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ABSTRACT The electromagnetic-suspension (EMS) vehicle has been commercialized for the urban trans-
portation in many countries. However, industrial applications of the small-size rigid quadruple counterpart
are still restricted by the coupling problem or the so-called statically indeterminate problem among the four
electromagnets. Inspired by the robust zero-power-control algorithm for the permanent-electromagnetic-
suspension (PEMS) system, this work proposes the robust constant-power-control algorithm with the
augmented integral controller to compensate the current coupling among the four electromagnets and to
stabilize the rigid quadruple EMSvehicle. The proposed algorithm only involves three feedback control loops
and four parameters. Detailed analytical derivations are addressed to determine the four parameters, whereas
the numerical simulations are presented to demonstrate the effectiveness and the outstanding robustness of
the proposed algorithm. Hence, the coupled robust constant-power-control algorithm significantly enhances
the stability and reduces the complexity in the controller design as well as the mechanical structure for the
rigid quadruple EMS vehicle. Also, the proposed algorithm is so simple that plenty of room is available
to incorporate intelligent control algorithms. Consequently, this work sheds light on the intelligent EMS
transportation system for more industrial applications.

INDEX TERMS Magnetic levitation, electromagnetic suspension, intelligent transportation systems, robust
constant-power control.

I. INTRODUCTION
The electromagnetic suspension (EMS) is one of the mag-
netic levitation technologies [1]. And, the EMS transportation
is famous for the zero friction, the strong climbing & turning
ability, and the environment-friendly feature [2], so that it can
satisfy harsh urban-transportation requirements and has been
commercialized in many countries, such as Japan, Korea, and
China. Moreover, the EMS transportation has vast industrial
applications, such as for clean rooms [3], food or beverage
factories [4], and noise-free environment [1].
Generally, the urban-transportation EMS vehicle is sup-

ported by several bogies, whereas each bogie has four sets
of electromagnets and is separated into two rigid parts that
are physically decoupled by the anti-roll beam [1], [2], [3].
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Because of the difficulty in analyzing the coupling among
the four electromagnets on the physically-decoupled EMS
bogie, many studies in the literature only focused on the
controller design for the single-degree-of-freedom (DoF) sys-
tem, i.e., single set of electromagnet [4]. Lee et al. [5], Sinha
and Pechev [6], Su et al. [7], and Suebsomran [8] optimized
the dynamic performance of the single-DoF system with
advanced control algorithms, such as the gain-scheduling
control [5], the optimal control [6], the fuzzy control [7], and
the neural network control [8], respectively.
Contrarily, industrial applications usually require the EMS

vehicle to be small and rigid due to the tight budget of
the structure and the maintenance. Mathematically, a rigid
bogie with three sets of electromagnets formulates a statically
determinate problem [9], [10], [11], whereas four sets of
electromagnets with integral controllers (I controllers) are
likely to over-constrain the rigid bogie and give rise to a
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statically indeterminate problem. In 2017, Yaseen [12] con-
structed a rigid quadruple EMS vehicle and observed an
amplifying oscillation for the four separated proportional-
integral-derivative controllers (PID controllers) and an atten-
uating oscillation for the four separated state-space feedback
controllers without I controller. Also, the engineering toler-
ance [12], [13] and the track deflection [4] make it difficult
to assign suitable floating-gap setpoints for the four separated
I controllers. Therefore, the coupling among the four elec-
tromagnets potentially undermines the stability of the rigid
quadruple EMS vehicle.

In the literature, there are generally two approaches to sta-
bilize the rigid quadruple EMS vehicle against the statically
indeterminate problem:

• By a cross-coupling term: in 2001, Park et al. [4]
adopted the state-space feedback controller with the I
controllers for the floating gaps and applied the cross-
coupling term among the four electromagnets to stabi-
lize the quadruple EMS vehicle.

• By a minimum realization: in 2003, Cruz et al. [14]
overcame the statically-indeterminate problem by trans-
forming the four floating-gap signals into the three
position signals (i.e., heave, pitch, and roll) to formulate
a minimum realization of the multi-input-multi-output
(MIMO) close-loop system for the quadruple EMS
vehicle.

However, the cross-coupling-term approach [4] involves
augmented matrixes and tedious derivation due to the
floating-gap I controllers. Besides, the minimum-realization
approach [14] emphasizes on positions of the vehicle rather
than the states of the electromagnets, which may undermine
the robustness due to the exploitation of electromagnets.
Therefore, the rigid quadruple EMS vehicle is still eager for
a simple, robust and effective control algorithm.

Besides, the zero-power-control algorithm is famous for
the permanent electromagnetic suspension (PEMS) system
due to the biased magnetic force by the permanent mag-
net [15]. In 1988, Morishita and Azukizawa [16] applied
the zero-power control to the small-size flexible quadru-
ple PEMS vehicle with two rigid parts jointed by a shaft,
whose mechanical structure was complex and like the bogie
design for the EMS vehicle [1], [2], [3]. In 1994 and 1995,
the robustness of the zero-power control was analyzed and
examined by Tzeng and Wang [17], [18] for the single-DoF
PEMS system. Later on, Mizuno and Takemori extended the
realizations of the zero-power controller [15] and managed
to apply the zero-power control to the PEMS bearing [19]
and the PEMS vibration isolator [10]. In 2013, Cho et al. [13]
succeeded in implementing the robust zero-power control for
a rigid quadruple PEMS vehicle, but did not clarify the sta-
bilizing mechanism among the four electromagnets. In 2020,
Zhang et al. [20] analyzed the geometric modifications on the
single-DoF PEMS system to enhance the zero-power-control
performance.

Technically, the zero-power control improves the robust-
ness of the PEMS system by the I controller to maintain

FIGURE 1. Sketch for the single-DoF EMS system consisting of the
electromagnet and the ferrimagnetic guideway. The origin of the z-axis
locates at the initial height of the upper surface of the electromagnet.

the average value of the fluctuating excitation current at
around zero and to enhance the stability under external distur-
bances [15], [18], which can be generalized as the constant-
power control for the EMS system. This work proposes a
coupled robust constant-power-control algorithm for the rigid
quadruple EMS vehicle. Based on the double-loop constant-
power controller design for the single-DoF EMS system and
the current coupling of the quadruple EMS vehicle, the aug-
mented I controller is designed to formulate a compensating
loop to stabilize the four electromagnets against the statically
indeterminate problem. The coupled algorithm involves only
four parameters and is so simple that plenty of room is
available to incorporate intelligent control algorithms, such
as the optimal control, the gain-scheduling control, and the
self-adaptive control.

The paper starts with the theoretical work of the constant-
power controller for the single-DoF EMS system in Sec. II,
including (i) the kinetics analysis, (ii) the proportional-
derivative controller (PD controller) for the distance loop, (iii)
the I controller for the power loop, and (iv) the numerical
simulation. Then, Sec. III analytically derives the coupled
algorithm for the rigid quadruple EMS vehicle in four steps:
(i) the kinetics analysis, (ii) the current coupling, (iii) the
augmented I controller for the compensating loop, and (iv)
the numerical simulation. Concluding remarks are addressed
in Sec. IV.

