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ABSTRACT Nowadays, ocean networks gradually become increasingly important for communication
among network entities such as maritime and sea-crossing users. However, ocean networks are highly
dynamic because the communication links are composed of satellite and microwave links, which could be
easily influenced by the environment such as local climate. Thus, network transmission in ocean networks
faces great challenges, including low reliability and low efficiency. In this paper, we propose a smart ocean
network architecture, where we use Software Defined Network (SDN) to perform unifiedmanagement of the
network, and Segment Routing (SR) to control data forwarding paths. In this way, we can control network
flows and optimize network routing among diverse network entities in an ocean network. However, many
Quality of Service (QoS) guaranteed applications in ocean networks, such as remote control, require lower
delay. To guarantee the performance for such applications, we further propose QoS routing algorithms based
on Fuzzy-Lagrange for the smart ocean networks architecture, where the optimization objective is to ensure
service quality provided to users. According to experimental results, it is proved that, in comparison with the
benchmark algorithms, the Fuzzy-Lagrange (FuzLag) algorithm proposed based on link fuzzification and
Lagrangian Relaxation can improve the performance by 23% at most.

INDEX TERMS Ocean networks, control overhead, QoS routing, software defined network, segment
routing.

I. INTRODUCTION
Both infrastructure and transmission technology of the ocean
networks are developing fast nowadays, and ocean networks
users raise an increasingly strict requirement for network
transmission, especially for those delay-sensitive applica-
tions, such as remote control of industrial equipment, Virtual
reality/Augmented Reality (VR/AR), etc. Therefore, ocean
networks transmission should guarantee that the QoS satisfies
user demands. However, the current network architecture
model follows the best-effort principle. However, due to its
dynamics, ocean networks are less likely tomeet the user QoS
requirements, such as low delay, high bandwidth, and high
reliability [1]. For example, when cross-sea communications
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using microwaves are concerned, network transmission qual-
ity can be dramatically unstable because of a long transmis-
sion distance and climate changes can also greatly impact on
the link bandwidth of microwaves.

Many previous studies on QoS routing focus on improving
network performance experienced by users and guaranteeing
that the relevant network demands be satisfied. To quanti-
tatively evaluate QoS, some network service parameters are
generally selected and used as evaluation metrics, such as
packet loss probability, throughput, time delay, transmission
feasibility, bandwidth, and jitter [2]. However, QoS routing
in ocean networks is much more complex than traditional
routing, because 1) ocean networks are much more hetero-
geneous, it is composed of different kinds of links including
satellite, microwave, optical fiber, and WIFI, thus it is dif-
ficult to collect the global network information; 2) ocean
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networks are highly dynamic, as satellite/microwave links
could fluctuate or fail frequently, and nodes could join or
leave at any time causing topology changes.

As SDN emerges, brand new network architecture and
model are constructed to decouple data and control planes,
where the control plane collects the global topology informa-
tion and make routing decisions, data plane forward packets
according to routing information. In recent years, SR, as a
data plane technology that carries forwarding instruction in
packets, is prevalent to be combined with SDN, because SR
can flexibly divert forwarding path and support incremental
deployment in a scalable way.

With SDN and SR, all kinds of link information related to
QoS can be collected from ocean networks, such as link delay,
packet loss probability, link capacity, bandwidth, etc. After
collecting this information, the SDN controller can make
routing decisions with QoS routing algorithms, which many
previous works have studied. However, SR carries forwarding
instructions, which include an ordered list of segments along
the path. The packet size will increase if the forwarding path
is much different from the default path when considering
the QoS requirements, leading to more significant control
overheads. In ocean networks, the link capacity is usually
limited due to the harsh ocean network environment. Thus,
the network performance will degrade greatly if control over-
heads increase.

Taking control overheads into account make the QoS rout-
ing problem much more complex, and we need to achieve
the tradeoff between the QoS performance and control over-
heads. In this study, we formulate the problem as an optimiza-
tion problem, where the QoS performance is maximized and
link delay, bandwidth, packet loss probability, and control
overheads should satisfy the given constraints. We prove
that the problem is Non-deterministic Polynomial Complete
(NPC) by reducing it to a partition problemwhich is a famous
existing NPC problem. Given its complexity, we devise a
heuristic algorithm based on FuzLag, which can efficiently
combine different metrics.

Finally, to evaluate the proposed algorithm, we carry out a
comprehensive simulation using generated and real topolo-
gies, and compare it with the traditional Open Shortest
Path First (OSPF) algorithm and another recently proposed
QoS-aware Routing Scheme (QRS) algorithm. The simu-
lation results show that our algorithms can significantly
improve ocean networks performance.

The rest of this paper is organized as follows. We first
discuss the related work in Section II. In section III, for-
mulate the QoS routing model for smart ocean networks
and prove its complexity. In Section IV, we propose FuzLag
algorithm based on fuzzy logic and Lagrange relaxation, and
in Section V, we evaluate our method through simulations.
Finally, we conclude our paper in section VI.

II. RELATED WORKS
Many previous works studied QoS routing optimization prob-
lems. Masip et al. review current research situations of QoS

based routing and introduce some persuasive and scientific
programs that can solve challenges facing such routing [3].
Striegel et al. raise a multicast life cycle model for network
multicast oriented QoS optimization to describe various con-
ditions in a multicast process, including grouping dynamics,
network dynamics, and traffic dynamics [4]. Regarding the
relationship between Quality of Experience (QoE) and QoS
in the field of video transmission, Chen et al. establish the
correlation between QoS and QoE by summarizing the cur-
rent QoE evaluation methods, feature analysis, advantages
and other aspects of video transmission [5]. Scholars in
the domain of wireless networks also profoundly investigate
QoS optimization issues at multiple aspects. For example,
Ehsan et al. review QoS routing optimization in wireless
sensor networks, comprehensively introduce some of the
existing energy-conservative routing technology, and also
present some difficulties and challenges in improving routing
protocols depending on QoS optimization in wireless multi-
media sensor networks [6].

With more requirements put on the underlying network
infrastructure, SDN has become a new hot research direc-
tion in recent years, especially QoS optimization in SDN
attracts extensive attention from scholars. Guck et al. estab-
lish a mathematical model to solve QoS related issues of
unicast routing in SDN. In addition to reviewing QoS rout-
ing algorithms for the past few years, they also present a
novel 4-dimensional evaluation framework for QoS routing
algorithms. This may contribute to a more scientific and rea-
sonable evaluation of the performance of QoS optimization
algorithms for unicast routing [7]. Karakus et al. summa-
rize QoS optimization schemes in OpenFlow protocol based
SDNs, involving varieties of technical solutions aimed at QoS
optimization (e.g., a multimedia stream transmission mecha-
nism, inter-domain routing, a resource protectionmechanism,
queue management, and scheduling algorithms) [8]. Consid-
ering that a default routing protocol is susceptible to network
dynamics and external aggression in a scenario where SDN
is combined with IoT, Guo et al. raise a QoS aware secu-
rity routing protocol based on deep reinforcement learning
to dynamically adjust routing strategies depending on the
network status and further improving network transmission
performance [9].

