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ABSTRACT This paper presents an Adaptive Back-stepping Data-Driven Terminal SlidingMode Controller
(ABDTSMC) for non-affine MIMO systems with general disturbances including internal uncertainties and
external disturbances. The proposed controller with new reaching law is used to reduce the controller’s
dependence on the mathematical model and eliminate the chattering phenomenon. Furthermore, to solve
the problem of the coupling effect and to estimate the uncertainties and disturbances, the Disturbance
Observer (DOB) based on neural network with adaptive weights is utilized. Afterwards, it is implied that the
DOB variables are Uniformly Ultimately Bounded (UUB). Next, for the integrated controller, the closed-
loop stability based on the Lyapunov and back-stepping theory is investigated and the new adaptive law
for the Pseudo Jacobian Matrix (PJM) elements is derived. This method contributes to the reduction of
complexity and conservatism, which facilitates analysis of the closed-loop stability. To evaluate performance
of the controller, the proposed method is applied to a 2-DOF robot manipulator. The simulation results
are compared with Model-Free Adaptive Sliding-Mode Controller (MFASMC) and Model-Free Adaptive
controller (MFAC), which are reported recently in related literature. The results demonstrate the precision of
the tracking capability is significantly enhanced in the presence of time-varying disturbances. Moreover, the
chattering phenomenon is successfully removed. In addition, the number of required data is significantly
reduced. Finally, to show practicality of the proposed controller, it is applied to the 2-DOF laboratory
manipulator.

INDEX TERMS Back-stepping, data-driven, disturbance observer, neural network, sliding mode control.

I. INTRODUCTION
The model-based Sliding-Mode Controller (SMC) is one
of the most robust and popular nonlinear control meth-
ods that has been employed by researchers, recently. This
method offers some advantages like simplicity of design,
fast convergence rate, and robustness against disturbances
and uncertainties. In addition, it can be used in combina-
tion with a wide range of controllers to overcome some
control problems. For instance, to increase convergence
speed, the terminal sliding surface is used in some works,
e.g. [1], [2], and [3]. In addition, to create a tradeoff between
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disturbance rejection and decrease of chattering phenomenon
the SMC with adaptive switching gain and adaptive con-
troller parameter is employed in [4] and [5]. Furthermore,
in some papers like [6], [7], and [8], to minimize the control
effort, an optimized SMC is designed. However, design-
ing a model-based SMC is straightforward, but it has some
challenges. For instance, difficulties in the stability proof
of the high-order SMCs. Therefore, some works like [9],
[10], and [11], have focused on the solution of this prob-
lem. In these papers, the authors implied that finding a
proper Lyapunov function for the stability analysis is not an
easy task. Hence, they combined the SMC with the back-
stepping strategy to relax conservatism and ease the stability
proof.
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Because of the powerful ability of the Neural Network
(NN) observers to approximate some unknown functions like
disturbances and uncertainties, mentioned in [12] and [13],
some papers like [14], [15], [16], and [17] have developed the
NN-based SMCs. In these papers, a newmodel-basedmethod
based on Dynamic Surface Control (DSC) is given. More-
over, the proposed method is combined with a NN observer
to estimate the uncertainties, disturbances, coupling effects,
and unknown nonlinearities. One of the advantages of these
papers is that no knowledge about the uncertain dynamics,
disturbances, and uncertainties is required. Furthermore, the
upper bound of the uncertainties and disturbances is not a
decisive criterion for the closed-loop stability.

With the development of digital controllers, the use of
discrete-time SMCs has grown recently. However, their
design is directly related to the mathematical input-output
or state-space model of the system. Nevertheless, in many
cases, this model is not accessible or difficult to determine.
Recently, the design of these controllers have been witnessed
remarkable developments. The most significant one may
be the controller design based on the data instead of the
mathematical model. These types of controllers are called
data-driven controllers. Unlike the model-based controllers,
the data-driven controllers do not rely on the mathematical or
the state-space models. In the data-driven controllers, engi-
neers usually attempt omitting or decreasing dependency on
the mathematical models and designing the controller using
the input-output measured data.

The data-driven controllers can be divided into two gen-
eral categories 1) Direct data-driven and 2) Indirect data-
driven controllers. In the direct data-driven, the controller is
designed only based on data measurement and does not have
any direct or indirect dependency on the mathematical model.
However, the stability analysis is more challenging. In con-
trast, the indirect data-driven controller is a combination
of the model-based methods and the data-driven schemes;
hence, the stability analysis and the controller design may
be simpler. The most significant advantage of this controller
is reducing the dependency of the controller on the mathe-
matical model. In other words, this method operates based on
measuring the input-output data, but it can use the mathemat-
ics of the model-based method, especially for stability analy-
sis. For instance, the Data-Driven Sliding-Mode Controllers
(DDSMCs) and Model Free Adaptive controllers (MFACs)
can be classified into the indirect data-driven methods that do
not have direct dependency on the mathematical model [18],
[19], [20], [21], [22], [23]. The following references support
the use of DDSMCs.

Discrete DDSMCs are designed based on input-output data
obtained from the system. Therefore, it is claimed that they
are more robust against internal as well as external distur-
bances as compared with the model-based SMCs [24], [25],
[26], [27]. To eliminate dependency on the mathematical
model and replace it with the data model, DDSMC uses
dynamic linearization method. This method uses a virtual

parameter named Pseudo Partial Derivative (PPD) (for the
SISO systems) or a virtual matrix named Pseudo Jacobean
Matrix (PJM) (for the MIMO systems). Hence, it does not
have any dependency to the mathematical model of the sys-
tems. Hence, DDSMCs have some merits but suffer from
some problems. The most important of them are the coupling
effects in the controller design for MIMO systems, zero-
convergence of the PPD or PJM elements, complexity of the
stability analysis, difficulty of the controller design for the
continuous-time systems, lack of proper method to adjust
control parameters, and the need for a large amount of data to
achieve accurate control of the system. The following papers
have tried to solve or relax these problems.

