noise xm (t) with
the given amplitude to the original signal x (t) can be gener-
ated, as follows:

xm (t) = x (t) + k∗Nm (t) (1)

where x (t) denotes the original signal, Nm (t) denotes ran-
domly added white noise, and k is the amplitude coefficient.

Step 3: The EMDmethod can be used to decompose xm (t)
into a series of IMF components Cj,m.Cj,m is the jth IMF of
the m-th decomposition:

xm (t) =

S∑
j=1

Cj,m (t) + rj,m (t) (2)

where S denotes the number of IMFs, Cj,m (t) denotes the
IMFs, which include different frequency bands ranging from
high frequency to low frequency, and rj,m (t) denotes the final
residue, which is the mean trend of the signal.

Step 4: If the decomposition number is m < M , then m =

m+ 1. Then, return to Step 2.
Step 5: The corresponding average can be calculated for

the M-th decomposition. The result of the calculation can be
obtained as follows:

C j (t) =
1
M

M∑
i=1

Cj,m (t) (3)

where C j (t) denotes the jth IMF decomposed by EEMD
when m = 1, 2, 3, . . . ,M .
The total operation number M and the noise amplitude α

are the two parameters that need to be specified in the EEMD
method. The final average value of the corresponding IMF
can then be offset with the added white noise to improve the
signal-to-noise ratio. So, the two parameters need to be cho-
sen carefully. It should be noted that the number of sets should
increase as the amplitude of the noise increases to reduce the
contribution of additional noise to the decomposition result.

B. COMPOSITE MULTISCALE ENTROPY (CMSE)
For each decomposed IMF column, the composite multiscale
entropy (CMSE) is computed and reorganized the IMFs with
close entropy values. The flowchart of the CMSE algorithm
is shown in Fig. 3. At a given scale factor τ , The SampEns of
all coarse-grained time series can be computed at that scale
factor, and the multiscale entropy value can be defined as the
average of all entropy τ values [32], as follows:

CMSE (x, τ,m, r) =
1
τ

τ∑
k=1

SampEn
(
y(τ )
k ,m, r

)
(4)

where x = {x1, x2, · · · , xN } denotes a one-dimensional time
series of length N ,m denotes the dimension of each pair in
the matched vector pair for the SampEn calculation, and r
denotes a predefined tolerance threshold.

SampEn quantifies the probability that two sequences ofm
consecutive data points that are similar to each other remain
similar when an additional consecutive point is included.

FIGURE 3. Flow chart of the CMSE algorithm.

Being ‘‘similar’’ means that the distance between two vectors
is less than a tolerance threshold value r , the distance being
defined as the maximum of the absolute differences between
their components in the two vectors. Here, the m = 2 and
r = 0.15σ can be used to calculate SampEn, where σ denotes
the standard deviation of the time series (raw THz time
domain data). The cases of m = 2 and r values between 0.1σ
and 0.25σ have been widely adopted in previous SampEn
calculations, because (in the case of m = 2), SampEn is
not related to the time series length. The r value used here
is also within the reported range of SampEn applications and
has been adopted in previous CMSE studies.
y(τ )
k =

{
y(τ )
k,1, y

(τ )
k,2, · · · , y(τ )

k,p

}
is the kth coarse-grained time

series at a scale factor of τ and can be defined as follows:

y(τ )
k,j =

1
τ

jτ+k−1∑
i=(j−1)τ+k

xi, 1 ≤ j ≤
N
τ

, 1 ≤ k ≤ τ (5)

C. SELF-ATTENTION
The self-attentive layer can be split into h attention heads for
input. In the output section, the results of each header can then
be concatenated to form the output of the layer, and a para-
metric linear transformation can be applied. Each sequence
is entered separately with h input headers, x = (x1, . . . , xn)
of n elements where xi ∈ Rdx , and a new sequence z =

(z1, . . . , zn) of the same length can be computed, where
zi ∈ Rdz . Each output element zi can be calculated as a
weighted sum of the input elements of the linear transforma-
tion, as follows:

zi =

n∑
j=1

αij

(
xjWV

)
(6)

Each weight coefficient, αij, can be computed using a
softmax function, as follows:

αij =
expeij∑n
k=1 expeik

(7)
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where j = 1, 2, 3, . . . , S. Moreover, eij can be computed
using a compatibility function that compares two input ele-
ments, as follows:

eij =

(
xiWQ

) (
xjWK

)T
√
dz

(8)

The scaled dot product can be used as a compatibility
function to optimize the computational efficiency, the linear
transformation of the input adding sufficient expressiveness.
Finally, WQ,WK ,WV

∈ Rdx×dz are parameter matrices and
for each layer and attention header, these parameter matrices
are unique.