However, previous QoS routing algorithms can not directly
fit into our work, because 1) ocean networks are more
dynamic and heterogeneous than other networks; 2) the con-
trol overheads of segment routing in our architecturemake the
problem much more complex. Thus, we need to investigate
the QoS routing problem in ocean networks.

III. PROBLEM FORMULATION
Communication of the smart ocean networks nodes may
have their particular QoS requirements for transmission. For
example, cross-sea communication users need to download
some files or transfer videos; and their QoS demand may
be a rather great transmission bandwidth accordingly. As for
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users performing offshore activities, the QoS demands may
be low delay to ensure timeliness of data transmission at
the time of performing urgent tasks. Certainly, QoS of many
applications is involved with bandwidth, delay, jitter and
packet loss probability, etc.

By the light of SDN and SR, the overall network status can
be controlled and administered on the whole by a SDN con-
troller. In terms of SR, it further lowers forwarding overhead
of the forwarding devices such as a router, so that a router
is only responsible for data package forward, but not storage
of relevant forwarding tables or index search of forwarding
tables. For diversified QoS requirements of data transmission
in various nodes of the ocean networks, they may be satisfied
to the greatest extent thanks to the control and coordination
functions of SDN and efficient forwarding effects of SR.
In this way, both network performance and users’ QoE can
be further boosted.

In a network at a certain scale, however, there aremany data
transmission paths from one node to another; different paths
may correspond to different QoS indexes. For this reason,
it is much more likely for data transmission effects and the
result of meeting users’ QoS requirements or not to differ
dramatically. Therefore, a problem is raised in this research,
that is, whether a rather preferable data transmission path
meeting users’ QoS demands can be identified by virtue of
network management control of SDN and the forwarding
technology of SR on one hand, and control overhead of SR
data packages be also restricted as much as possible.

A. MODEL BUILDING
In the smart ocean network, its QoS routing scheme was
abstracted to a simple undirected network topology G =

(V ,E), where V refers to a set of nodes in the network, and E
to a frontier set in this network. As for ∀ei ∈ E , ei = {ni1, ni2}
is selected to express nodes ni1 and ni2 to which the frontier
ei is connected.
The proposed QoS routing model used bandwidth, delay

and packet loss probability as QoS indexes to analyze how
users’ QoS demands for these indexes can be respectively
satisfied. For ∀nS ∈ N and ∀nD ∈ N , a default transmis-
sion path Pdefault exists between the source node nS and the
destination node nD; and this path is expressed as follows:
Pdefault = {eS , ed1, ed2, . . . , edk , eD}. In a SR domain, there
is no need to insert segment tables into data package headers if
transmission between ns and nD follows Pdefault . In this case,
no extra control overhead is incurred.

Therefore, six attributes described below can be achieved
for ∀ei ∈ E :

1) Cost f (ei). It represents the cost incurred by data flow-
ing through the frontier ei. According to the proposed
model, the lower the cost of a frontier, the better the
overall QoS performance of this frontier.

2) Bandwidth capacity Ci. It represents the maximum
bandwidth allowed by the frontier ei. Therefore, band-
width passing through the frontier ei should be no more

than Ci according to this model. To facilitate modeling,
bandwidth capacity for all frontiers Ci in the network
is assumed to be consistent.

3) Current bandwidth overhead Ui. It represents the cur-
rent bandwidth overhead of the frontier ei, which is
expressed in (1) below:

Ui =
Bi
Ci

(1)

where, Bi stands for the bandwidth that has been occupied
by the frontier ei, and Ci for capacity of this frontier ei.
Under the circumstance that a user raises QoS requirements
for bandwidth, bandwidth overhead Ui of this frontier should
be no more than that required by the user.

1) Delay Di. It represents delay of the frontier ei. Regard-
ing users with a requirement for low delay, the lower
the delay of frontier ei is, the higher the possibility for
this frontier to meet their demands will be.

2) Packet loss probability pkl i. It represents the packet loss
probability of the frontier ei. In terms of users having
a requirement of low packet loss probability, a lower
packet loss probability means that it is more likely for
the frontier ei to satisfy their demands.

3) Control overhead SL i. It is incurred by forwarding data
to the frontier ei by virtue of SR. Specific to network
flows of known source nodes and destination nodes, the
following Equation (2) is written to express the control
overhead [10].

∀emn ∈ Pkdiv, SL (fk ,m, n) =

{
0, if emn ∈ Pkdefault
1, otherwise

(2)

Five attributes of the frontier in network G = (V ,E) are
defined above. for known source node nS and destination
node nD, a quintuple equation is written below to express
∀ei ∈ E , that is:

tuplei =
{
f (ei) , Ui, Di, pkl i, SL i

}
(3)

Specific to the source node nS , the destination node nD, and
an identified path PSD = {eS , e1, e2, . . . , eD} between them,
the cost of this path can be evaluated by f (e) , e ∈ PSD, that is
the cost of respective frontiers in the first place. As assumed,
f (e) is an additive parameter; and the cost of the path PSD
can be figured by (4) below:

f (PSD) =

∑
e∈PSD

f (e) (4)

For path PSD, its cost is the sum of cost f (e) of all frontiers
along this path. When the cost of frontiers in the network is 1,
the corresponding cost function is degenerated into the hop
count of the path.

For a reason that themodel should consider andmeet users’
QoS requirements, we need to determine whether the path
PSD can meet the specific QoS index notified by the source
node. In this chapter, QoS requirements for bandwidth, delay
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and packet loss probability are primarily taken into account.
Below, analyses are made on bandwidth, delay and packet
loss probability of the path PSD.

For the path PSD = {eS , e1, e2, . . . , eD}, its bandwidth
overhead UP is expressed in the following (5):

UP = max
{
Ues ,Ue1 ,Ue2 . . . ,UeD

}
(5)

In line with the Wooden Bucket Theory and the law of
network flow transmission, bandwidth overhead of a path
depends on a frontier with the maximum bandwidth overhead
among all frontiers along this path. If the bandwidth overhead
of a path is excessively high, transmission of network flows
may be restricted even though bandwidth overhead of other
frontiers is rather low.

For the path PSD = {eS , e1, e2, . . . , eD}, its total delay DP
is written into the following (6):

DP =

∑
e∈PSD

De (6)

It is the delay caused by transmission in path PSD, equal to
accumulative delays of all frontiers along this path.