In [24] and [25], to achieve a faster transient response
and to suppress the effect of uncertainties, disturbances, and
coupling effects, an adaptive sliding-mode data-driven con-
troller for unknown MIMO nonlinear discrete systems is
designed. To cope with the coupling effects, a new mathe-
matical method has been proposed. First, the coupling effect
is decoupled and is considered in the general disturbance
term. Then, it is estimated with the help of an Extended
State Observer (ESO). This method contributes to coupling
elimination that decreases conservatism and increases robust-
ness of the controller.

The combination of a model-free adaptive controller and
a model-free adaptive sliding-mode controller as a new
DDSMC is given in [26]. The main drawback of this work
is using an attenuation coefficient in the model-free adap-
tive sliding-mode controller part to remove the chattering
effect. The authors concentrated on the dynamic linearization
method to increase the precision of the tracking. In this
work, a Full-Form Dynamic Linearization (FFDL) as a data
model is used which has good precision but is complicated
as compared with the Compact Form Dynamic Linearization
(CFDL) method. In [27], a DDSMC is designed based on
a novel reaching law for the SISO nonlinear systems. This
article has focused on a new general reaching law as a novelty.
The authors imply that one of the main disadvantages in the
previous methods is ignoring the decreasing reaching time
and the quasi-sliding domain. To overcome this problem,
their control signal contains optimal and exponential switch-
ing terms.

Another significant problem in the data-driven controllers
is the convergence of the PPD or PJM elements towards
zero. In this regard, some papers have suggested different
solutions. For example, adding the positive definite matrix or
positive constant has been given in [24] and [25]. However,
this method has its own drawback in determining the exact
value of the PJM elements to control MIMO systems. Some
works have tried to estimate the elements of PPD or PJM.
In [28], an adaptive observer is proposed to calculate the
PJM elements and a neural network is employed to estimate
the parameters of the data model. In [29], a forecasting-
based data-driven model-free adaptive sliding-mode control
is performed for a combined spacecraft. In this article,
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a data model is considered as an FFDL. Therefore, a pre-
cise data model is reachable. However, the design of the
controller is not straightforward, and the stability analysis is
complicated.

Constrained input is one of the issues that has been studied
in a few DDSMC papers. In [30], an anti-windup compen-
sator is employed to consider the effects of the constraints on
the input signal.

Although DDSMCs are identified as discrete-time con-
trollers, the continuous-time model free SMCs based on the
ultra-local model are introduced in some papers (e.g., [31]
and [32]) as a subset of data-driven controllers. An important
point of this method is that the differential equation of the
systemmust be of the first order, which considerably restricts
the application of the scheme.

DDSMCs with constraint tracking error has been reported
in [33], [34], [35], [36], [37], and [38], where the authors
have developed a new method, in which the tracking error
converges to a predefined zone around of the origin. One
of the main drawbacks of this method is complex stability
analysis leading to conservative performance.

According to the aforementioned benefits of the
DDSMCS, its applications on real systems has grown
recently. For instance, in [39], [40], [41], and [42] the
DDSMCs have been applied to inspection robots, rigid robot
manipulators, under-actuated marine vessels, and cyber-
physical systems against a class of actuator attacks. However,
in these papers, there are no proper methods to adjust the
controller parameters, which is another common problem
among data-driven controllers.

As stated in the previous works (e.g., [21] and [22]),
it seems that one of the best controllers for the non-
affine and complicated system is the indirect data-driven
controller. Since indirect data-driven controller does not
have stability problem and can decrease dependency on
the mathematical model of the system. Moreover, it can
provide better robustness against uncertainties and external
disturbances.

Based on the aforementioned literature review, the follow-
ing statements are noteworthy about the DDSMCs:

• The DDSMCs cannot remove the chattering phe-
nomenon by itself. As a result, researchers usually use
new reaching laws, adaptive parameters in the sliding
surface, or adaptive switching gains to reduce or elimi-
nate it.

• The word Adaptive in the data-driven literature refers to
PPD or PJM adaptation laws.

• The stability analysis of DDSMCs is more complex and
conservative, because it consists of two steps: a) bound-
edness of the PPD or PJM parameters and b) stability of
the closed-loop system.

• Another problem that exists in the DDSMCs is the zero
convergence of PPD or PJM elements during the adapta-
tion process leading to a singularity in the control signal.
Thus, researchers usually apply additional matrices or
parameters that must be accurately determined.

In this manuscript, Adaptive Back-stepping Data-Driven
Terminal Sliding Mode Controller (ABDTSMC) with a Neu-
ral Network Disturbance Observer (NNDOB) for nonlinear
MIMO systems is proposed. The contributions of the pro-
posed method can be expressed as follows:

• Less dependency of the controller on the mathematical
model of the system using a novel adaptation method for
the PJM parameters.

• As compared with similar methods in literature
(e.g., [24], [25], [26]), the PJM elements are estimated
based on an Adaptive Sliding-Mode Observer (ASMO),
while in the previous works, the PJM elements are
calculated based on the rules given in [19]. The main
problem with using this rule is the complexity of the
stability analysis, which will be relaxed in this paper.

• To overcome the chattering phenomenon, a new reach-
ing law based on the saturation function will be
presented.

• To increase the convergence speed, the terminal sliding
surface is employed.

• To control the system in the presence of time-varying
disturbances and to compensate the missed data related
to the general disturbances, a DOB using Radial Basis
Function (RBF) neural network with adaptive weights
is proposed.

• The data-driven dynamical model of the NNDOB will
be presented. This model does not have any relationship
with the mathematical model of the system.

• Using the designed NNDOB, no prior knowledge about
the uncertainties and disturbances is needed. In addition,
the upper bound of the uncertainties and disturbances
does not have any effect on the stability analysis.