II. SINGLE-DOF EMS SYSTEM
A. KINETICS ANALYSIS
Fig. 1 shows the single-DoF EMS system consisting of the
electromagnet and the ferrimagnetic guideway. The z-axis is
pointing vertically upwards and its origin locates at the initial
height of the upper surface of the electromagnet. The elec-
tromagnet has a column shape and is restricted to move only
along the z-axis. The excitation current, I , flows through the
windings inside the electromagnet and generates a magnetic
field to attract the ferrimagnetic guideway. The following
two assumptions are adopted to simplify the magnetic field
between the electromagnet and the guideway [21],

• The magnetic leakage is neglected;
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• The magnetic reluctances of the iron core and the guide-
way are neglected compared with that of the air gap.

In Fig. 1, the floating gap is defined as the height difference
between the guideway and the electromagnet,

Zh = zway − zmag> 0, (1)

where zway measures the height of the lower surface of the
guideway, and zmag measures the height of the upper surface
of the electromagnet. Taking second-order derivative of (1)
about the time, t , leads to,

d2Zh
/
dt2 = away − amag, (2)

where a stands for the vertical acceleration. Because zway
can be regarded as an external disturbance, the dominant
dynamics of the single-DoF EMS system is,

d2Zh
/
dt2 = −amag. (3)

The magnetic force between the guideway and the electro-
magnet can be modelled as the bi-variable function [8], [14]
of I and Zh as,

F = C
(
I
/
Zh
)2

, (4)

where the electromagnet coefficient, C , involves the number
of windings and the pole area.

Moreover, the force balance of the electromagnet gives,

F = m
(
g+ amag

)
, (5)

where m = 3 kg is the mass of the electromagnet and g =

10 N/kg is the gravitational acceleration.
Hence, at the equilibrium with amag = 0, the equilibrium

magnetic force is calculated from (4)-(5) as,

Feq = C
(
Ieq
/
Zh,eq

)2
= mg, (6)

which indicates that the equilibrium excitation current is
linearly proportional to the equilibrium floating gap, i.e.,
Ieq ∝ Zh,eq, for a constant payload, mg.

Since the electromagnet consumes the electric power to
generate the magnetic force, it gets overheated when I
exceeds certain value. Hence, we define the nominal exci-
tation current, Inorm, as the excitation current for the elec-
tromagnet to work for a sufficiently long time without a
significant temperature rise. Similarly, we define the nominal
floating gap, Zh,norm, for the nominal payload, Fnorm, at Inorm,
and this work adopts the following nominal parameters,

Inorm = 1.0 A,Zh,norm = 0.01 m, and Fnorm = 30 N, (7)

whereas the electromagnet coefficient in (6) is solved as
C = Fnorm

(
Zh,norm

/
Inorm

)2
= 0.003 m2N

/
A2. Table 1

summarizes parameter values adopted in this work.
Furthermore, two types of working ranges are defined for

the electromagnet regarding Zh and I ,
• The tolerable ranges: the mean values of Zh and I should
be within the tolerable ranges, i.e., ±20% about Zh,norm
and ±50% about Inorm,

Zh ∈ (0.008, 0.012) m and I ∈ (0.5, 1.5) A, (8)

TABLE 1. Parameter values.

FIGURE 2. Block diagram of the distance loop.

whereas the mean magnetic force varies between 5.2 N and
105.5 N.

• The limit ranges: the transient values of Zh and I should
be within the limit ranges, i.e., ±40% about Zh,norm and
±100% about Inorm,

Zh ∈ (0.006, 0.014) m and I ∈ (0, 2.0) A, (9)

whereas the transient magnetic force varies between 0 N and
333.3 N.
Importantly, the single-DoF EMS system is regarded to

lose control when both Zh and I exceed the respective limit
ranges.
Nevertheless, by imposing an infinitesimal perturbation,

1Zh = Zh − Zh,eq, to the floating gap of the electromagnet,
denote the current change as 1I = I − Ieq and the force
change as 1F = F − Feq. Mathematically, 1F in (4) is
locally linearized about the equilibrium as [12], [22], and
[23],

1F =
∂F
∂I

1I +
∂F
∂Zh

1Zh =
2CIeq
Z2
h,eq

1I −
2CI2eq
Z3
h,eq

1Zh. (10)

And, the dynamic equation is calculated from (3), (5), (6),
and (10) as,

−
d2Zh
dt2

= 2g
(

1I
Ieq

−
1Zh
Zh,eq

)
, (11)

which gives the transfer function from1I to1Zh by applying
the Laplace transformation as,

G1 (s) =
1Zh (s)
1I (s)

=
−2g

/
Ieq

s2 − 2g
/
Zh,eq

, (12)

which is an unstable second-order systemwith a positive pole
at s =

√
2g
/
Zh,eq.
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B. PD CONTROLLER FOR DISTANCE LOOP
In order to stabilize the single-DoF EMS system, i.e., G1 (s),
the negative feedback control is adopted and consists of
the distance sensor, H (s), and the PD controller, GPD (s),
as shown in Fig. 2. For the ease of presentation, the distance
sensor measures the floating gap, 1Zh, with a unity gain, i.e.,
H (s) = 1. And, the error signal of the distance loop is defined
as,

EZ (s) = (1Zh)sp (s) −1Zh (s) , (13)

where (1Zh)sp is the floating-gap setpoint.
The transfer function of the PD controller for the distance

loop is defined as,

GPD (s) =
1I (s)
EZ (s)

= kP + kDs, (14)

where kP and kD are the proportional gain and the derivative
gain, respectively.

Therefore, the close-loop transfer function of the distance
loop is,

8distance−loop (s)

=
1Zh (s)

(1Zh)sp (s)
=

GPD (s)G1 (s)
1 + H (s)GPD (s)G1 (s)

=
−2 (kP + kDs) g

/
Ieq

s2 −
(
2kDg

/
Ieq
)
s−

(
2kPg

/
Ieq + 2g

/
Zh,eq

) , (15)

whose characteristic equation is,

s2 −
(
2kDg

/
Ieq
)
s−

(
2kPg

/
Ieq + 2g

/
Zh,eq

)
= 0. (16)

Moreover, the stability criterion requires positive coeffi-
cients for all terms in the above characteristic equation as,{

−kD > 0
−kP > Ieq

/
Zh,eq

. (17)

Technically, |kP| measures the proportional gain between
1I and 1Zh, and is constrained by the power supply and the
induction of the electromagnet. Also, a large |kP| is prone to
amplify external disturbances. Hence, |kP| is preferred to be
as small as possible and is determined by the maximum value
of
(
Ieq
/
Zh,eq

)
in the limit ranges as,

−kP >
Imax

Zh,min
=

2
0.006

= 333.3 A/m. (18)

Hence, kP = −350 A/m is sufficient to stabilize the single-
DoF EMS system in the limit ranges and is adopted in this
work.