For the path PSD = {eS , e1, e2, . . . , eD}, the corresponding
packet loss probability is figured out by the following (7):

pklP = 1 −

∏
e∈PSD

(1−pkle) (7)

To facilitate modeling and subsequent path computation,
multiplication selected for packet loss probability calculation
is substituted by addition. Regarding the packet loss probabil-
ity of frontier e, the following formula (8) is obtained through
adjustment:

pkl∗e = −ln(1 − pkle) (8)

Therefore, equation (7) expressing the pklP of the path can
be rewritten into the following (9):

pkl∗P =

∑
e∈PSD

pkl∗e (9)

The above equation (9) can be utilized to calculate band-
width overheadUP, delayDP and packet loss probability pkl∗e
of any path PSD. Provided that the forwarding technology SR
is adopted, control overhead incurred by SR data forwarding
is inevitable in the event of PSD ̸= Pdefault . Therefore, control
overhead SLP of the path PSD needs to be figured out as well
by the following equation (10) and (11) [10]:

∀eij ∈ E, aij =

{
1, if eij ∈ P
0 , otherwise

(10)

SLk =

∑
eij∈E

aij × SL (fk , i, j) (11)

It should be noted that control overhead of each frontier in
the networkmay changewith variations in nS and nD, because
as nS and nD change, the default path Pdefault of new nS or
nD differs from the previous one. In this scenario, the above

equation should be used again to estimate SL i of each frontier,
and recalculate SLP for the corresponding path PSD.

Thus, the model becomes capable of figuring out specific
values of bandwidth overhead, the total delay, the packet loss
probability and the control overhead of any end-to-end path
in network G = (V ,E). If ∀nS ∈ N at the source node,
a user requests a path PSD which is provided by the controller
and arrives at the destination node in conditions of ∀nD ∈ N
and nS ̸= nD. In addition, the user raises the following QoS
requirements:

DP ≤ 1delay; UP ≤ 1band ; pkl∗P ≤ 1pkl (12)

This means that in network G = (V ,E), there may exist
multiple paths satisfying users’ QoS requirements of 1delay,
1band and 1pkl as well as the constraint λ over the control
overhead of a path. If the number of these paths is k , a set
of feasible paths can be denoted as P = {P1,P2, . . . ,Pk}.
Without a doubt, it is also possible that no paths meeting
users’ QoS requirements can be found, in which case, P =

∅.Under the circumstance that the constructedmodel is aimed
at finding one and only one path Pdiv, parameter zi is designed
to signify whether the path Pi ∈ P is selected or not.
Moreover, zi is expressed in the following (13):

zi =

{
1, if Pi selected as the path
0, otherwise

(13)

As the proposed model always selects only one path Pdiv
from P, a set of feasible paths, zi also satisfies the following
equation (14): ∑

Pi∈P

zi = 1 (14)

Specifically, optimization objectives are modelled as fol-
lows to provide users with a path Popt with the least cost,
satisfy their QoS requirements of 1delay, 1band and 1pkl ,
and optimize the control overhead incurred by data package
transmission of SR.
Objective 1: Regarding users at the source node ∀nS ∈ N

in network G = (V ,E), they need to establish connections
with the destination node ∀nD ∈ N with nS ̸= nD. Besides,
QoS requirements of DP ≤ 1delay, UP ≤ 1band and pkl∗P ≤

1pkl are raised by them. In addition to identifying a path
PSD ∈ P with rather low control overhead for users, themodel
should be able to realize the following goal as well:

min f (PSD) (15)

Corresponding constraints are written below:

UP ≤ 1band (16)

DP ≤ 1delay (17)

pkl∗P ≤ 1pkl (18)

SLP ≤ λ (19)

UP ≤ Uthreshold (20)

PSD ∈ P (21)

86492 VOLUME 11, 2023



T. Ji et al.: Study on QoS Routing Optimization Algorithms for Smart Ocean Networks

zSD = 1 and
∑
Pi∈P

zi = 1 (22)

In equation (15), min f (PSD) = min
∑

e∈PSD f (e)
expresses the minimum cost function f (PSD) figured out
for the path PSD. As for 1band , 1delay and 1pkl requested
by users for the obtained path PSD, they are expressed in
(16), (17) and (18). According to equation (19), the path
PSD figured out needs to meet a certain constraint λ over
the control overhead. Here, λ is a parameter generated by a
controller in line with relevant network status information.
In equation (20), Uthreshold is the bandwidth overhead thresh-
old in this network, signifying that the bandwidth overhead
UP of the selected path PSD should not exceed Uthreshold for
the sake of network performance. Generally, it is impossible
that bandwidth overhead of a network approaches or reaches
100%, which may lead to serious network congestion and
lower the transmission quality.. As expressed in equation
(21), the selected path PSD must belong to P, a set of feasible
paths from the source node nS to the destination node nD.
Finally, one and only one path is allowed to be selected from
P, as expressed in (22).
Variable parameters involved in the proposed model here

are listed in Table 1:

TABLE 1. Symbols of QoS assurance optimization and their meanings.

B. COMPLEXITY ANALYSES
As described above, a QoS assurance model has been estab-
lished with an aim to find a path that realizes SR based control
overhead optimization on the premise of satisfying users’
different QoS requirements. However, the objective function
used to solve this model is a NP-Hard problem. Subsequently,
corresponding proof will be presented in detail.

A recognized NP-Hard problem is firstly introduced as
follows:

Lemma 2: (2)-partition problem) A multiset S is divided
into two subsets S1 and S2, in which case, S1 ∪ S2 = S, and
S1 ∩ S2 = ∅; and a sum of all elements in S1 is equal to that
of all elements in S2. The 2-partition problem is NP-Hard.
By attributing the original problem to 2-partition, the

objective function used to solve the model is proved to be a
NP-Hard problem. As for bandwidth constraints of the path,
this is a process of figuring out the maximum value of all
frontiers along this path. Considering this, network topology
pruning should be performed before calculating the path.
In this way, it is expected to remove all frontiers exceeding the
bandwidth overhead from this network and thus satisfy QoS
requirements of users. In a proving procedure, constraints
of bandwidth overhead are neglected and the number of
constraints is lowered to 3, that is time delay, packet loss
probability and control overhead of the path.
Theorem 3: The objective function is a NP-Hard problem.
Proof: For a reason that the objective function relates

to multiple concrete computing methods, abstraction of it
together with the network model is carried out, which is also
proved based on problems with dual constraints. As assumed,
there exist two different additive weights w1 (e) and w2 (e)
for each frontier e in network G = (V ,E), where w1 (e) >

0 and w2 (e) > 0. Besides, nS and nD are designed to be
source and destination nodes; and there are two positive num-
bers W1 and W2 at the meantime. Hence, the problem turns
to determining whether a path PSD = {eS , e1, e2, . . . , eD}

resulting in w1 (p) < W1 and w2 (p) < W2 exists.
In the first place, an instance of the 2-partition problem

is introduced; and the corresponding set can be written as
S = {s1, s2, . . . , sn}. A network possessing (n+1) nodes and
2n frontiers is then built. For respective nodes i and i + 1 in
this network, they are formed by connecting two frontiers,
as shown in the following Fig. 1:

FIGURE 1. An example of the 2-partition problem.