• The stability analysis of the closed-loop systemwith less
conservatism based on the back-stepping and Lyapunov
stability methods is provided.

• The proposed method can significantly reduce the num-
ber of required data, which makes it easier to implement.

• The proposed method is implemented on a 2-DOF lab-
oratory manipulator.

This paper is organized as follows. Section II presents the
problem formulation. Section III gives the data-driven mathe-
matics and essential Lemmas. The proposed controller along
with the NNDOB design, the PJM ASMO design, and the
closed-loop stability are provided in Section IV. Simulation
and experimental results are given in Section V. Conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION
Consider the following MIMO non-affine discrete-time
system:

y(k + 1) = F
(
y(k), y(k − 1), . . . , y(k − ny),

× u(k),u(k − 1), . . . ,u(k − nu),

× d(k),d(k − 1), . . . ,d(k − nd )) (1)
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where F(·) = [F1(·), . . . ,Fn(·)]T ∈ Rn denotes
an unknown nonlinear vector-valued function, u(k) =

[u1(k), . . . , un(k) ]T ∈ Rn is the input, y(k) = [ y1(k), . . . ,
yn(k)] ∈ Rn is the output, d(k) = [d1(k), . . . , dn(k)] ∈ Rn

is a generalized disturbance vector including internal uncer-
tainties and external disturbances, and ny, nu, and nd are
the unknown order of the outputs, inputs, and disturbances,
respectively.
Remark 1: The data-driven controllers have no direct

dependency on the system’s mathematical model. As a result,
system (1) is only used to generate the input-output data for
simulation purposes.

In this paper, it is assumed that the following assumptions
are satisfied by system (1).
Assumption 1: The partial derivatives of Fi(·) (i =

1, . . . , n) with respect to every control input signal and dis-
turbance are continuous.
Remark 2: Assumption 1 is required for the controller

design because the partial derivatives (∂ Fi/∂ u(k))1 u(k)
and (∂ Fi/∂ d(k))1 d(k) appear in the data model calcula-
tions [19], [24], [25].
Assumption 2: The following generalized Lipschitz con-

ditions are met by system (1):{
∥ y(k1 + 1) − y(k2 + 1) ∥ ≤ b1 ∥u(k1) − u(k2) ∥
∥ y(k1 + 1) − y(k2 + 1) ∥ ≤ b2 ∥d(k1) − d(k2) ∥
k1 ̸= k2, k1, k2 ≥ 0
u(k1) ̸= u(k2), d(k1) ̸= d(k2)
b1, b2 > 0

(2)

Remark 3: Assumption 2 is equal to the Bounded-Input
Bounded-Output (BIBO) stability condition for an open-loop
system [19], [24], [25].
Remark 4: Although Assumptions 1 and 2 are restrictive,

they are necessary for the data-driven formulation, which will
be presented in Section III.
Assumption 3: System (1) must be controllable and

observable such that in the presence of disturbances and
uncertainties, there are bounded control input signals that can
drive the outputs to the desired trajectories.

III. DATA-DRIVEN MATHEMATICS AND ESSENTIAL
LEMMAS
To design the data-driven controller, a proper datamodel must
be selected first. In this manuscript, based on the method
of dynamic linearization, the CFDL method is employed.
Hence, system (1) will be transformed into the data model
based on the following lemma.
Lemma 1: If system (1) satisfies Assumptions 1 and 2,

and ∥1u(k)∥ ̸= 0, then there exists a time-varying matrix
8c(k) ∈ Rn×n, which is called Pseudo Jacobean Matrix
(PJM) such that system (1) can be defined by the following
data model:

1y(k + 1) = 8c(k)1u(k) (3)

where1y(k+1) = y(k+1)−y(k),1u(k) = u(k)−u(k−1)
and PJM elements are bounded [19].

Proof.See [19].
Adding external disturbances d1(k) ∈ Rn to (3) yields

1y(k + 1) = 8c(k)1u(k) + d1(k). (4)

Since the coupling effect is one of the main problems of
the data-driven controller, in [15] and [16], a new technique is
employed to eliminate the coupling effect and to consider it in
the general disturbance term. In this technique, (4) is written
as follows:

1y(k + 1) = 8(k)1u(k) + d(k) (5)

where 8(k) ∈ Rn×n and d(k) ∈ Rn denote the diagonal
PJM and the generalized disturbance, respectively, and are
described as follows:

8(k) =


811 (k) 0 · · · 0

0 822 (k) · · · 0
...

...
...

...

0 0 · · · 8nn (k)

 (6)

d(k) =


d11(k)
d12(k)
...

d1n(k)



+


0 812(k) · · · 81n(k)

821(k) 0 · · · 82n(k)
...

...
. . .

...

8n1(k) 8n2(k) · · · 0



1u1(k)
1u2(k)
...

1un(k)

 .
(7)

For simplicity of the stability analysis, the elements of
diagonal matrix 8(k) are defined as the following vector:

2(k) :=
[
θ1(k) · · · θn(k)

]T
=
[
811 · · · 8nn

]T
∈ Rn. (8)

Assumption 4: The PJM elements are positive.
Remark 5: In this paper, the generalized disturbance term

will be estimated based on the neural network observer that
will be explained in the next section.
Remark 6: Assumption 4 is theoretically necessary for the

stability analysis presented in Section V (for the transient
part). However, it does not create any restrictions on the
application of the method, because due to a special property
of the proposed method, when the sign of the PJM elements
are initially selected positive, it will remain positive during
operation of the closed-loop system (in the steady-state part).
This claim will be proved in Corollary 2, in Section IV.
Lemma 2: If ρ ∈ Rn×n is a positive definite matrix, then

−sT (k)ρ sat(s(k)) is negative semidefinite.
Proof. Function sat(s(k)) is defined as

sat(s(k)) :=

{
sgn(s(k)) ∥s(k)∥ ≥ 1
s(k) otherwise

. (9)
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Multiplying both sides of (9) by sT (k)ρyields

sT (k)ρsat(s(k)) =

{
sT (k)ρsgn(s(k)) ∥s(k)∥ ≥ 1
sT (k)ρs(k) otherwise

(10)

Since sT (k)ρsgn(s(k)) and sT (k)ρs(k) are positive
semidefinite, then −sT (k)ρsat(s(k)) is negative semidefinite.
■

Lemma 2 will be used in the stability analysis in Section V.