Furthermore, the characteristic equation in (16) can be
transformed into a standard second-order form, i.e., s2 +

2ξωns+ ω2
n = 0, as,{

ξωn = −kDg
/
Ieq

ω2
n = −2kPg

/
Ieq − 2g

/
Zh,eq

, (19)

FIGURE 3. Contour of min
(
−kD

)
in the limit ranges with kP= −350 A/m.

The contour with min
(
−kD

)
= 6.5 A · s/m does not appear and becomes

the necessary condition for (20) to be fulfilled for the whole limit
ranges. The magenta dashed rectangle denotes the tolerable ranges,
whereas the magenta dashed-dotted line denotes Inorm.

where ξ is the damping ratio and ωn is the natural frequency.
Technically, we prefer ξ ≥

√
2
/
2, which leads to,

−kD ≥

√
−
kPIeq
g

−
I2eq

Zh,eqg
. (20)

Fig. 3 visualizes the variation of min (−kD) =√
−
kPIeq
g −

I2eq
Zh,eqg

in the limit ranges with kP = −350 A/m.

Hence, by referring to Fig. 3, kD = −6.5 A · s/m fulfils the
requirement in (20) for the whole limit ranges. Note that the
zero in 8distance−loop (s), i.e., s = −kP

/
kD = −53.85 s−1,

will influence the dynamics of the second-order system as
well. Also, it is worth mentioning that the dynamics of the
second-order system can be further optimized by the gain-
scheduling algorithm for both (−kP) and (−kD).

Furthermore, the time constant of the second-order system
is,

Tdistance−loop =
2π
ωn

=
2π√

−2kPg
/
Ieq − 2g

/
Zh,eq

. (21)

Fig. 4 visualizes the variation of Tdistance−loop in the limit
ranges with kP = −350 A/m. We observe that Tdistance−loop
is smaller than 0.15 s in the tolerable ranges.

Nevertheless, the steady-state error of the distance loop
in (13) under a unit step change in (1Zh)sp, i.e., (1Zh)sp
(s) = 1

/
s, is calculated as,

lim
t→∞

eZ (t) = lim
s→0

sEZ (s) = lim
s→0

(
1 − 8distance−loop (s)

)
=

Ieq
kPZh,eq + Ieq

̸= 0. (22)

Hence, the PD controller for the distance loop cannot fully
eliminate the steady-state error in 1Zh.
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FIGURE 4. Contour of Tdistance−loop in the limit ranges with
kP = −350 A/m. The magenta dashed rectangle denotes the tolerable
ranges, whereas the magenta dashed-dotted line denotes Inorm.

FIGURE 5. Block diagram of the distance loop and the power loop.

C. I CONTROLLER FOR POWER LOOP
In order to realize the constant-power control [15], another
negative feedback control is adopted from the current change,
1I , to the floating-gap setpoint, (1Zh)sp, as shown in Fig. 5.
In other words, the power loop aims to maintain I at Inorm by
adjusting (1Zh)sp.

Moreover, in order to prevent the power loop from affecting
the transient dynamics of the distance loop, the time constant
of the power loop is designed to be at least 10 times larger
than that of the distance loop in the tolerable ranges as,

Tpower−loop≥ 10Tdistance−loop. (23)

Thus, solely considering the transient dynamics of the
distance loop in Fig. 2, the close-loop transfer function from
(1Zh)sp to 1I is calculated as,

8current (s) =
1I (s)

(1Zh)sp (s)
=

GPD (s)
1 + H (s)GPD (s)G1 (s)

=
(kP + kDs)

(
s2 − 2g

/
Zh,eq

)
s2 −

(
2kDg

/
Ieq
)
s−

(
2kPg

/
Ieq + 2g

/
Zh,eq

) .
(24)

Comparingwith themuch larger time constant of the power
loop in (23), 8current (s) in the distance loop is approximated

FIGURE 6. Block diagram of the power loop with the simplified distance
loop.

by its steady-state value,

G2 (s) =
1I (s)

(1Zh)sp (s)
= lim

s→0
8current (s) =

kPIeq
kPZh,eq + Ieq

.

(25)

Hence, Fig. 6 shows the block diagram of the power loop
with the simplified distance loop by G2 (s). The error signal
of the power loop is defined as,

EI (s) = (1I )sp (s) −1I (s) , (26)

where (1I )sp is the current setpoint.
The transfer function of the I controller for the power loop

is,

GI (s) =
(1Zh)sp (s)

EI (s)
=
kI
s

, (27)

where kI is the integral gain.
Therefore, the close-loop transfer function of the power

loop is,

8power−loop (s) =
1I (s)

(1I )sp (s)
=

GI (s)G2 (s)
1 + GI (s)G2 (s)

=
1

kPZh,eq+Ieq
kI kPIeq

s+ 1
, (28)

whose time constant is,

Tpower−loop = 2π
kPZh,eq + Ieq

kPIeq

1
kI

. (29)

The necessary condition of kI is calculated from (23) and
(29) as,

1
kI

≥
5
π

kPIeq
kPZh,eq + Ieq

Tdistance−loop. (30)

Fig. 7 visualizes the variation of min
(
1
/
kI
)

=(
5
π

kPIeq
kPZh,eq+Ieq

Tdistance−loop

)
in the limit ranges with kP =

−350A/m. Hence, by referring to Fig. 7, 1
/
kI = 30A · s/m

or kI = 0.033m/ (A · s) fulfils the requirement in (30) for the
whole tolerable ranges.

Nevertheless, the steady-state error of the power loop in
(26) under a unit step change in (1I )sp, i.e., (1I )sp (s) =

1
/
s, is calculated as,

lim
t→∞

eI (t) = lim
s→0

sEI (s) = lim
s→0

(
1 − 8power−loop (s)

)
= 0.

(31)

Hence, the I controller for the power loop eliminates the
steady-state error in 1I .
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FIGURE 7. Contour of min
(
1
/

kI
)

in the limit ranges with kP= −350 A/m.
The magenta dashed rectangle denotes the tolerable ranges, whereas the
magenta dashed-dotted line denotes Inorm.

FIGURE 8. Dynamic responses under a step change in mass on the
single-DoF EMS system, (a-c) correspond to the single-loop scenario,
whereas (d-f) correspond to the double-loop scenario.

D. NUMERICAL SIMULATION
In this subsection, the numerical simulation is performed
to compare the single-loop scenario and the double-loop
scenario for the single-DoF EMS system. The MATLAB
Simulink program is set up and shown in Fig. S1 (in sup-
plementary materials). The program enables the step change
in mass and the sinusoidal force disturbance. Also, the Gain
between the distance-loop PD controller and the power-loop
I controller in Fig. S1 switches between the single-loop sce-
nario (Gain = 0) and the double-loop scenario (Gain = −1).