Let A =
∑n

i=1 si and B = 2nA. As two frontiers exist
between two arbitrary nodes, the first weight of the first
frontier between nodes i and i + 1 is denoted as B, while its
second weight as 0. In terms of their second frontier, first and
second weights are respectively written into B− si and si.
The following problem of path planning under two con-

straints is taken into consideration:

w1 (p) ≤ nB−
A
2

(23)

w2 (p) ≤
A
2

(24)
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where, p stands for a path from Nodes 1 to n. In this figure,
it is clear that the sum of all weights of a frontier at either
upper half or lower half part between nodes i and i + 1 is B,
that is,

w1 (i, i+ 1) + w2 (i, i+ 1) = B (25)

Therefore, any path p between nodes 1 and n+ 1, a sum of
its two weights can be expressed in the following (26):

w1 (p) + w2 (p) = nB (26)

Because of w1 (p) ≤ nB−
A
2 , we have

w2 (p) ≥
A
2

(27)

In the event of w2 (p) ≤
A
2 , there exists

w2 (p) =
A
2

(28)

Considering a frontier between nodes i and i+1, the weight
w2 (i, i+ 1) is 0 or si. Therefore, a subset S2 of the original
set S can be found; and the total sum of all elements in this
subset is A2 , thus solving this problem. This is a living example
of settling the 2-partition problem.

On the contrary, if there is a subset S2 in the original set
S and the total sum of all elements in this subset is A

2 , and
in the event of si ∈ S2 for nodes i and i + 1, the second
frontier should be selected; otherwise, we select the first one.
Regarding the path p obtained in this way, we have

w2 (p) =
A
2

(29)

As

w1 (p) + w2 (p) = nB (30)

there exists

w1 (p) = nB−
A
2

(31)

In this case, a solution to the objective function can be
obtained as long as a solution to the 2-partition problem is
figured out. Therefore, the objective function is attributed to a
2-partition problem, that is a NP-Hard problem. With regards
to the problem proposed in this study, it has three constraints
of delay, packet loss probability and control overhead. Such
a problem with three constraints can be also attributed into
that with two constraints, that is a dual-constraints problem.
Furthermore, such a problem of dual constraints has been
proved to be NP-Hard. Hence, the objective function solved
in this paper is also a NP-Hard problem. End of proof.

IV. FUZLAG ALGORITHM BASED ON FUZZY LOGIC AND
LAGRANGIAN RELAXATION
In the above context, the network model was described and
the corresponding objective function was defined. Besides,
the proposed problem is proved to be NP-Hard. On this basis,
a FuzLag algorithm is put forward in this paper based on
fuzzy logic and Lagrangian Relaxation with an expectation

to figure out a feasible solution approaching the optimal
solution of the model’s objective function. In this way,
we endeavor to provide users with a feasible path that meets
their QoS requirements, realizes control overhead optimiza-
tion, and is close to the corresponding optimal path. The
general algorithm is presented as shown in Table 2 below:

TABLE 2. Pseudocodes of the FuzLag algorithm.

Algorithm 4.1 gives an overall framework of the
Lagrangian Relaxation algorithm based on fuzzy logic.
Firstly, input of this algorithm consists of bandwidth overhead
U of nodes and frontiers in the network G = (V ,E) and all
frontiers acquired by a controller, and their delay D, packet
loss probability pkl, source node nS and destination node nD
and the default path Pdefault between nS and nD, constraint
λ over control overhead of the generated path, bandwidth
overhead constraint 1band , time delay constraint 1delay,
packet loss probability constraint 1pkl , bandwidth overhead
threshold Uthreshold , and iteration number iter . Bandwidth
overheadU , time delayD, packet loss probability pkl and the
default path Pdefault of all frontiers are adopted to construct
4 adjacency matrixes of network, that is an adjacency matrix
U for bandwidth overhead, an adjacency matrix D for delay,
an adjacency matrix PKL for packet loss probability, and an
adjacency matrix SL for control overhead. Subsequently, the
frontier cost function f is initialized.

Regarding frontiers in nonconformity with relevant con-
ditions in the network, pruning is carried out. According
to computational formulas of path bandwidth overhead and
delay during modeling, computing of bandwidth overhead
is a process of taking its maximum value. For this reason,
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if bandwidth overhead of a frontier along a path exceeds
its constraint, bandwidth overhead of this path must also
go beyond its constraint. Under the circumstance that delay
of frontier along a path is greater than its constraint during
additive computing of delay, delay of this path also exceeds
its constraint inevitably because all delays of frontiers along
this path are positive. Therefore, specific to frontiers with
bandwidth overhead exceeding users’ QoS requirements for
bandwidth or Uthreshold , other frontiers of the adjacency
matrix U and the cost function f configured for bandwidth
overheads corresponding to the former frontiers are set at
rather large values. Similarly, large values are assigned to
frontiers of the adjacency matrix D and the cost function f
established for delay corresponding to other frontiers with
delay exceeding that required by users. By means of pruning,
both computing efficiency and performance of subsequent
frontier cost computing and path finding functions can be
improved. When unqualified frontiers are undergoing prun-
ing, the frontier cost function is computed at the same time.
Here, the fuzzy function used to calculate the frontier cost
uses packet loss probability PKL (i, j) and delay D (i, j) that
correspond to this frontier as its input, so that a specific
frontier cost f (i, j) is obtained. Moreover, the fuzzy function
computing is based on the fuzzy logic, which will be specif-
ically described in Section IV-A.

When the cost of all frontiers in the entire network has been
obtained by the fuzzy function, pruning of unqualified fron-
tiers is also completed. After that, the Lagrangian Relaxation
algorithm can be utilized to input the adjacency matrix f of
cost, the adjacency matrix D of delay, the adjacency matrix
PKL of packet loss probability, the adjacency matrix SL of
control overhead, the source node nS , the destination node
nD, users’ QoS requirement 1pkl for packet loss probability,
users’ QoS requirement 1delay for delay, and the maximum
iteration number iter . At last, a feasible path from nS to
nD can be figured out; and in this path, not only are users’
QoS requirements satisfied, but control overhead incurred by
data package forwarding is optimized. As for specific path
calculation procedures, they will be elaborated in subsequent
sections.

A. A FUZZY INFERENCE SYSTEM BASED
ON QOS DEMANDS
For any frontier e in a network, the bandwidth overhead con-
straint as a maximization parameter has been satisfied during
pruning, because this frontier has two additive parameters
of delay and packet loss probability. The constructed model
aims to find the best possible path conforming to users’ QoS
demands. Therefore, the frontier cost as an objective function
should be defined to take both delay and packet loss proba-
bility into comprehensive consideration. As described above,
estimations on delay and packet loss probability relating to
frontiers cannot be readily defined in accurate mathemat-
ical ways. Considering this, the Mamdani fuzzy inference
system was introduced and utilized to figure out specific
costs depending on delay and packet loss probability of each

frontier in combination with membership functions and fuzzy
rules. Specific values of the frontier cost in the network are
further incorporated in subsequent path computing schemes
on one hand; and on the other hand, they also serve as criteria
for QoS evaluation of network frontiers.