IV. ADAPTIVE BACK-STEPPING DATA-DRIVEN
TERMINAL SLIDING-MODE CONTROLLER WITH DOB
In this section, the main controller is designed based on the
contributions described in Introduction.

The tracking error between the measured output and the
desired output is considered as:

e1(k) = y(k) − yd(k) (11)

where y ∈ Rn and yd ∈ Rn are the system output vector
and the desired output vector, respectively. To design the
controller, the tracking error in (11) must be as small as
possible.

The Lyapunov function is defined as follows:

V1(k) :=
1
2
eT1 (k)K1e1(k) (12)

where K1 ∈ Rn×n is a diagonal positive definite matrix. The
first difference of (12) can be given as

1V1(k + 1) = e1(k)K11e1(k + 1)

+
1
2
1eT1 (k)K11e1(k + 1)

=
1
2
(e1(k + 1) + e1(k))T K11e1(k + 1).

(13)

By defining the second error vector as

e2(k) = K11e1(k + 1) + α(k) (14)

where 1e1(k + 1) = e1(k + 1) − e1(k) and α(k) is a virtual
control, which is defined as

α(k) := e1(k). (15)

According to (14) and (15), we have K11e1(k + 1) =

e2(k) − e1(k) and it results e1(k + 1) = k−1
1 e2(k) + (I −

k−1
1 )e1(k). Therefore, by defining e3(k) := [ e1(k) e2(k) ]T ∈

R2m×1, (13) can be rewritten as:

1V1(k + 1) = − eT3 (k)F e3(k) (16)

where F =

[
−

1
2

(
K−1

1 − 2I
)

1
2

(
K−1

1 − 2I
)

1
2K

−1
1 −

1
2K

−1
1

]
∈ R2m×2m.

Lemma 3: 1V1(k + 1) is negative semidefinite provided
that F is positive semidefinite.

Proof. Since det(F) = 0, therefore the only condition for
F to be positive semidefinite can be K−1

1 − 2I ≤ 0 ⇒ K1 ≥

(1/2) I. ■

Lemma 3 will be used in the stability analysis that will be
expressed in Theorem 2.

In this paper, the terminal sliding mode surface s(k) ∈ Rn

is defined as

s(k) := K2e
p/q
2 (k − 1) + K3e1(k) (17)

where p and q are odd positive integers and K2,K3 ∈ Rn×n

are positive definite matrices, and e1(k) and e2(k) are the
same as defined before in (11) and (14), respectively. One
can get

s(k + 1) = K2e
p/q
2 (k) + K3e1(k + 1) (18)

where e1(k + 1) can be obtained as

e1(k + 1) = y(k + 1) − yd(k + 1). (19)

Substituting (5) in (19) yields

e1(k + 1) = y(k) +8(k)1u(k) + d(k) − yd(k + 1). (20)

Since d(k) ∈ Rn and 8(k) ∈ Rn×n are unknown for the
controller design, in the followings, they are estimated using
a Disturbance Observer (DOB) based on neural networks and
an Adaptive Sliding-Mode Observer (ASMO), respectively.

A. DOB DESIGN
According to Assumption 3, system (1) is observable. The
DOB is designed using Radial-Basis Function (RBF) neural
network. According to (5)–(8), the relationship between each
input and output, considering a general disturbance, can be
written as follows:

1yi(k + 1) = θi(k)1ui(k) + di(k), i = 1, . . . , n . (21)

The dynamical model of the DOB can be defined as

1βi(k + 1) = θi(k)1ui(k) + d̂i(k)

+ κi(yi(k) − βi(k)), i = 1, . . . , n (22)

where κi is a positive constant and d̂i(k) denotes the approxi-
mation of di(k).
Remark 7: The dynamical model of the DOB in (22) is

proposed based on the idea in [14], where the model has been
presented for the continuous-time model-based observer,
which has a direct connection with the mathematics of the
systems. In this manuscript, this ‘‘direct connection’’ is elim-
inated by using a CFDL data model. In other words, the
obtained model from the CFDL data is created and employed
for the dynamical model of the DOB in [14].

By defining the auxiliary observer error as qi(k) := yi(k)−
βi(k), one can get

1qi(k + 1) = 1yi(k + 1) −1βi(k + 1)

= di(k) − d̂i(k) − κiqi(k). (23)

Based on the universal approximation theorem of the RBF
networks [43], it can be claimed that

hi(k) = W∗
T

j 9j(xi(k)), j = 1, . . . , nh , i = 1, . . . , n

(24)
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where n is the number of outputs of the network, nh
is the number of neurons in the hidden layer, x(k) =

[ y(k) y(k − 1) u(k) u(k − 1) ] ∈ Rn×4is the input vector,
and hi(k) is the approximation of di(k) and it denotes the
output of the RBF network. Moreover, 9j(xi(k)) ∈ Rnh is
the activation vector function and W∗

j ∈ Rnh is the optimal
weight vector that are defined as9j (xi(k)) =

[
ψ1 (xi(k)) · · · ψnh (xi(k))

]T
W∗

T

j = [w∗

1i · · · w∗
nhi

]T
(25)

where the activation function ψj is of Gaussian type,
described by

ψj(xi) = exp

(
−

∥∥xi − µj
∥∥2

2σj

)
, j = 1, . . . , nh,

i = 1, . . . , n (26)

in whichµ ∈ Rnh×4 and σ ∈ Rnh denote the center and width
of the Gaussian function, respectively. Based on the universal
approximation theorem, (23) can be rewritten as

1qi(k + 1) = 1yi(k + 1) −1βi(k + 1)

= hi(k) − ĥi(k) − κiqi(k) (27)

where ĥi(k) is the approximation of di(k) with adaptive output
weights that will be estimated in the following Theorem.
Theorem 1: Consider (21) and (22) as the system and the

DOB output equations, respectively, and the adaptive output
weights of the RBF network as

Ŵi(k + 1) = Ŵi(k) +3−1
i 9i (x(k)) qi(k), i = 1, . . . , n.