1) STEP CHANGE IN MASS
A step change in mass, 1m = 0.3 kg, is applied at t = 0.05 s
to the nominal equilibrium, and the dynamic responses of
the single-loop scenario and the double-loop scenario are
compared.

Fig. 8 shows the dynamic responses under a step change in
mass of F , Zh, and I for the two scenarios. For the single-loop
scenario, the transient process completes within 0.15 s. For
the double-loop scenario, a quasi-static equilibrium is also
achieved around t = 0.15 s in Fig. 8(d); during 0.15 s to 1.5 s,
the I controller for the power loop continues bringing I back
to Inorm and achieves the constant power by compensating
(1Zh)sp, while the magnetic force maintains at a constant
value.

2) ROBUSTNESS TEST
In order to test the robustness of the constant-power control,
two types of disturbances are imposed on the single-DoF
EMS system as detailed below,

• Step change in mass: 1m = 1.5 kg is attached to the
nominal mass at t = 0.15 s as,

m (t) = m+1m (t)

1m (t) =

{
0.0 kg, 0.15 s > t ≥ 0 s
1.5 kg, t ≥ 0.15 s.

(32)

• Sinusoidal force disturbance: Fd has the same sign
convention as the magnetic force, i.e., F + Fd =

m
(
g+ amag

)
. It has the frequency of 20 rad/s (i.e., the

period of 0.31 s) and the ramping-up amplitude at the
rate of 20 N/s since t = 0.3 s as,
Fd= ramp (t) sin (20t)

ramp (t) =

{
0 N, 0.3 s > t ≥ 0 s
20 (t−0.3)N, t ≥ 0.3 s.

(33)

It is worth mentioning that the mass change is a low-
frequency process, whereas the force disturbance is a
high-frequency process. Specifically, the period of the force
disturbance (0.31 s) is longer than the time constant of the
distance loop (0.15 s) and shorter than the time constant of
the power loop (1.5 s).
Fig. 9 shows the dynamic responses of the robustness

test of F , Zh, and I for the two scenarios. As shown
in Fig. 9, the single-loop scenario reacts quickly (within
0.15 s) to the mass change and its equilibrium point shifts to
(11.0 mm, 1.347 A); the double-loop scenario has the similar
dynamic response to the single-loop scenario at the initial
stage (within 0.15 s) but slowly (from 0.2 s to 0.4 s) converges
to another equilibrium point at (8.16 mm, 1.0 A).
Moreover, Fig. 10 shows the corresponding I − Zh

trajectories of the robustness test for the two scenarios.
The two trajectories rotate around the respective centers,
i.e., (11.0 mm, 1.347 A) for the single-loop scenario and
(8.16 mm, 1.0 A) for the double-loop scenario. Besides, the
two trajectories rotate within the respective narrow bands
with a similar slope, i.e., 1I = −kP1Zh, under the force
disturbance. Hence, the proportional controller (P controller)
for the distance loop dominates the transient dynamics due to
its small time constant.
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FIGURE 9. Dynamic responses of the robustness test on the single-DoF
EMS system under two scenarios, (a) magnetic force, (b) floating gap, and
(c) excitation current.

FIGURE 10. I − Zh trajectories of the robustness test on the single-DoF
EMS system under two scenarios. The iso-force curves indicate the
magnitudes of the magnetic force, whereas the P-controller lines indicate
the dominant transient dynamics.

Furthermore, we observe from Fig. 9 that the single-loop
scenario loses control when both I and Zh exceed the respec-
tive upper limits at around t = 2.14 s, whereas the double-
loop scenario loses control at around t = 2.72 s. The delay
in the loss of control for the double-loop scenario results

FIGURE 11. Structure of the rigid quadruple EMS vehicle. The four
electromagnets locate on the four corners, whereas the origin locates at
the center of the vehicle. The bogie has the width of W = 0.6 m along the
x-axis and the length of L = 0.5 m along the y-axis.

from the I controller for the power loop, which maintains
the average value of I at Inorm. On the contrary, the single-
loop scenario only relies on the PD controller for the distance
loop and its I significantly deviates from Inorm upon the mass
change, which accelerates the loss of control under the later
sinusoidal force disturbance.

Consequently, the I controller for the power loop can
digest the low-frequency disturbance, e.g., 1m, whereas the
PD controller for the distance loop can stabilize the high-
frequency disturbance, e.g., Fd. Therefore, the double-loop
scenario is more robust than the single-loop scenario and is
highly promising for the rigid quadruple EMS vehicle.

III. RIGID QUADRUPLE EMS VEHICLE
In this section, we explore the coupled robust constant-power-
control algorithm for the rigid quadruple EMS vehicle by
analytical derivation and numerical simulation.

A. KINETICS ANALYSIS
As shown in Fig. 11, the rigid quadruple EMS vehicle consists
of four electromagnets on the four corners, whereas the origin
locates at the center of the vehicle. The bogie has the width
of W = 0.6 m along the x-axis and the length of L = 0.5 m
along the y-axis. Also, we adopt the following assumptions,

• The guideway and the bogie are rigid;
• The mass distribution of the electromagnet is uniform
and its center of mass locates at its geometric center;

• In order to focus on the interactions between the guide-
way and the four electromagnets, the mass of the rigid
bogie is neglected compared with the four electromag-
nets. Moreover, the influence from the bogie mass is
detailed in Appendix;

• The four electromagnets are identical and share the same
nominal parameters in Table 1.

In this work, three degrees of freedom are considered for
the rigid bogie [11] including,

• The heaving translation, zB(t), along the z-axis;
• The rolling rotation, ϕB(t), about the y-axis; and
• The pitching rotation, θB(t), about the x-axis.

Besides, the above three degrees of freedom are also adopted
by the minimum-realization approach [14].
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The other three degrees of freedom are out of the scope
of this work because they cannot be directly driven by the
magnetic forces between the guideway and the four electro-
magnets [4], [16], and they are,

• The translation along the x-axis;
• The translation along the y-axis; and
• The rotation about the z-axis.
In Fig. 11, the coordinates of the four electromagnets are

denoted as [14],


P1 =

(W
2 , L2 , zmag,1

)
P2 =

(
−
W
2 , L2 , zmag,2

)
P3 =

(
−
W
2 , −L

2 , zmag,3
)

P4 =
(W
2 , −L

2 , zmag,4
) . (34)

Moreover, the z coordinates of the four electromagnets
have the geometric relationships with the bogie as follows,

zmag,1 = zB −
W
2 sinϕB +

L
2 sin θB

zmag,2 = zB +
W
2 sinϕB +

L
2 sin θB

zmag,3 = zB +
W
2 sinϕB −

L
2 sin θB

zmag,4 = zB −
W
2 sinϕB −

L
2 sin θB

, (35)

where zB is the height of the bogie gravity center.
The force balance of the rigid bogie gives,

F1 + F2 + F3 + F4 = 4m (g+ aB) , (36)

where 4m is the total mass of the bogie, aB = d2zB
/
dt2

is the acceleration of the bogie gravity center, and Fi =

C
(
Ii
/
Zh,i

)2
≥ 0 with i = 1, 2, 3 and 4 are the magnetic

forces between each electromagnet and the guideway.
The moment balance of the bogie gives,{

L
2 (F1 + F2 − F3 − F4) = Jxx

d2θB
dt2

W
2 (−F1 + F2 + F3 − F4) = Jyy

d2ϕB
dt2

, (37)

where Jxx = mL2 is the moment of inertia about the x-axis
and Jyy = mW 2 is the moment of inertia about the y-axis.