D. SUPPORT VECTOR MACHINES (SVM)
The support vector machine (SVM) can be considered to be a
supervised learning method used to accomplish classification
tasks or regression tasks, the purpose of which is to find a
hyperplane in a high-dimensional space that maximizes the
distance between classes. The SVM for classification tasks
can be as follows:

min
w,b,ζ

1
2
wTw+ C

n∑
i=1

ζi

subject to
∣∣∣yi − wTφ (xi) − b

∣∣∣ ≤ ϵ + ζi

ζi, ζ
∗
i ≥ 0, i = 1, 2, · · · n (9)

where xi ∈ Rp, i = 1, 2, . . . , n, and y ∈ Rn, yi denotes the
true label for xi input and yi = wTφ (xi) + b can be referred
to as the predicted results for xi, ζi denotes the penalty applied
if the difference between the prediction wTφ (xi) + b and the
label yi is greater than the tolerance limit ϵ, and φ (·) denotes
a function that can be applied when a linear separation of
observations is not possible.

In this paper, the low error rate of SVM generalization, its
fast classification speed, and the easy interpretation of results
are taken advantage of to replace the final output layer of the
model for the final classification task of the model.

E. LONG SHORT-TERM MEMORY NETWORK (LSTM)
The LSTM network [33]—a modification of the recurrent
neural network (RNN) network structure [34]—emerged to
address the challenge of long-range dependencies in long-
sequence that beyond the capability of recurrent neural net-
works (RNNs). Its network structure is as shown in Fig. 4.

The LSTM block contains a memory cell instead of neu-
rons, which can be considered to be a memory unit with state
ct at time t . Apart from the memory cell, three adaptive and
multiplicative units control the flow of information in the
block. These units include the input gate it , output gate ot , and
forget gate ft . Access to the block or other parts of the network
is controlled by the input and output gates, while forgetting
gates are used to reset the state of thememory cell. The LSTM
block can be described and the hidden state ht calculated as

FIGURE 4. The LSTM structure.

follows:

ft = σg
(
Wf xt + Uf ht−1 + bf

)
(10)

it = σg (Wixt + Uiht−1 + bi) (11)

ot = σg (Woxt + Uoht−1 + bo) (12)

ct = ft ⊙ c(t−1) + it ⊙ tanh(Wcxt + Uch(t−1) + bc) (13)

ht = ot ⊙ tanh(ct ) (14)

where ft , it and ot denote the forget gate, input gate, and
output gate, respectively;Wf ,Uf ,Wi,Ui,Wo,Uo,Wc andUc
denote weight matrices; bf , bibo, and bc denote bias vectors;
xt denotes the current input; ht−1 denotes the output of the
LSTM at previous time t − 1; σ () denotes the Sigmoid
activation function; and⊙ denotes the Hadamard production.

F. TRANSFORMER
The Transformer forms an encoder-decoder network struc-
ture by stacking encoder and decoder layers. As shown in
Fig. 5, the encoder layer comprises two sub-layers—that
is, a self-attention layer followed by a position-wise feed-
forward layer. The decoder layer is similar to the encoder
and comprises three sub-layers—that is, the self-attention
layer followed by the encoder-decoder attention layer, and
then the position-wise feedforward layer. It uses residual
connections around each of the sublayers, followed by layer
normalization. To prevent future information leakage during
the training process, masking can be added to the decoder
self-attention layer.

Self-attention extracts feature to obtain global relationships
between each word, but does not explicitly preserve temporal
information, so additional encoding of position is needed to
introduce sequence information. In this paper, the position
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FIGURE 5. The overall structure of the transformer.

TABLE 2. Configurations for disturbance cases simulation [35].

encoding uses the learnable position encoding in Bert. Sim-
ilar to general word embedding encoding, the learnable
position encoding proposed by Bert is randomly generated
and trainable with the dimension [seq_length, width], where
seq_length denotes the sequence length andwidth denotes the
vector length corresponding to each token. Residual connec-
tions help propagate position information to higher layers.

IV. RESULTS: CASE STUDY
In this research, the CERTSmicrogrid model was constructed
utilizing PSCAD simulation, and a set of ten predefined dis-
turbance types were incorporated. Various line disturbances
were introduced at different locations within the microgrid
model to generate corresponding data waveform sequences,
as shown in Table 2.