(28)

where 3i ∈ Rnh×nh is a positive definite diagonal matrix
containing the learning coefficients and Ŵi ∈ Rnh is the
actual weight vector. Then, the disturbance observer error
(qi(k)) and the weights error (W̃(k) = W∗

− Ŵ(k)) will be
Uniformly Ultimately Bounded (UUB).

Proof.The Lyapunov function is defined as follows:

V2(k) :=
1
2
q2i (k) +

1
2
W̃T

i (k)3iW̃i(k). (29)

The first difference of (29) is

1V2(k + 1) = qi(k)1qi(k + 1) +
1
2
(1qi(k + 1))2

+ W̃T
i (k)3i1W̃i(k + 1)

+
1
2
1W̃T

i (k + 1)3i1W̃i(k + 1) (30)

Substituting 1W̃(k) = −1Ŵ(k)and (27) in (30) yields

1V2(k + 1) = qi(k)
(
hi(k) − ĥi(k) − κiqi(k)

)
+

1
2
(1qi(k + 1))2 − W̃T

i (k)3i1Ŵi(k + 1)

+
1
2
1ŴT

i (k + 1)3i1Ŵi(k + 1). (31)

By assuming ĥi(k) as the output of RBFNN disturbance
observer with adaptive output weights, it yields

ĥi(k) = ŴT
i (k)9i (x(k)) . (32)

Consequently the error between hi(k) and ĥi(k) can be
obtained as

hi(k) − ĥi(k) = W̃T
i (k)9i(x(k)). (33)

Then, by substituting (33) in (31), we have

1V2(k + 1) = qi(k)
(
W̃T

i (k)9i (x(k))− κiqi(k)
)

+ W̃T
i (k)3i1Ŵ(k + 1)

1
2
(1qi(k + 1))2

+
1
2
1ŴT

i (k + 1)3i1Ŵi(k + 1). (34)

After simplifying, (34) can be rewritten as

1V2(k + 1) = W̃T
i (k)

(
9i (x(k)) qi(k) −3i1Ŵi(k + 1)

)
− κq2i (k) +

1
2
(1qi(k + 1))2

+
1
2
1ŴT

i (k + 1)3i1Ŵi(k + 1). (35)

Using the adaptation law (28) in (35) yields

1V2(k + 1) = −κq2i (k) +
1
2
(qi(k + 1) − qi(k))2

+
1
2
qi(k)9T

i (x(k))3
−1
i 3i3

−1
i 9i (x(k)) qi(k).

(36)

Simplifying (36) results in

1V2(k + 1)

= −

(
−
1
2
9T
i (xi(k))3

−1
i 9i (xi(k)) + κi +

1
2

)
q2i (k)

+
1
2
q2i (k + 1) − qi(k + 1)qi(k). (37)

According to Young’s inequality

qi(k + 1)qi(k) ≤
1
2
q2i (k + 1) +

1
2
q2i (k), (38)

equation (37) can be rewritten as

1V2(k + 1)

= −

(
−
1
2
9T
i (xi(k))3

−1
i 9i (xi(k)) + κi +

1
2

)
q2i (k)

+
1
2
q2i (k + 1) −

1
2
q2i (k + 1) −

1
2
q2i (k). (39)

Hence, (39) becomes

1V2(k + 1)

= −

(
−
1
2
9T
i (xi(k))3

−1
i 9i (xi(k)) + κi

1
2

+ 1
)
q2i (k).

(40)

By defining

�i(k) := 9T
i (xi(k))3

−1
i 9i (xi(k)) (i = 1, . . . , n),
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FIGURE 1. Block diagram of NNDOB

the UUB condition for 1V2(k) to be a negative definite
function can be written as

−
1
2
�i(k) + κi + 1 > 0 ⇒ �i(k) < 2κi + 2. (41)

Therefore, if condition (41) holds, then 1V2 will be nega-
tive definite and the observer error and weights error will be
UUB. ■
The block diagram of the Neural Network-based DOB

(NNDOB) is shown in FIGURE. 1.
Next, the estimated disturbance based on the NNDOB is

substituted into (18) and the result is substituted into (20).
It gives

s(k + 1) = K2e
p/q
2 (k)

+K3 (y(k) +8(k)1u(k) + d̂(k) − yd(k + 1)
)
.

(42)

The reaching law is defined as

1s(k + 1) := −s(k)
2Tλ

∥s(k)∥2
s(k) − ρsat(s(k)) (43)

which can be rewritten as

s(k + 1) = −s(k)
2Tλ− sT (k)

∥s(k)∥2
s(k) − ρsat(s(k)) (44)

where ρ ∈ Rn×n is a positive definite diagonal matrix and
denotes the switching matrix. By substituting (44) into (42)
and simplifying it, the control input signal can be obtained as

u(k) = u(k − 1) + (K38(k))−1
(
K3yd(k + 1) − K2e

p/q
2 (k)

−
2Tλ− sT (k)

∥s(k)∥2
s(k)

−ρsat(s(k)) − K3y(k) −
T K3d̂(k)

)
. (45)

In (45), the PJM is unknown. Therefore, in the following
section, theASMO is presented to estimate the PJM elements.