Under the steady-state condition, Fi are calculated from
(36)-(37) as, 

F1 = F3
F2 = F4
F1 + F2 = F3 + F4 = 2mg

, (38)

whose number of unknowns is more than the number of
equations. Hence, (38) is an under-constrained equation set
and requires additional condition(s) to ensure the uniqueness.

Furthermore, though the rigid bogie has the ideal structure,
the guideway deflects due to engineering errors [4], [12],
[13]. Denote the deflections of the guideway on the four
electromagnets as eei with i = 1, 2, 3 and 4, and the four
floating gaps are denoted as,

Zh,i = zway + eei − zmag,i. (39)

FIGURE 12. Four eigen modes for the four floating gaps under the top
view, (I) the heaving mode along the z-axis, (II) the rolling mode about
the y-axis, (III) the pitching mode about the x-axis, and (IV)the twisting
mode. Red-upwards and blue-downwards arrows stand for +1 and -1
respectively for the sign convention of the eigen modes along the z-axis.

Mathematically, the four floating gaps are decomposed
into the following four eigen modes, as shown in Fig. 12,

I. The heaving mode along the z-axis,(
Zh,1,Zh,2,Zh,3,Zh,4

)
I

=
1
4

∑(
zway + eei − zmag,i

)
(1, 1, 1, 1) . (40)

II. The rolling mode about the y-axis,(
Zh,1,Zh,2,Zh,3,Zh,4

)
II =

1
4

[∑
1,4

(
eei − zmag,i

)
−

∑
2,3

(
eei − zmag,i

)]
(1, −1, −1, 1) . (41)

III. The pitching mode about the x-axis,(
Zh,1,Zh,2,Zh,3,Zh,4

)
III =

1
4

[∑
1,2

(
eei − zmag,i

)
−

∑
3,4

(
eei − zmag,i

)]
(1, 1, −1, −1) . (42)

IV. The twisting mode,(
Zh,1,Zh,2,Zh,3,Zh,4

)
IV =

1
4

[∑
1,3

(
eei − zmag,i

)
−

∑
2,4

(
eei − zmag,i

)]
(1, −1, 1, −1) . (43)

Importantly, the first three eigenmodes, i.e., (i) the heaving
mode, (ii) the rolling mode, and (iii) the pitching mode, can
be respectively compensated by the three basic motions of
the rigid bogie, i.e., (i) the heaving translation, (ii) the rolling
rotation, and (iii) the pitching rotation, without affecting the
steady-state value of Zh,i or Ii for the four electromagnets.

Contrarily, the twisting mode results in nontrivial changes
in both Zh,i and Ii for the four electromagnets. Assume the
twisting-mode deflection of the guideway is ee1 = −ee2 =

ee3 = −ee4 = 1. Due to the symmetry, the rigid bogie
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maintains horizontal with zmag,1 = zmag,2 = zmag,3 = zmag,4.
Hence, the four floating gaps are,(

Zh,1,Zh,2,Zh,3,Zh,4
)

= (1, −1, 1,−1) + Zh,B, (44)

where Zh,B = zway − zB denotes the average floating gap.
Nevertheless, the governing equation is derived from (4),

(38), and (44) with three unknowns, I1, I2, and Zh,B,

F1 + F2 = C
(

I1
Zh,B + 1

)2

+ C
(

I2
Zh,B − 1

)2

= 2mg,

(45)

which can be solved together with the transfer functions
between Ii and Zh,i, i.e., the single-loop scenario or the
double-loop scenario. Therefore, the rigid quadruple EMS
vehicle has different equilibrium floating gaps under different
control algorithms, which is presented in Sec. III-D.1.

B. CURRENT COUPLING
Mathematically, for a triple EMS vehicle, the force on each
electromagnet can be independently determined by the force
and moment balance analysis, e.g., (36)-(37), so that the
setpoint change of an electromagnet will not influence other
electromagnets [11]. However, for a rigid quadruple EMS
vehicle, the four electromagnets are tightly coupled with
each other, which requires a proper compensating algorithm
to coordinate each other [13]. This subsection analyzes the
current coupling among the four electromagnets.

Assume the rigid quadruple EMS vehicle is initially sta-
bilized at the nominal equilibrium by four independent PD
controllers in (14) without the power loop. Then, without
loss of generality, the floating-gap setpoint of P1 is increased
by an infinitesimal amount, i.e., (1Zh)′sp,1 = (1Zh)sp,1 +

(δZh)sp,1. At the new equilibrium due to (δZh)sp,1, denote
the changes of the excitation currents, the floating gaps, and
the magnetic forces of the four electromagnets as δIi, δZh,i,
and δFi, respectively, with respect to (w.r.t.) the nominal
equilibrium.

By applying the force and moment balances in (38), the
relationships among the four force changes are,

δF1 = −δF2 = δF3 = −δF4. (46)

Moreover, due to the P controller in (14) and the unchanged
(1Zh)sp,i with i = 2, 3 and 4, the respective relationships
between δIi and δZh,i are,

δIi = −kPδZh,i with i = 2, 3 and 4. (47)

Besides, considering (δZh)sp,1, the relationship between
δI1 and δZh,1 is,

δI1 = kP
[
(δZh)sp,1 − δZh,1

]
. (48)

Furthermore, by applying (47) to (10), the relationships
between δZh,i and δFi are derived as,

δFi = −

(
kP

2CIeq
Z2
h,eq

+
2CI2eq
Z3
h,eq

)
δZh,i with i = 2, 3 and 4.

(49)

Hence, combining (46) and (49) leads to,

δZh,2 = −δZh,3 = δZh,4. (50)

Since the bogie is rigid, δZh,1 is solved from (35) and (50)
as,

δZh,1 = 3δZh,2. (51)

Also, by applying (48) to (10), the relationship between
δZh,1 and δF1 is derived as,

δF1 = kP
2CIeq
Z2
h,eq

(δZh)sp,1 −

(
kP

2CIeq
Z2
h,eq

+
2CI2eq
Z3
h,eq

)
δZh,1.