A. SIMULATION ENVIRONMENT
In the simulations conducted, disturbance data for the
microgrid were generated through PSCAD simulations. The
hardware platform used in this work included a laptop
equipped with a GeForce RTX 1080 GPU and Intel Core
i7-7700HQ. The software components consisted of PSCAD
4.6.2, Python 3.8, and the following packages with their
respective versions used in data processing and deep learning
modeling—namely, Keras 2.6.0 with Tensorflow 2.6.0 as
the backend, Numpy 1.19.5, Pandas 1.2.4, pyemd 0.5.1, and
scipy 1.9.3.

FIGURE 6. Data decomposition results in the time and frequency
domains.

B. DATA TIME-FREQUENCY DOMAIN TRANSFORMATION
In this paper, the EEMD is used to decompose the data in the
time-frequency domain, and to decompose the perturbed raw
data into s modal components and one residual component.
The composite multiscale entropy values of each component
can be calculated, and the sequences with similar CMSE
entropy values superimposed to form the recombined com-
ponent sequences. The recombinant component sequences
can then be spliced and input to the model for training. The
decomposition results are shown in Fig. 6.
The CMSE of each component is calculated, as shown in

the Table 3, and merged the IMFs according to their entropy.
Consequently, The IMF1 with IMF2, IMF3 and IMF4, IMF5
with IMF6, IMF7 and IMF8, and IMF9 with IMF10 and IMF
11 were merged to form four subsequences including Res.

C. OVERALL STRUCTURE OF THE MODEL
To maximize the disturbance of data information mining
and knowledge learning [36], during the data preprocessing
stage, the original data is subjected to time-frequency trans-
formation, and the implicit feature information contained in
the data is further calculated by collecting EEMD data to
obtain the CMSE of each decomposed mode component.
The sequences with similar entropy are merged, and the
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TABLE 3. Composite multiscale entropy of each component.

decomposed sequence is used as prior knowledge injected
into the model, which can help it to learn the characteristics
of different disturbance data and converge faster, thereby
improving the accuracy of the model in discriminating dif-
ferent disturbance types. The representation learning for the
multi-dimensional data which has been transformed from
the time domain to the frequency domain and mapped to the
high-dimensional space is achieved through the embedding
layer. After positional embedding, the data at each position
is then tagged. Moreover, after the multi-layer Transformer
encoder, datamapping is performedmultiple times for feature
conversion, after which it is processed through the bidirec-
tional LSTM network. The obtained data is decoded and
output by the fully connected layer and SVM. The established
model structure is as shown in Fig. 7.
Since most deep learning models embed high-dimensional

representations of the input data at the first stage, the same
architectural setup was followed. As shown in Fig. 7, the
first layer is set as the embedding layer, and the encoder part
of the Transformer structure is used, which has advantages
in extracting features from disturbance data. The original
linearly inseparable disturbance data is then mapped through
multiple feature-mapping layers to become linearly separable
in high-dimensional space.

Parameter setting of the model is shown in Fig. 8, the num-
ber of attention mechanism heads being determined based
on the data feature dimension; the design principle being
to ensure that the number of heads is equal to the fea-
ture dimension. The decomposed data and original data are
jointly used as the input data, the input feature number being
six. However, to further expand the parallelism of computa-
tion, the number of attention mechanism heads were slightly
increased to eight, which was determined through simulation.
Since the length of the perturbation measurement data is long
(n=3000), to improve the computational efficiency, the query
to access and interact with the neighborhood must be limited
within a small window size (m=100). The feature mapping
process of this encoder is repeated five times to complete
the perturbed data feature extraction. As the bidirectional
LSTMhas good decoding abilities for the perturbed data after
feature extraction, the model selects the LSTM to complete
the decoding work after data encoding. The decoded data
features are then constrained to ten types of disturbance using

FIGURE 7. The structure of the proposed model.

FIGURE 8. Model parameter setting and brief architecture of the model.

TABLE 4. Parameter setting of the model.

SVM classifiers to achieve the perturbation type discrimina-
tion output. The configuration of model layers, along with
their corresponding parameter values, is provided in Table 4.

A layer in the model is selected to visualize the distribution
of its learnable parameters after initialization, as shown in
Fig. 9.

The parameters are initialized by using a uniform distribu-
tion with 0 mean.
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FIGURE 9. Initialized parameter distribution.

FIGURE 10. Training and testing loss of the model.

FIGURE 11. Training and testing accuracy of the model.

V. DISCUSSION: ANALYSIS OF RESULTS
A. SIMULATION RESULTS
After performing the EEMD and reconstruction on the data,
it was fed into our proposed model. The model parameters
were iteratively updated, and convergence to the optimal state
was achieved after 100 training epochs. The training process
of the model is depicted in Fig. 10.