B. PJM ASMO DESIGN AND CLOSED-LOOP STABILITY
Theorem 2: If system (1) satisfies Assumptions 1– 4 and

the following adaptation law is employed to estimate the PJM
elements, then the closed-loop system is stable:

2̂ (k + 1) = 2̂ (k) − 0 −1λ s(k) (46)

where 0 ∈ Rn×n and λ ∈ Rn×n are diagonal positive definite
matrices, 2̂(k) is an estimation of 2(k) that was defined in
(8), and s(k) is the terminal sliding surface.

Proof.A comprehensive Lyapunov function is defined as
follows:

V3(k) : =
1
2
sT (k)s(k) +

1
2
2̃T (k)02̃(k)

+ V1(k) + V2(k) (47)

where s(k) is the terminal sliding surface and 2̃(k) = 2(k)−
2. The first difference of (47) can be obtained as follow:

1V3(k + 1) = sT (k)1s(k + 1) +
1
2
1sT (k + 1)1s(k + 1)

+ 2̃T (k)012̂(k + 1)

+
1
2
12̂T (k + 1)012̂(k + 1)

+1V1(k + 1) +1V2(k + 1) (48)

where 1s(k + 1) = s(k + 1) − s(k). According to (43), (48)
becomes

1V3(k) = −sT (k)
(
s(k)2Tλ

∥s(k)∥2
s(k) + ρsat(s(k))

)
+

1
2
1sT (k + 1)1s(k + 1)

+ (2̂(k) −2)T012̂(k + 1)

+
1
2
12̂T (k + 1)012̂(k + 1) +1V1(k + 1)

+1V2(k + 1). (49)

With the help of the adaptation law in (46), (49) can bewritten
as

1V3(k) = −sT (k)ρsat(s(k)) +
1
2
1sT (k + 1)1s(k + 1)

−
1
2

(
2̂T (k) + 2̂T (k + 1)

)
λs(k)

+1V1(k + 1) +1V2(k + 1). (50)

Substituting (46) in (50) yields

1V3(k + 1) = −sT (k)ρsat(s(k)) +
1
2
1sT (k + 1)1s(k + 1)

− 2̂T (k)λs(k) −
1
2
sT (k)λ0−1λs(k)

+1V1(k + 1) +1V2(k + 1). (51)

To ensure stability of the closed-loop system, the first differ-
ence of the Lyapunov function must be negative semidefinite.
As we know−(1/2)sT (k)λ0−1λs(k) is negative semidefinite.
In addition, according to Lemma 2, −s(k)ρsat(s(k)) is nega-
tive semidefinite. Therefore, the stability conditions can be
given as follows:

1. 1V1(k) must be negative semidefinite. Therefore,
according to Lemma 3, the first stability condition can
be described as

K−1
1 − 2I ≤ 0 ⇒ K1 ≥

1
2
I. (52)
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FIGURE 2. Block diagram of the proposed controller.

2. 1V2(k) must be negative semidefinite. Hence, accord-
ing to Theorem 1, the second stability condition is

�i(k) ≤ 2κi + 2 (i = 1, . . . , n) (53)

where �i(k) is the same as in (41).
3. For the rest of the terms in (51) to be negative semidef-

inite, we must have

∥1s(k + 1)∥2 ≤ 22̂T (k)λs(k) + 2sT (k)ρsat(s(k))

+ sT (k)λ0−1λs(k) (54)

where ∥·∥ is the L2 norm.
Consequently, according to conditions (52)–(54), the

closed-loop system is stable. ■
Corollary 1: The tracking error and the sliding surface

converge to zero if the closed-loop system is stable under
conditions (52)–(54).

Proof. According to Theorem 2, V3(k) is a non-
increasing function with respect to time, because V3(k) is
positive definite and V3(k) is negative semidefinite under
condition (52)–(54). Since V3(k) comprises of V1(k); hence,
V1(k) is also non-increasing and the tracking error e1(k)
converges to zero (i.e., limk→∞ e1(k) → 0). In addition,
it was shown that −eT3 (k)F e3(k) is negative semidefinite
under condition (52); hence, e2(k) will also converge to zero
(i.e., limk→∞ e2(k) → 0). Therefore, for the sliding surface,
we have the following result:

lim
k→∞

s(k) = lim
k→∞

K2e
p/q
2 (k − 1) + lim

k→∞
K3e1(k)

= K2 lim
k→∞

ep/q2 (k − 1) + K3 lim
k→∞

e1(k)

lim
k→∞

e1(k)→0

−→
lim
k→∞

e2(k)→0
lim
k→∞

s(k) → 0 (55)

This concludes the proof.
Corollary 2: If the sliding surface converges to zero, then

the PJM elements will be bounded.
Proof.In accordancewith Corollary 1, the sliding surface

converges to zero. Thus, according to (46) we will have:

lim
k→∞

2̂ (k) = lim
k→∞

2̂ (k − 1) − lim
k→∞

0 −1λ s(k)

= lim
k→∞

2̂ (k − 1) − 0 −1λ lim
k→∞

s(k)

lim
k→∞

s(k)→0

−→ lim
k→∞

2̂ (k) = lim
k→∞

2̂ (k − 1) (56)

Hence, the PJM elements are bounded. ■
Corollary 3: If the closed-loop system is stable, then

NNDO weights will be bounded.
Proof. Pursuant to Corollary 1, V3(k) is a non-increasing

function. Moreover, V3(k) includes V2(k). As a result V2(k) is
also non-increasing and negative semidefinite function under
condition (53). Therefore, according to (40), the disturbance
observer error will converge to zero (i.e., limk→∞ qi(k) → 0)
and it results

lim
k→∞

Ŵi(k + 1) = lim
k→∞

Ŵi(k) + lim
k→∞

3−1
i 9i (x(k)) qi(k)

= lim
k→∞

Ŵi(k) +3−1
i lim

k→∞
9i (x(k)) qi(k)

lim
k→∞

qi(k)→0

−→ lim
k→∞

Ŵi(k + 1) → lim
k→∞

Ŵi(k)

(57)

This concludes the proof. ■
The block diagram of the proposed controller is illustrated

in FIGURE 2.
The algorithm of the proposed method, comprising of the

ABDTSMC and the NNDOB is as follows:
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FIGURE 3. 2-DOF robotic manipulator.