(52)

Therefore, the relationships among δZh,i and (δZh)sp,1 are
derived from (46) and (49)-(52) as,

1
3
δZh,1 = δZh,2 = −δZh,3 = δZh,4

=
kPZh,eq

4
(
kPZh,eq + Ieq

) (δZh)sp,1 , (53)

where the coefficient kP
/
4
(
kP + Ieq

/
Zh,eq

)
> 0 varies with

Ieq
/
Zh,eq for different equilibrium points.

Nevertheless, δIi is solved from (47), (48), and (53) as,δI1 =
k2PZh,eq+4kPIeq
4(kPZh,eq+Ieq)

(δZh)sp,1

δI2 = −δI3 = δI4 =
−k2PZh,eq

4(kPZh,eq+Ieq)
(δZh)sp,1

, (54)

where the coefficient of δI1, i.e., kP
(
kP + 4 Ieq

Zh,eq

)/
4
(
kP +

Ieq
Zh,eq

)
, could be positive or negative depending on

Ieq
/
Zh,eq. Specifically, at the nominal equilibrium, δI1 =

17.5 (δZh)sp,1 and δI2 = −δI3 = δI4 = 122.5 (δZh)sp,1,
which implies that |δI1| is much smaller than other |δIi| even
though (δZh)sp,1 is imposed on P1.
Additionally, the difference between (δI1 + δI3) and

(δI2 + δI4) is calculated as,

(δI1 + δI3) − (δI2 + δI4) = kP (δZh)sp,1 . (55)

Consequently, 1Ii of the four electromagnets in the rigid
quadruple EMS vehicle couple with each other which leads to
the statically indeterminate problem, whereas the change of
floating-gap setpoints potentially diverges (1I1 + 1I3) and
(1I2 + 1I4) and leads to instability. The numerical simula-
tion is presented in Sec. III-D.1 to verify the derived current
coupling.

C. AUGMENTED I CONTROLLER FOR COMPENSATING
LOOP
Sec. III-B models the current coupling among the four
electromagnets by imposing an infinitesimal change to one
floating-gap setpoint and shows that the setpoint change
may increase the discrepancy between (1I1 + 1I3) and
(1I2 + 1I4). In order to compensate the current coupling
associated with the power loop, this subsection proposes an
augmented I controller to formulate a compensating loop for
the rigid quadruple EMS vehicle, as shown in Fig. 13.
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FIGURE 13. Block diagram of the compensating loop and the power loop.
The coefficient matrix A involves the current coupling and the simplified
distance loop.

Assume the rigid quadruple EMS vehicle is initially stabi-
lized at the nominal equilibrium by four independent PD con-
trollers. By generalizing (54), the coupling among (1Zh)sp,i
and 1Ii is derived as,

1I =
kPZh,eq

4
(
kPZh,eq + Ieq

)


4Ieq
Zh,eq


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



+ kP


1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1


 (1Zh)sp = A (1Zh)sp ,

(56)

where 1I =
[
1I1 1I2 1I3 1I4

]T is the current-
change vector, (1Zh)sp =

[
(1Zh)sp,1 (1Zh)sp,2 (1Zh)sp,3

(1Zh)sp,4
]T is the setpoint-change vector, and A is the cou-

pling matrix between (1Zh)sp and 1I .
Also, the error signal of the compensating loop is denoted

as,

Ecouple (s) = [1I1 (s) + 1I3 (s)] − [1I2 (s) + 1I4 (s)]

=
[
1 −1 1 −1

]
1I (s) , (57)

which measures the discrepancy between (1I1 + 1I3) and
(1I2 + 1I4).

And, the transfer function of the augmented I controller for
the compensating loop is,

Gcompen,i (s) =
(1Zh)sp,compen,i (s)

Ecouple (s)
=
kcompen,i

s
, (58)

where kcompen,i is the integral gain for the compensating loop
with kcompen,1 = −kcompen,2 = kcompen,3 = −kcompen,4 =

Kcompen due to the symmetry andKcompen is the compensating
coefficient. We observe from (55) that positive change
in (1Zh)sp,1 leads to negative change in Ecouple, so that
Kcompen > 0 is necessary for the compensating loop to
eliminate Ecouple.
Importantly, the floating-gap setpoint should incorporate

both the I controller for the power loop and the augmented I
controller for the compensating loop as,

(1Zh)sp (s) = GI (s)EI (s) + Gcompen (s)Ecouple (s) , (59)

which is expended as,

(1Zh)sp (s) =
kI
s

[
(1I)sp (s) − 1I (s)

]

+
Kcompen

s


1

−1
1

−1




1
−1
1

−1


T

1I (s)

=
kI
s

(1I)sp (s) +
B
s
1I (s) , (60)

where B is the coefficient matrix of the I controller for the
coupled loop (including the power loop and the compensating
loop), involving two functions: (i) the power loop to maintain
Ii at Inorm, and (ii) the compensating loop to eliminate the
current discrepancy among the four electromagnets.

In order to prevent the coupled loop from affecting the
transient dynamics of the distance loop, the time constant of
the coupled loop should be at least 10 times larger than that
of the distance loop in the tolerable ranges as,

Tcoupled−loop ≥ 10Tdistance−loop. (61)

Moreover, the characteristic equation for the block diagram
in Fig. 13 is calculated from (56) and (60) as,

|sI − AB| = 0, (62)

where matrix AB is calculated as,

AB

= −
kI kPIeq

kPZh,eq + Ieq


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



+

[
Kcompen −

kI kPZh,eq
4
(
kPZh,eq + Ieq

)] kP


1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1



= a


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ b


1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

 , (63)

where the two coefficients are a = −kI kPIeq
/ (
kPZh,eq + Ieq

)
and b = kP

[
Kcompen − kI kPZh,eq

/
4
(
kPZh,eq + Ieq

)]
.

Furthermore, the poles of the characteristic equation in (62)
are solved as,{

s1 = s2 = s3 = a = −
kI kPIeq

kPZh,eq+Ieq
< 0

s4 = a+ 4b = kP
(
4Kcompen − kI

) . (64)

Hence, the stability criterion for the coupled loop requires
s4 < 0 which leads to,

Kcompen > kI
/
4 = 0.00825 m/ (A · s) . (65)

Nevertheless, the time constants corresponding to s1, s2,
and s3 are identical with Tpower−loop in (29) and fulfill the
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FIGURE 14. Contour of max
(
Kcompen

)
in the limit ranges with

kP= −350 A/m and kI = 0.033 m/
(
A · s

)
. The magenta dashed rectangle

denotes the tolerable ranges, whereas the magenta dashed-dotted line
denotes Inorm.

requirement in (61) already. Besides, the time constant corre-
sponding to s4 is,

Tcoupled−loop,4 = −
2π(

4Kcompen − kI
)
kP

≥ 10Tdistance−loop,

(66)

which gives,

Kcompen <
kI
4

−
π

20Tdistance−loopkP
. (67)

Fig. 14 visualizes the variation of max
(
Kcompen

)
=(

kI
4 −

π
20Tdistance−loopkP

)
in the limit ranges with kP =

−350 A/m and kI = 0.033 m/ (A · s). We observe that
Kcompen = 0.011 m/ (A · s) fulfils both requirements in (65)
and (67) for the whole tolerable ranges.
It is worth mentioning that the analytical derivation for the

augmented I controller in (56) assumes the same equilibrium
for the four electromagnets. Hence, the derived compensating
coefficient for the compensating loop, i.e., kI

/
4 < Kcompen <[

kI
/
4 − π

/ (
20Tdistance−loopkP

)]
, needs to be further verified

for the twisting-mode deflection. Also, Secs. III-D.2 and
III-D.3 present the numerical simulation for the coupled
robust constant-power-control algorithm under the twisting-
mode deflection in (44).