1) FUZZY VARIABLES
In this fuzzy inference system, controllers select, according
to the network topology collected and packet loss probability
and delay of each frontier, the packet loss probability pkle
and the delayDe of any frontier e as the input fuzzy variables.
Moreover, pkle is set within a range of

[
0, pklmax

]
. The corre-

sponding fuzzy set can be divided into 5 categories of ‘‘ewith
quite low packet loss probability’’, ‘‘e with very low packet
loss probability’’, ‘‘ewith moderate packet loss probability’’,
‘‘e with very high packet loss probability’’, and ‘‘e with quite
high packet loss probability’’. In terms of the frontier De,
it has a range of [0,Dmax], where Dmax refers to the upper
bound of frontier delay in the network, that is the delay
corresponding to a frontier with the highest delay in general
cases. Accordingly, the fuzzy set consists of 5 categories, that
is ‘‘e with quite large delay’’, ‘‘e with very large delay’’, ‘‘e
with moderate delay’’, ‘‘e with very low delay’’, and ‘‘e with
quite low delay’’. The inputted value is cost function f (e)
in a range of [0, 1]. In this case, the corresponding fuzzy
set has 5 categories as well, that is ‘‘e with quite poor QoS
performance’’, ‘‘ewith very poor QoS performance’’, ‘‘ewith
moderate QoS performance’’, ‘‘e with quite very good QoS
performance’’, and ‘‘e with quite good QoS performance’’.

2) MEMBERSHIP FUNCTION
In this fuzzy inference system, 5 fuzzy sets are obtained
from perspectives of the packet loss probability, the delay
and the QoS performance. This signifies that there are
5 membership functions accordingly. Regarding member-
ship function selection, Gaussian curves are comparatively
smooth and curves of membership functions are in normal
distribution; besides, not only is the goodness of fitting
also preferable as far as the packet loss probability and
the delay are concerned in many cases of the network,
the corresponding anti-interference performance is strong.
Therefore, membership functions of packet loss probability
fuzzy sets are defined by 5 Gaussian curves in the event of
σ = 0.002 and c = 0, pklmax

4 ,
pklmax

2 ,
3pklmax

4 and pklmax, which
are expressed as (32), shown at the bottom of the next page.

If pklmax = 0.02, the corresponding diagram can be
depicted as Fig. 2:

Likewise, membership functions for fuzzy sets of frontier
delay are also defined by 5 Gaussian curves in a condition
of σ = 0.1 and c = 0, Dmax

4 , Dmax
2 , Dmax

4 and Dmax; and
expressions of these functions can be written as (33), shown
at the bottom of the next page

If Dmax = 1ms, the corresponding diagram is as Fig.3:
Since membership functions of input variables and

their fuzzy sets have been defined, membership functions
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FIGURE 2. A diagram of membership functions based on the packet loss
probability.

corresponding to fuzzy sets of QoS performance as an input
variable need to be defined as well. Considering that the
trigonometric function is most widely applied in a fuzzy
control system and it performs rather well in stability and
robustness, trigonometric membership functions are adopted
here, which can be expressed as (34), shown at the bottom of
the next page.

Accordingly, the membership function image is as Fig.4:

3) DESIGN OF FUZZY RULES
Fuzzy inference needs to be conducted depending on fuzzy
rules in a rule base after packet loss probability and delay of

FIGURE 3. A diagram of membership functions based on the delay.

the network frontier are inputted in the fuzzy inference sys-
tem. For a reason that fuzzy rules have a direct influence on
subsequent processes of fuzzy set generation and ambiguity
resolution, etc., the rule base is critical to fuzzy inference.
From the perspective of QoS assurance, QoS performance of
a frontier may be very good according to an arbitrary rule in
the context where its packet loss probability and delay are
very low. On the basis of this thought, the following rule base
is established in this study:

IF packet loss probability is very low and delay is quite
low, THEN QoS performance is very good;

µ (pkl) =



e−
pkl2

0.0022 , corresponding to a fuzzy set of ‘‘e with quite low packet loss probability’’

e−

(
pkl−

pklmax
4

)2
0.0022 , corresponding to a fuzzy set of ‘‘e with very low packet loss probability’’

e−

(
pkl−

pklmax
2

)2
0.0022 , corresponding to a fuzzy set of ‘‘e with moderate packet loss probability’’

e−

(
pkl−

3pklmax
4

)2
0.0022 , corresponding to a fuzzy set of ‘‘e with very high packet loss probability’’

e−
(pkl−pklmax )

2

0.0022 , corresponding to a fuzzy set of ‘‘e with quite high packet loss probability’’

(32)

µ (D) =



e−
D2

0.12 , corresponding to a fuzzy set of ‘‘e with quite low delay’’

e−
(
D−

Dmax
4

)2
0.12 , corresponding to a fuzzy set of ‘‘e with very low delay’’

e−
(
D−

Dmax
2

)2
0.12 , corresponding to a fuzzy set of ‘‘e with moderate delay’’

e−
(
D−

3Dmax
4

)2
0.12 , corresponding to a fuzzy set of ‘‘e with very high delay’’

e−
(D−Dmax )2

0.12 , corresponding to a fuzzy set of ‘‘e with quite high delay’’

(33)
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FIGURE 4. A diagram of membership functions based on the QoS
performance.

IF packet loss probability is very low and delay is very low,
THEN QoS performance is very good;

IF packet loss probability is very low and delay is moder-
ate, THEN QoS performance is moderate;

IF packet loss probability is very low and delay is very
high, THEN QoS performance is very poor;

IF packet loss probability is very low and delay is quite
high, THEN QoS performance is quite poor;

IF packet loss probability is very low and delay is quite
low, THEN QoS performance is very good;

IF packet loss probability is very low and delay is very low,
THEN QoS performance is very good;

IF packet loss probability is very low and delay is moder-
ate, THEN QoS performance is moderate;

IF packet loss probability is very low and delay is very
high, THEN QoS performance is very poor;

IF packet loss probability is very low and delay is quite
high, THEN QoS performance is quite poor;

IF packet loss probability is moderate and delay is quite
low, THEN QoS performance is moderate;

IF packet loss probability ismoderate and delay is very low,
THEN QoS performance is moderate;

IF packet loss probability is moderate and delay is moder-
ate, THEN QoS performance is moderate;

IF packet loss probability is moderate and delay is very
high, THEN QoS performance is very poor;

IF packet loss probability is moderate and delay is quite
high, THEN QoS performance is quite poor;

IF packet loss probability is very high and delay is quite
low, THEN QoS performance is very poor;

IF packet loss probability is very high and delay is very
low, THEN QoS performance is very poor;

IF packet loss probability is very high and delay is moder-
ate, THEN QoS performance is very poor;

IF packet loss probability is very high and delay is very
high, THEN QoS performance is quite poor;

IF packet loss probability is very high and delay is quite
low, THEN QoS performance is quite poor;

IF packet loss probability is quite high and delay is quite
low, THEN QoS performance is quite poor;

IF packet loss probability is quite high and delay is very
low, THEN QoS performance is quite poor;

IF packet loss probability is quite high and delay is mod-
erate, THEN QoS performance is quite poor;

IF packet loss probability is quite high and delay is very
high, THEN QoS performance is quite poor;

IF packet loss probability is quite high and delay is quite
high, THEN QoS performance is quite poor.