1. Initialize: Select positive initial values for u(0),
y(0), µj, σj and 2(0)
2. Initialize Controller parameters: Select appropri-

ate values for K1,K2,K3, 0, λ, ρ, κi, and3.
3. Select k = 1.
4. Errors: Calculate e1(k) and e2(k) using (11) and (14),

respectively.
5. Sliding surface:Calculate the sliding surface using (17).
6. Adaptive parameters: Obtain the NNDO weights and

the PJM elements using (28) and (46), respectively.
7. Control input: Calculate the control input using (45).
8. Output: Applied the control input to the discretized

system and obtain the output.
9. k = k + 1 and go back to step 4.
Remark 8: The optimal value for parameters K1,

K2,K3, 0, λ, ρ, κi and 3i can be found using any opti-
mization method like the PSO algorithm, employed in this
paper. This algorithm is used offline and in every iteration,
the stability conditions (52)–(54) are completely checked.
If the conditions are not satisfied the algorithm is repeated,
otherwise the algorithm ends. Moreover, other parameters
(i.e.,µi and σj) are adjusted using the k-means method. Other
parameters (i.e., initial values of the PJM elements) can be
obtained using some methods like trial-and-error.

V. SIMULATING AND EXPERIMENTAL RESULTS
The performance of the proposed method is evaluated in
simulations by applying it to a 2-Degree-Of-Freedom (DOF)
robotic manipulator (FIGURE. 3).
By neglecting the effects of the friction force, the dynamic

equations of this system are given as [35]:

E(θ )θ̈ + F(θ)θ̇ + G(θ ) = τ (58)

where θ, θ̇ , θ̈ ∈ R2 denote the position, velocity, and accel-
eration of the joints, respectively, and E ∈ R2×2, F ∈ R2,
G ∈ R2, and τ ∈ R2 express the inertia matrix, the Coriolis,
the gravitational, and the torque vectors, respectively, given
by, as in (59)–(61), shown at the bottom of the next page,
where mi and li are the mass and the length of the ith link,
respectively.

In this paper, the joints positions (θ(t)) and the torque
applied to the joints (τ (t)) are regarded as the outputs and
the inputs of the system, respectively.

To obtain input-output data from the system, (58) is dis-
cretized by a 1 msec. The simulating results of the proposed
method are compared with the MFAC method in [23] and the
MFASMC method in [26]. For the closed-loop operation, the
best result of the MFASMC andMFACmethods are obtained
with 1 msec. and 0.2 msec. sampling time, respectively.
While the sample time of the proposed ABDTSMC method
is 16 msec. To evaluate the tracking ability, the desired tra-
jectory is regarded as follow:

yd(k) =


3
2

−
π

3
sin ((1 − k)π)

3
2

+
π

3
sin ((1 − k)π)

 . (62)

The parameters of the system and controllers are presented
in TABLE 1. As stated in Remark 8, the optimal values of
some of the design parameters are calculated using the PSO
algorithm for all three controllers (see TABLE 1). Moreover,
the center (µj) and the widths (σj) of the Gaussian func-
tions in the RBF network are determined using the k-means
algorithm.

The following time-varying output disturbance is
considered:

d1 =


0 t < 1.5
−0.07 cos(3π t) + 0.16 1.5 ≤ t < 3.5
0.09 3.5 ≤ t < 5

d2 =


0 t < 1.5

0.07 sin(2π t −
π

2
) + 0.1 1.5 ≤ t < 3.5

0.17 3.5 ≤ t < 5

(63)

A. SIMULATION RESULTS
The simulation results are shown in FIGURES 4–13.
FIGURES 4 and 5 show the joints positions and the applied

torques, respectively. As FIGURE 4 shows, the proposed
ABDTSMC method has faster convergence rate and better
tracking accuracy than the other data-driven controllers in
various situations including the transient and steady states
against external disturbances.

It should be emphasized that the sampling time of the pro-
posed method is 16 msec. while for theMFASMC andMFAC
it is 1 msec. and 0.2 msec., respectively. In other words, better
performance of the ABDTSMC has been achieved with much
fewer data than the MFASMC and the MFAC. Moreover,
the data model of the proposed method has less complex-
ity as compared with MFASMC and MFAC. In MFASMC
and MFAC, the Full Form Dynamic Linearization (FFDL)
method is employed, while the proposed controller is utilizing
the CFDL method.

To better mark the differences between these controllers,
the Mean of Absolute Error (MAE) is defined as

MAEDDABTSMC =
1
313

313∑
k=1

|e(k)|
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FIGURE 4. Joints position: (a) θ1 and (b) θ2.

FIGURE 5. Torque of each joint: (a) τ1 and (b)τ2.

MAEMFASMC =
1

5000

5000∑
k=1

|e(k)|

MAEMFAC =
1

25000

25000∑
k=1

|e(k)| (64)

The results for the MAE and the maximum steady-state
errors are presented in TABLE 2.

FIGURE 5 indicates that the chattering phenomenon is
successfully eliminated by the ABDTSMC and MFASMC

FIGURE 6. ABDTSMC sliding surfaces.

FIGURE 7. PJM components of DDBATSMC.

methods. In addition, FIGURE 5 illustrates that the control
input effort is almost the same for all of the controllers,
nevertheless, the ABDTSMC has better performance.

The sliding surfaces of the proposed methods is depicted
in FIGURE 6. As Corollary 1 indicates, the sliding surface of
the proposedmethod converges to zero with someminor fluc-
tuations around the origin, due to the disturbances. The PJM
elements, which are estimated by the new adaptation law in
(46), are exhibited in FIGURE 7. As claimed in Corollary 2,
the PJM components are bounded. FIGURE 7 confirms this
assertion.