D. NUMERICAL SIMULATION
1) CURRENT-COUPLING TEST
The current coupling among the four electromagnets is
derived in Sec. III-B and verified in this subsection by
imposing a ramp change in the floating-gap setpoint on P1.
Specifically, (1Zh)sp,1 ramps upwith a speed of 5mm/s since

FIGURE 15. Dynamic responses of the current-coupling test on the rigid
quadruple EMS vehicle with the distance loop only, (a) magnetic force, (b)
floating gap, and (c) excitation current.

TABLE 2. Steady-state Values of 1Ii and 1Zh,i by analytical derivation
and by numerical simulation under current-coupling test with
δ
(
1Zh

)
sp,1 = 2 mm.

0.05 s and maintains at 2 mm since 0.45 s as,

(1Zh)sp,1 =


0 mm, 0.05 s > t ≥ 0 s
5 (t − 0.05) mm, 0.45 s > t ≥ 0.05 s
2 mm, t ≥ 0.45 s

.

(68)

Fig. S2 (in supplementary materials) shows the cor-
responding MATLAB Simulink program for the current-
coupling test on the rigid quadruple EMS vehicle only with
the PD controller for the distance loop (kP = −350 A/m
and kD = −6.5 A · s/m). Also, Figs. 15 and 16 show the
dynamic responses and the I − Zh trajectories for the four
electromagnets, respectively. As derived in (53)-(54), 1I2,
1I4, 1Zh,1, 1Zh,2, and 1Zh,4 increase with the increase of
(1Zh)sp,1, whereas1I3 and1Zh,3 decrease. Particularly,1I1
is negligible comparing with the other three 1Ii.
Moreover, Table 2 compares the steady-state values of 1Ii

and 1Zh,i from the analytical derivation in (53)-(54) with
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FIGURE 16. I − Zh trajectories of the current-coupling test on the rigid
quadruple EMS vehicle with the distance loop only. The iso-force curves
indicate the magnitudes of the magnetic force, whereas the P-controller
lines indicate the dominant transient dynamics.

those from the numerical simulation. In Table 2, the two
sets of results are consistent with each other, and the less-
than-10% discrepancies result from the nonlinearity near the
nominal equilibrium. Hence, the current coupling derived in
Sec. III-B is verified.

2) COMPENSATING-COEFFICIENT TEST
The compensating-coefficient, Kcompen, for the augmented I
controller is verified in this subsection by imposing a ramp
change in deflections on P1 and P3. Specifically, ee1 and ee3
ramp up with a speed of 10 mm/s since 0.05 s and maintains
at 2.5 mm since 0.3 s as,
ee2 = ee4 = 0

ee1 = ee3 =


0 mm, 0.05 s > t ≥ 0 s
10 (t − 0.05) mm, 0.3 s > t ≥ 0.05 s
2.5 mm, t ≥ 0.3 s.

(69)

As derived in Sec. III-A, a twisting-mode deflection results in
nontrivial changes in Zh,i and Ii for the four electromagnets.
Fig. S3 (in supplementary materials) shows the MATLAB

Simulink program for the rigid quadruple EMS vehicle
with the distance loop (kP = −350 A/m and kD =

−6.5 A · s/m), the power loop (kI = 0.033 m/ (A · s)),
and the compensating loop (various Kcompen). Moreover, the
Gain switches between the single-loop scenario (Gain =

0) and the coupled-loop scenario (Gain = 1). Specif-
ically, five compensating coefficients are tested for the
coupled robust constant-power-control algorithm, including
Kcompen = 0.0085, 0.0095, 0.011, 0.015, 0.05 m/ (A · s).
Furthermore, Figs. 17 and 18 show the dynamic responses

and the I−Zh trajectories for the four electromagnets respec-
tively under the six cases, including a single-loop scenario
and five Kcompen. We observe that the single-loop scenario
converges to an equilibrium with two different excitation

FIGURE 17. Dynamic responses of the compensating-coefficient test on
the rigid quadruple EMS vehicle for the single-loop scenario and the
coupled-loop scenarios with Kcompen = 0.0085, 0.0095, 0.011,

0.015, 0.05 m/
(
A · s

)
, (a) magnetic force, (b) floating gap, and

(c) excitation current.

currents, i.e., (11.20 mm, 1.42 A) and (8.70 mm, 0.54 A),
whereas the five coupled-loop scenarios converge to an equi-
libriumwith the four electromagnets at Inorm, i.e., (11.48 mm,
1.0 A) and (8.98 mm, 1.0 A). Hence, Ii are much closer to the
tolerable range for the rigid quadruple EMS vehicle without
the coupled controller, which may undermine the robustness
under additional disturbances.

Nevertheless, when Kcompen decreases and approaches to
0.00825 m/(A·s) in (65), the time constant of the coupled
loop increases and approaches to infinity, as implied by
(66). Contrarily, when Kcompen increases and approaches to
0.05 m/(A·s), the coupled loop has a decreasing time con-
stant and significantly distorts the transient dynamics of the
distance loop. Consequently, the coupled robust constant-
power-control algorithm with Kcompen = 0.011 m/ (A · s)
is verified to be effective in stabilizing the rigid quadruple
EMS vehicle without affecting the transient dynamics of the
distance loop.

3) ROBUSTNESS TEST
In order to compare the robustness of the two scenar-
ios, including the single-loop scenario (Gain = 0, kP =

−350 A/m, and kD = −6.5 A · s/m) and the coupled-loop

VOLUME 11, 2023 78831



Z. Zhang: Coupled Robust Constant-Power-Control Algorithm for Rigid Quadruple EMS Vehicle

FIGURE 18. I − Zh trajectories of the compensating-coefficient test on the
rigid quadruple EMS vehicle for the single-loop scenario and the
coupled-loop scenarios with Kcompen = 0.0085, 0.0095, 0.011,

0.015, 0.05 m/
(
A · s

)
. The iso-force curves indicate the magnitudes of the

magnetic force, whereas the P-controller lines indicate the dominant
transient dynamics.

scenario (Gain = 1, kP = −350 A/m, kD = −6.5 A · s/m,
kI = 0.033 m/ (A · s), and Kcompen = 0.011 m/ (A · s)), the
rigid quadruple EMS vehicle is simulated with two imposed
disturbances, (i) ramp changes in the guideway deflections on
P1 and P3 and (ii) sinusoidal force disturbances on P1 and P2,
as follows.