In this base, all possible fuzzy inference scenarios are
described for packet loss probability and delay of network
frontier. Without a doubt, this rule base is both scientific
and general. The relationship of two preconditions is denoted
by ‘‘and’’; and the rule of operation follows intersection
operation of fuzzy sets. For example, with respect to a frontier
with very high packet loss probability and very low delay, its
QoS performance remains below the moderate level, which
is caused by the high packet loss probability despite the fact
that its delay satisfies users’ QoS requirements. In this case,
the result of this operation is defined to be ‘‘THEN QoS
performance is very poor’’.

4) AGGREGATION OF FUZZY SETS AND AMBIGUITY
RESOLUTION
Based on each fuzzy rule in this base, specific values of
inputted variables can be obtained. Then, an appropriate

µ (D) =



e−
D2

0.12 , corresponding to a fuzzy set of ‘‘e with quite low delay’’

e−
(
D−

Dmax
4

)2
0.12 , corresponding to a fuzzy set of ‘‘e with very low delay’’

e−
(
D−

Dmax
2

)2
0.12 , corresponding to a fuzzy set of ‘‘e with moderate delay’’

e−
(
D−

3Dmax
4

)2
0.12 , corresponding to a fuzzy set of ‘‘e with very high delay’’

e−
(D−Dmax )2

0.12 , corresponding to a fuzzy set of ‘‘e with quite high delay’’

(34)
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implication method is utilized to map these values on a fuzzy
set of corresponding output. Here, ‘‘truncation’’ is selected
as the implication method to capture membership functions
of fuzzy sets below specific values. Afterwards, aggregation
is performed for fuzzy sets that are obtained by each rule by
means of ‘‘max’’. At last, the aggregated fuzzy set undergoes
ambiguity resolution. Commonly used ambiguity resolution
approaches include maximum membership, weighted mean
and center of gravity (CoG). Due to comparatively low accu-
racy and poor effects of maximummembership and weighted
mean methods, the ambiguity resolution method of COG is
adopted here. The corresponding principle is that: CoGs of
membership functions for the aggregated fuzzy sets that can
enclose an area with the horizontal axis can be used as the
output, which is expressed in equation (35) below:

v =

∫
vµv (v) dv∫
µv (v) dv

(35)

By means of ambiguity resolution, a specific value f is
acquired eventually. It means that QoS performance can be
evaluated as f for a frontier with packet loss probability pkl
and delay D. In other words, f represents the cost of this
frontier. According to costs of respective frontiers, users’ QoS
demands and the corresponding control overhead constraint,
a feasible path with the least cost and satisfying the constraint
can be found through computing.

B. A CONTROL OVERHEAD OPTIMIZATION ALGORITHM
BASED ON LAGRANGIAN RELAXATION
In the above fuzzy inference system, values assigned to QoS
performance of each frontier can be worked out after network
topology pruning based on relevant network status informa-
tion (e.g., network topology, network bandwidth and delay)
collected by a controller. Moreover, the cost of respective
frontiers is also obtained in line with these values. To find
a path with the least possible cost for users means that a path
of which QoS performance is as good as possible is acquired,
which remains consistent with our original intention of model
building.

However, it is much likely that users’ QoS demands can-
not be satisfied by figuring out the frontier cost based on
fuzzy inference and finding a shortest path based on the
frontier cost. Relevant reasons can be described as follows.
The cost of each frontier is obtained by comprehensively
considering both packet loss probability and delay of this
frontier; and users also pose specific constraints over packet
loss probability and delay. In this context, a constraint among
them may not be satisfied. As the objective function has
been proved to be NP-Hard, its optimal solution cannot
be obtained in polynomial time. Therefore, the principle of
Lagrangian Relaxation was selected here to design a con-
trol overhead optimization algorithm based on Lagrangian
Relaxation. While users’ QoS demands can be met, a feasible
path of the least possible cost is also found to realize control
overhead optimization.

Based on the frontier cost obtained through network topol-
ogy pruning and fuzzy inference, the objective function of
this model can be rewritten as follows:
Objective 4: To find a path PSD ∈ P satisfying a condition

(36) below:

min
∑
e∈PSD

f (e) (36)

Constraints are (37) to (39):∑
e∈PSD

De ≤ 1delay (37)

∑
e∈PSD

pkl∗e ≤ 1pkl (38)

∑
e∈PSD

SLe ≤ λ (39)

The reason why this objective function is proved to be a
NP-Hard problem is that this function contains three con-
straints 1delay, 1pkl and λ with inflexible rigidity. Accord-
ing to Lagrangian Relaxation, constraints with inflexible
rigidity are incorporated as Lagrangian multipliers into
the objective function by virtue of relaxation. Through
iterations, upper and lower bounds and Lagrangian mul-
tipliers of the problem to be solved are continuously
updated. Finally, a feasible solution that is close to or
even equal to the optimal solution is obtained. Additionally,
Lagrangian multipliers γ1, γ2 and γ3 are introduced in the
objective function, so that constraints

∑
e∈PSD De ≤ 1delay,∑

e∈PSD pkl
∗
e ≤ 1pkland

∑
e∈PSD SLe ≤ λ can be relaxed into

the objective function. Therefore, the objective function is
updated.
Objective 5: To find a path PSD ∈ P satisfying the follow-

ing equation (40):

L (γ1, γ2, γ3)

= min
∑
e∈PSD

f (e) + γ1

∑
e∈PSD

De − 1delay


+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

∑
e∈PSD

SLe − λ


= min

∑
e∈PSD

f (e) + γ1
∑
e∈PSD

De+γ2
∑
e∈PSD

pkl∗e

+ γ3
∑
e∈PSD

SLe − γ11delay − γ21pkl−γ 3λ (40)

where, γ1 ≥ 0, γ2 ≥ 0 and γ3 ≥ 0.
The new objective function expressed in equation (40) is

referred to as a relaxation problem of the preceding objective
function. Regarding Lagrangian multipliers γ1, γ2 and γ3
introduced, they are new independent variables in the new
objective function which is a dual function of the previous
problem. From another point of view, as long as values of
γ1, γ2 and γ3 are determined, the original problem turns
into another problem of finding an unconstrained shortest
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single-weight path. Then, a proper single-source shortest path
algorithm such as Dijkstra can be used to solve this path.

How to solve the dual function L (γ1, γ2, γ3) is a prob-
lem to consider followingly. This function relates to three
variables of γ1, γ2 and γ3. Firstly, we need to prove that
L (γ1, γ2, γ3) is a lower bound of the original problem.
Theorem 5: L (γ1, γ2, γ3) is a lower bound of the original

problem.
Proof: Targeted at the original problem, it is assumed that

it has an optimal solution Popt , so that the dual function turns
into (41):

L (γ1, γ2, γ3)

= min
∑
e∈Popt

f (e) + γ1

( ∑
e∈Popt

De − 1delay

)

+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3(
∑
e∈Popt

SLe − λ)

= min
∑
e∈Popt

f (e) +γ1

( ∑
e∈Popt

De − 1delay

)

+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3(
∑
e∈Popt

SLe − λ) (41)

As Popt ∈ P, there exist
∑

e∈Popt De ≤ 1delay,∑
e∈PSD pkl

∗
e − 1pkland

∑
e∈Popt SLe ≤ λ.