The first difference of the Lyapunov functions are pre-
sented in FIGURE 8. According to this figure, the first differ-
ence of the Lyapunov function remains negative semidefinite
under conditions (52) to (54), at all time, except when the
external disturbances occur. The stability conditions in (53)
and (54) are illustrated in FIGURE 9, which indicates that
all of the stability conditions are met except for a short time
in the vicinity of 1.5 sec. and 3.5 sec. due to the external
disturbances. The abrupt change in FIGURE 9 (a) is due to
the end of data collection for the k-means algorithm. After
the data collection, the center and widths of the RBF neural
network are determined.

The estimation of disturbances and the adaptive weights
of the DOB are shown in FIGUREs 10 and FIGURE 11,

E(θ ) =

(m2l22 + 2m2l1l2 cos(θ2)
+(m1 + m2)l21

)
m2l22 + m2l1l2 cos(θ2)

m2l22 + m2l1l2 cos(θ2) m2l22

 (59)

F
(
θ, θ̇

)
θ̇ =

[
−m2l1l2 sin(θ2)q2 − 2m2l1l2 sin(θ2)θ̇1θ̇2

m2l1l2 sin(θ2)θ̇22

]
(60)

G(θ ) =

[
m2l2g cos(θ1 + θ2) + (m1 + m2) l1g cos(θ1)

m2l2g cos(θ1 + θ2)

]
(61)
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TABLE 1. System and controller parameters.

respectively. As shown in FIGUREs 10, the NNDOB can esti-
mate disturbances with very precise accuracies. FIGURE 11

FIGURE 8. First difference of Lyapunov function (a) i =1, (b) i =2.

FIGURE 9. Stability conditions (a) (53) and (b) (54).

FIGURE 10. Disturbances and their estimations.

shows how the weights of the NNDOB change over time to
cope with the disturbances incurred to the system.
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TABLE 2. Mean absolute errors (MAE) and maximum errors.

FIGURE 11. NNDOB Adaptive weights (a) for i = 1, (b) for i = 2.

FIGURE 12. Computational time in each sample time (a) ABDTSMC, (b)
MFASMC, (c) MFAC.

FIGURE 12 shows the computational time of the methods.
It is obvious that the proposed method requires much less

FIGURE 13. 2-DOF Robotic manipulator with controller.

FIGURE 14. Joints position: (a) θ1 and (b) θ2.

computational time than the other method. Hence, the com-
putational expenses are drastically reduced. Moreover, it can
be claimed that the proposed method can be implemented.
In the next subsection, the experimental results will be
presented.

B. EXPERIMENTAL RESULTS
In this part, the proposed controller is implemented to a
2-DOF manipulator moving in vertical plane. The 2-DOF
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FIGURE 15. Applied voltages: (a) u1 and (b) u2.

FIGURE 16. Disturbances and their estimations in experimental test.

manipulator contains two PWM servomotors that are actu-
ated with a 6.5 volts power supply and derived with an
Arduino UNO controller board. The sampling time for the
proposed controller is considered as 4 msec. FIGURE 13
shows the experimental setup. It should bementioned that due
to the sampling time restriction on this experimental setup,
the MFASMC and MFAC could not be implemented. The
desired trajectory is considered as

yd(k) = (π/6)
[
− sin ((1 − k)π) sin ((1 − k)π)

]T
.

The experimental results are carried out for two cases:
1) time-varying external disturbances and 2) measurement
noises.

1) RESULTS FOR TIME-VARYING EXTERNAL DISTURBANCES
FIGURES 14–17 depict the experimental results with time-
varying external disturbances. As these figures show, very
accurate tracking is achieved. Moreover, the chattering is

FIGURE 17. Sliding surface for the experimental test.

FIGURE 18. Joints position with measurement noise: (a) θ1 and (b) θ2.

FIGURE 19. Sliding surface for the experimental test with measurement
noise.

drastically decreased. In addition, the sliding surface grad-
ually converges to zero. Furthermore, the NNDOB estimates
the external disturbances with high precisions.

2) RESULTS FOR MEASUREMENT NOISES
One of the main problems of data-driven controllers is the
controller performance in the presence of the measurement
noise. Because the mathematical model is not used, the mea-
surement noise can change stability and tracking accuracy of
the closed-loop system. In this subsection, the experimental
results will be depicted in the presence of the measurement
noises (FIGURES 18–21). As shown in these figures, in the
presence of measurement noise that is shown in FIGURE 21,
the tracking accuracy is slightly decreased and the chattering
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FIGURE 20. Applied voltages with measurement noise: (a) u1 and (b)u2.

FIGURE 21. Measurement noises.

phenomenon is relatively increased. However, the overall
controller performance is acceptable.

VI. CONCLUSION
In this paper, an adaptive back-stepping data-driven terminal
sliding mode controller for non-affine MIMO systems is pro-
posed. To overcome the complexity in the stability analysis
and to decrease the conservatism in the stability condition,
a new adaptation law was proposed for the PJM components.
In addition, to achieve a control of system in the presence
of time-varying disturbance and to compensate the missed
data related to general disturbances, the neural network dis-
turbance observer with adaptive weights was designed. The
stability analysis based on the Lyapunov theory and back-
stepping method was performed, and the appropriate regions
for the stability of the closed-loop system were obtained.
The PSO algorithm is used to calculate the suitable values
for the controller parameters. Finally, the proposed method
was simulated, implemented and applied to a 2-DOF robotic
manipulator. The simulation and experimental results verified
better performance of the proposed method with fewer data
than the other data-driven methods. In comparison with the
other data-driven methods, the effect of general disturbances
was successfully suppressed, the chattering phenomenon was
removed, the tracking ability was appropriately modified and
the sampling time was significantly increased.
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