• The ramp changes in the guideway deflections as
described in (69) are imposed on P1 and P3.

• The sinusoidal force disturbances are imposed on P1 and
P2 with different orientations. Fd,1 and Fd,2 have the
frequency of 20 rad/s (or a period of 0.31 s) and their
amplitude ramps up with a rate of 40 N/s since t = 1.5 s
as,
Fd,1 = −Fd,2 = ramp (t) sin (20t)

ramp (t) =

{
0 N, 1.5 s > t ≥ 0 s
40 (t − 1.5) N, t ≥ 1.5 s.

(70)

Figs. 19-22 show the dynamic responses and the I − Zh
trajectories for the four electromagnets respectively under the
two scenarios. The transient dynamics for the two scenarios
during 0 s to 1.5 s have been discussed in Sec. III-D.2, and
this subsection targets on the respective robustness under the
sinusoidal force disturbances.
As shown in Fig. 19, the loss of control for the single-

loop scenario occurs at t = 2.46 s (after 3.1 cycles of the
sinusoidal force disturbance) when both I and Zh of P2 exceed
the respective limit ranges; as shown in Fig. 21, the loss of
control for the coupled-loop scenario occurs at t = 3.08 s
(after 5.1 cycles of the sinusoidal force disturbance). In other
words, the surviving time for the coupled-loop scenario under
the sinusoidal force disturbances is 65% longer than that of
the single-loop scenario.

FIGURE 19. Dynamic responses of the robustness test on the rigid
quadruple EMS vehicle for the single-loop scenario, (a) magnetic force,
(b) floating gap, and (c) excitation current. The loss of control occurs at
t= 2.46 s, when both I and Zh of P2 exceed the respective limit ranges.

FIGURE 20. I − Zh trajectories of the robustness test on the rigid
quadruple EMS vehicle for the single-loop scenario. The iso-force curves
indicate the magnitudes of the magnetic force, whereas the P-controller
lines indicate the dominant transient dynamics.

As shown in Fig. 20, the four I − Zh trajectories of the
single-loop scenario concentrate in a narrow band near the
P-controller line, i.e., (I − Inorm) = −kP

(
Zh − Zh,norm

)
;

as shown in Fig. 22, the four I − Zh trajectories of the
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FIGURE 21. Dynamic responses of the robustness test on the rigid
quadruple EMS vehicle for the coupled-loop scenario, (a) magnetic force,
(b) floating gap, and (c) excitation current. The loss of control occurs at
t = 3.08 s, when both I and Zh of P3 exceed the respective limit ranges.

FIGURE 22. I − Zh trajectories of the robustness test on the rigid
quadruple EMS vehicle for the coupled-loop scenario. The iso-force
curves indicate the magnitudes of the magnetic force, whereas the
P-controller lines indicate the dominant transient dynamics.

coupled-loop scenario fluctuate around Inorm and cover a
much larger area in the limit ranges. Hence, the coupled-loop
scenario delays the loss of control by maintaining the average
values of Ii at Inorm.

Consequently, the coupled constant-power-control
algorithm maximizes the controlling capability for the limit

range of I and significantly enhances the robustness of the
rigid quadruple EMS vehicle.

IV. CONCLUSION
This work proposes the coupled robust constant-power-
control algorithm for the rigid quadruple EMS vehicle to
make full use of the excitation current under both low-
frequency and high-frequency disturbances. The algorithm
consists of three coupled controllers, including the PD con-
troller for the distance loop, the I controller for the power
loop, and the augmented I controller for the compensating
loop. Technically, the PD controller and the I controller
can be determined by the single-DoF EMS system, whereas
the augmented I controller is determined w.r.t. the current
coupling of the rigid quadruple EMS vehicle and resolves
the so-called statically indeterminate problem. Detailed mod-
elling and analytical derivation are presented to determine
the four parameters of the proposed algorithm, including kP,
kD, kI , and Kcompen. Moreover, the numerical simulations are
conducted with the MATLAB Simulink, and the simulation
results verify the effectiveness and the outstanding robustness
of the proposed algorithm. Overall speaking, the coupled
robust constant-power-control algorithm involves only four
parameters and is so simple that plenty of room is available
for intelligent control algorithms, e.g., the optimal control, the
gain-scheduling control, and the self-adaptive control. Never-
theless, the proposed algorithm sheds light on the intelligent
EMS transportation system for more industrial applications.

APPENDIX
In Sec. III-A, the mass of the rigid bogie is neglected com-
pared with the four electromagnets in order to focus on the
interactions between the guideway and the four electromag-
nets. This appendix aims to discuss the influence from the
bogie mass on the kinetics analysis and the current coupling
of the rigid quadruple EMS vehicle.

For the kinetics analysis, denote the mass of the rigid bogie
as M , the gravity center at PB = (xB, yB, zB), the moments
of inertia about the x-axis and the y-axis as Jxx,B and Jyy,B,
respectively.

Hence, the force balance of the bogie in (36) is updated as,

F1 + F2 + F3 + F4 = (4m+M) (g+ aB) . (71)

Moreover, the moment balance of the bogie in (37) is
updated as,{
L
2 (F1 + F2 − F3 − F4) − yBMg =

(
Jxx + Jxx,B

) d2θB
dt2

W
2 (−F1 + F2 + F3 − F4) − xBMg =

(
Jyy + Jyy,B

) d2ϕB
dt2

.

(72)

Under the steady-state condition, combining (71) and (72)
leads to, 

F1 = F3 +
( yB
L −

xB
W

)
Mg

F2 = F4 +
( yB
L +

xB
W

)
Mg

F1 + F2 = (2m+ 0.5M) g+
yB
L Mg

, (73)
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which implies that F1 = F3 and F2 = F4 are simultane-
ously established only when both xB = 0 and yB = 0 are
established. Hence, without loss of generality, we assume
F1 ̸= F3 and F2 ̸= F4. Therefore, the four electromagnets
are floating at different equilibrium points, i.e.,

(
Ieq,i,Zh,eq,i

)
with i= 1, 2, 3 and 4.

For the current coupling, as a result of different equilib-
riums for the four electromagnets, the analytical derivation
in Sec. III-B becomes imprecise from (49) and inevitably
influences the setup of the augmented I controller, which is
highlighted at the end of Sec. III-C.

Practically, we can engineer xB≪W and yB≪L, and (73)
becomes,

F1 = F3
F2 = F4
F1 + F2 = F3 + F4 = (2m+ 0.5M) g

, (74)

which leads to the same equilibrium for the four electro-
magnets. Therefore, by regarding the equilibrium as the new
nominal equilibrium, we can repeat the analytical derivation
in this work to setup the coupled robust constant-power-
control algorithm for the rigid quadruple EMS vehicle.
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