As γ1 ≥ 0, γ2 ≥ 0 and γ3 ≥ 0, we have
γ1(
∑

e∈Popt De − 1delay) ≤ 0, γ2
(∑

e∈PSD pkl
∗
e − 1pkl

)
≤

0andγ3(
∑

e∈Popt SLe − λ) ≤ 0.
Therefore,

L (γ1, γ2, γ3)

= min
∑
e∈Popt

f (e) + γ1(
∑
e∈Popt

De − 1delay)

+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3(
∑
e∈Popt

SLe − λ)

≤ min
∑
e∈Popt

f (e)

= f
(
Popt

)
(42)

L (γ1, γ2, γ3) is a lower bound of the original problem. End
of proof.

The above proof indicates that dual function L (γ1, γ2, γ3)

is a lower bound of the original problem, which points
out the direction of dual function optimization. Because
L (γ1, γ2, γ3) is a lower bound of the original problem,
L (γ1, γ2, γ3) should approximate the optimal solution of the
original problem to the greatest extent in order to maximize
it. In this case, a dual problem is generated as shown in (43)
below:

L = maxL (γ1, γ2, γ3) (43)

Dual problem of the original problem is to maximize the
dual function L (γ1, γ2, γ3), enabling the dual function to

approximate the optimal solution of the original problem
as close as possible. As a result, the original problem can
be solved with the help of γ1, γ2 and γ3. In the course of
solving this dual problem, an upper bound of the original
problem needs to be determined as well. To approach the
optimal solution of the original problem as close as pos-
sible, a difference between upper and lower bounds of the
original problem should be constantly reduced. Subsequently,
a method is raised to confirm its upper bound.
Theorem 6: For given γ1, γ2 and γ3, cost f (P) obtained by

solving the relaxation problem for path P is the upper bound
of the original problem.

Proof: As γ1, γ2 and γ3 are known, path P obtained by
solving the relaxation problem has two situations:

① P is the optimal solution Popt of the original problem,
that is P = Popt , so there exists f (P) = f

(
Popt

)
;

② P is a feasible solution of the original problem, but
not its optimal solution Popt . Considering that P is not
an optimal solution of the original problem, we have
f (P) ≥ f

(
Popt

)
.

To sum up, f (P) ≥ f
(
Popt

)
is satisfied. Therefore, cost

f (P) of path P obtained by solving the relaxation problem
serves as its upper bound for given γ1, γ2 and γ3. End of proof.
According to Theorem 1, Theorem 2 and relevant proof,

it can be known that the difference between upper and lower
bounds becomes small enough by constantly solving the dual
problem, increasing lower bound of the original problem but
decreasing its upper bound. In this way, a feasible solution
close to the optimal solution is acquired. There are many
methods to solve the dual problem. Among them, the sub-
gradient method performs better. By continuously updating
Lagrangian multipliers and increasing the solution to a dual
problem, this method makes the dual problem unceasingly
approximate the optimal solution of the original problem by
virtue of directions and step sizes of subgradient. In specific,
this process can be expressed in equation (44):

γ n+1
= max{0, γ n + sngn} (44)

where, elements γ k and k ∈ {1, 2, . . . , n} in sequence{
γ 1, γ 2, . . . , γ n

}
are Lagrangian multipliers obtained after

the kth iteration. Therefore, to apply the subgradient method,
the initial Lagrangian multiplier γ 0 should be set in the first
place. sn and gn refer to subgradient and step size of nth

iteration, respectively. Moreover, subgradient and step size
can be respectively interpreted as direction and distance of
optimization. On the premise of a correct subgradient and
step size are selected, the difference between upper and lower
bounds can be increasingly lowered for the original problem
bymeans of constant iterations, so that convergency of results
is realized. At last, a feasible solution that produces a prefer-
able optimization effect is obtained.
Firstly, subgradient is defined as follows:
Definition 6: For a real-valued function f (x), if a vector

g ∈ Rn is the subgradient of f (x) at the point x0 ∈ Rn, the
vector g satisfies the following equation (45) in a condition
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of ∀x ∈ Rn:

f (x) − f (x0) ≤ g(x − x0) (45)

According to Definition 6, a subgradient is established for
the dual problem. Here, γ k1 , γ k2 and γ k3 respectively repre-
sent Lagrangian multipliers γ1, γ2 and γ3 obtained after k th

iteration. It is assumed that path Pk is the optimal solution
to the dual function L

(
γ k1 , γ k2 , γ k3

)
after the k th iteration,

a subgradient of γ k1 is written into the following (46):

g1k =

∑
e∈Pk

De − 1delay (46)

The subgradient of γ2 is shown in (47):

g2k =

∑
e∈PSD

pkl∗e − 1pkl (47)

The subgradient of γ3 is shown in (48):

g3k =

∑
e∈Pk

SLe − λ (48)

Subsequently, we need to prove that g1k , g
2
k and g3k are

subgradients of γ1, γ2 and γ3 after the k th iteration.
Theorem 7: g1k is the subgradient of γ1 after the kth itera-

tion; g2k is the subgradient of γ2 after the kth iteration; and g3k
is the subgradient of γ3 after the kth iteration.
Proof As γ1, γ2 and γ3 are unrelated dependent variables

of the dual function L (γ1, γ2, γ3), we only need to prove that
g1k is the subgradient of γ1 after the kth iteration; similarly,

g2k and g
3
k are subgradients of γ2 and γ3 after the k th iteration.

This is proved by the following (49) to (52):
Because

g1k =

∑
e∈Pk

De − 1delay (49)

A Lagrangian multiplier with respect to the delay con-
straint after the k th iteration is assumed to be γ k1 ; then, for
∀x ∈ R, there exists

g1k
(
x − γ k1

)
=

∑
e∈Pk

De − 1delay

(x − γ k1

)

=

∑
e∈Pk

De − 1delay

 x −

∑
e∈Pk

De − 1delay

 γ k1

=

∑
e∈Pk

f (e) + x

∑
e∈Pk

De − 1delay


+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

∑
e∈Pk

SLe − λ


−

∑
e∈Pk

f (e) + γ k1

∑
e∈Pk

De − 1delay



+γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

∑
e∈Pk

SLe − λ

 (50)

To solve a Lagrangian dual problem L(x, γ _2, γ _3), the
obtained path is assumed as P_x; then, the Lagrangian func-
tion corresponding to P_x is the minimal. That is, for ∀P ∈ P,
there exists

∑
e∈Px

f (e) + x

∑
e∈Px

De − 1delay


+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

∑
e∈Px

SLe − λ


≤

∑
e∈P

f (e) + x

(∑
e∈P

De − 1delay

)

+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

(∑
e∈P

SLe − λ

)

That is,

L (x, γ2, γ3)

≤

∑
e∈P

f (e) + x

(∑
e∈P

De − 1delay

)

+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

(∑
e∈P

SLe − λ

)
(51)

Thus,

g1k
(
x − γ k1

)
=

∑
e∈Pk

f (e) + x

∑
e∈Pk

De − 1delay


+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

∑
e∈Pk

SLe − λ


− [

∑
e∈Pk

f (e) + γ k1

∑
e∈Pk

De − 1delay


+ γ2

∑
e∈PSD

pkl∗e − 1pkl

+ γ3

∑
e∈Pk

SLe − λ

]

≥ L (x, γ2) − L
(
γ k1 , γ2

)
(52)

In this way, g1k is proved to be the subgradient of γ1 after
the k th iteration. Similarly, g2k and g3k are subgradients of γ2
and γ3 after the k th iteration. End of proof.