As shown in Fig. 11, after training and undergoing mul-
tiple layers of Transformer encoders and Bi-LSTM feature

mapping, the model is able to effectively extract different
feature information from various types of power grid dis-
turbances, causing the originally linearly inseparable power
grid disturbance samples to become linearly separable. The
advantage of the SVM lies in its principle of only using a por-
tion of support vector samples for classification. By selecting
an SVM as the classifier at the end, the model takes on a
stacking structure where the next layer of the model further
corrects any misclassifications made by the previous layer.
This further improves the accuracy of the model’s power grid
disturbance classification.

The trained model demonstrated excellent performance on
both the training and testing datasets, achieving a classifica-
tion accuracy of nearly 100% on the training dataset and 99%
on the testing dataset. The model’s consistent performance on
both datasets indicates its effectiveness in accurately classify-
ing line disturbances. Additionally, the absence of overfitting
or underfitting further strengthens the model’s reliability. The
confusion matrices of the proposed model can be found in
Fig. 12. Using the binary classification problem as an exam-
ple, the confusion matrix can be expressed as follows:

ConfusionMatrix =

[
TP FN
FP TN

]
(15)

where TP (true positive) and TN (true negative) denote the
number of positive and negative instances that are correctly
classified, respectively, and FN (false negative) and FP (false
positive) denote the number of positive instances and negative
instances that are misclassified, respectively [37]. Based on
the confusion matrix, the accuracy can be defined to assess
model performances [38], as follows:

Accuracy (A) =
TP

TP + FP
(16)

In order to minimize the training parameter count of the
model, the Bayesian optimization is employed to optimize the
hyperparameters and tested with various activation functions
during the model debugging phase. After thorough evalu-
ation, the ReLu function was determined to be the most
suitable activation function for the residual module.

B. PERFORMANCE COMPARISON
The ablation study is supplemented and tested the effects of
other representative time-frequency transform feature mining
methods, comparing their classification results. It is evident
that the proposedmodel outperforms all the comparisonmod-
els, as shown in Table 5.

In Table 5, EMD stands for empirical mode decompo-
sition, WT stands for wavelet transform, WPT stands for
wavelet packet transform, and ‘‘+’’ indicates the combina-
tion relationship between algorithms. Fig. 13 visualizes the
classification accuracy of each model.

The backbone of the proposed model architecture belongs
to the deep learning model, which updates the weight param-
eters through backpropagation and learns an effective distur-
bance type discrimination model. To control variables and
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FIGURE 12. Confusion matrices for model disturbance classification
performance of the training dataset (a) and testing dataset (b).

facilitate the comparison of model computation times, the
computational time complexity is compared with multiple
typical deep learning model architectures and the actual com-
putation time of each iteration during the training process,
as shown in the Table 6.

In Table 6, complexity per Layer denotes the time com-
plexity of each layer in the backbone network of the model,
Params denotes the number of parameters in the model (M:
million), and GPU denotes the time consumed by each itera-
tion of the model (ms: milliseconds). Moreover, n denotes the
length of microgrid disturbance data, d denotes the embed-
ding dimension, k denotes the kernel size of convolutions,
and m denotes the size of the neighborhood in restricted
self-attention. m is much smaller than the data length n and
embedding dimension size d .

TABLE 5. The results of model comparison.

FIGURE 13. Comparison of model accuracy.

TABLE 6. Comparison of computation consumption.

As shown in Fig. 14, through visualizing the computation
time complexity, computation time, and model parameter
volume of various typical networks for microgrid disturbance
classification., it is evident that the proposed model has a
computationally parallel performance that greatly reduces the
model training iteration time while controlling the model
parameter volume size. The CNN in the figure is faster
through its convolution kernel computation, but its distur-
bance classification accuracy is 4% lower than that of the pro-
posed model. In summary, by analyzing and comparing the
computational consumption of the models and balancing the
accuracy of disturbance classification and computation time
complexity, it is evident that the proposed model achieved
better performance.
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FIGURE 14. Comparison of the calculation cost of different models.

VI. CONCLUSION
The proposed model was superior to the other machine learn-
ing models. It could solve the classification of disturbance
types end-to-end, without more complex data preprocessing,
making it more convenient and effective. Additionally, the
model could also consider a variety of factors and maxi-
mize the disturbance of the data information mining and
knowledge learning. Through a comparative analysis with
alternativemachine learningmodels, it was demonstrated that
the proposed model exhibits superior robustness and faster
convergence rate.
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