In line with the above proof, it is clear that g1k =∑
e∈Pk De − 1delay, g2k =

∑
e∈PSD pkl

∗
e − 1pkl and g3k =∑

e∈Pk SLe − λ are all subgradients of Lagrangianmultipliers
γ1, γ2 and γ3 after the kth iteration in the process of solv-
ing the dual problem L. After confirmation of subgradients,
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optimization direction needs to be determined when the dual
problem is solved. Subsequently, step size sk corresponding
to the kth iteration should be also identified. A classical
subgradient step size computing formula is selected as (53),
shown at the bottom of the page, where, UBk and LBk stand
for upper and lower bounds obtained after the kth iteration,
respectively. Their values are figured out based on Theo-
rem 1 and Theorem 2 in each round of iteratively updating
Lagrangian multipliers. By virtue of (53) above, specific val-
ues of step size sk are continuously updated based on values
of upper bound UBk and lower bound LBk . In this way, the
process of approximating the optimal solution becomes more
scientific, more reasonable and more efficient.

As subgradients and step sizes are determined, we need
to clarify conditions in which iterations of the algorithm are
ended. Generally, the following iteration ending situations
occur in the course of Lagrangian relaxation:

1) Reaching the preset maximum iteration number iter .
As infinite iterations are impossible, the maximum
iteration number iter is designed. When the iteration
number reaches iter , the algorithm ends. Although this
method is simple and direct, it is difficult to ensure
quality of the acquired feasible solution.

2) An upper bound is equal to a lower bound, that is
UBk = LBk . In this case, upper bound of the original
problem coincides with its lower bound, signifying that
the feasible solution obtained is the optimal solution
of the original problem. Then, the iteration stops. This
is an ideal result of optimization. Considering that
the original problem is NP-Hard, such a case can be
extremely rare as the problem size keeps enlarging.

3) A sufficiently small difference of upper and lower
bounds, that is UBk − LBk ≤ ε, where ε ≥ 0 and ε

is small enough. In this scenario, a difference between
upper and lower bounds is below the preset ε. There-
fore, it is deemed that the difference of upper and lower
bounds is low enough, so that the iteration stops.

Concerning this algorithm, the above three situations are used
as conditions of iteration termination. Firstly, the maximum
iteration number iter and a small enough positive number
ε are inputted before the algorithm starts, ensuring that the
algorithm stops when the maximum iteration number is sat-
isfied or the difference of upper and lower bounds is small
enough. In addition, since upper and lower bounds have been
figured out in each iteration process, we need to estimate their
difference. If they are equal, or their difference is no more
than ε, the algorithm stops.
To sum up, the Lagrangian relaxation algorithm proposed

for satisfying users’ QoS demands and implementing control

overhead optimization can be represented by the following
TABLE 3:

TABLE 3. Pseudocodes of the Lagrangian relaxation algorithm.

As can be seen, input of this algorithm covers a cost matrix
f of the network, and its bandwidth overhead matrixU , delay
D, packet loss probability PKL, control overhead matrix SL,
source node nS , destination node nD, time delay constraint
1delay, packet loss probability constraint 1pkl , control over-
head constraint λ, themaximum iteration number iter , a small
enough positive number ε, and a step size parameter β.

sk =
UBk − LBk(∑

e∈Pk De − 1delay
)2

+
(∑

e∈PSD pkl
∗
e − 1pkl

)2
+
(∑

e∈Pk SLe − λ
)2 (53)
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In Line 01, Lagrangianmultipliers γ1, γ2 and γ3 are initialized
into γ1 = 2, γ2 = 2 and γ3 = 2, k = 1 initialized
into a recorder of the iteration number, and the upper bound
UB0 prior to iteration initialized into a positive number high
enough. Moreover, a small enough positive number ε is also
initialized to estimate whether the difference of upper and
lower bounds is as low as that expected. In Line 02, Dijkstra
algorithm is utilized to figure out a path with the least cost
from nS to nD. From Lines 03 to 04, the path is evaluated,
determining whether it meets users’ demands for1delay,1pkl
and λ. If this path has already satisfied all constraints, it is
the optimal solution and thus directly outputted. Otherwise,
as described in Line 06, the Dijkstra algorithm is used again
to figure out a path with the least delay from nS to nD.
If the path still fails in satisfying users’ demands for 1delay,
it is clear that no paths can satisfy users’ delay require-
ments in this network. Consequently, the path computing
is terminated. If the path with the least delay is found to
remain no more than that 1delay requested by users, it is
likely that a feasible solution exists and it satisfies users’ QoS
demands. Subsequently, we proceed to an iteration procedure
of the Lagrangian Relaxation algorithm. In each round of
iteration, starting with Line 11, delay and control overhead
of each frontier are firstly aggregated to its cost based on
current Lagrangianmultipliers γ1, γ2 and γ3. Specifically, it is
denoted as f k (e) = (e) + γ1De + γ2pkl∗e + γ3SLe, where k
refers to the iteration number. For a reason that each frontier
merely has one weight after relaxation, that is f k (e), we can
adopt the Dijkstra algorithm to work out a path with the low-
est f k (e) from nS to nD. In Lines 12-13, the path worked out
is evaluated to make sure whether it satisfies users’ demands
for delay and control overhead constraints, and whether the
cost corresponding to it is below the upper bound UBk−1
of the previous one iteration. If the above conditions are all
satisfied, the path is considered as a feasible solution; and
its cost may serve as an upper bound obtained during the
current iteration. Therefore, a value assigned to the cost of
this path is updated and used as the upper bound UBk during
the present iteration. In Line 17, a lower bound LBk obtained
in the current iteration is calculated. Through theoretical
demonstration, it is known that the aggregated cost f (pk) +

γ1
(
Dpk − 1delay

)
+γ2

(
pklpopt1 − 1pkl

)
+ γ

3
(SLpk −λ) cor-

responding to this path serves as the lower bound LBk . Thus,
both UBk and LBk are figured out for the current iteration.
In Lines 18-19, the difference of UBk and LBk is calculated.
If their difference is smaller than ε, it is believed that the
feasible solution is extremely close to the optimal solution.
In this case, the corresponding path is outputted as a feasible
path that satisfies users’ QoS demands and realizes control
overhead optimization. In Line 23, the step size is calculated,
which corresponds to (55). In Lines 24 and 25, Lagrangian
multipliers γ1, γ2 and γ3 are updated by virtue of the step
size and subgradients (i.e., g1k =

∑
e∈Pk De − 1delay, g2k =∑

e∈PSD pkl
∗
e − 1pkl and g3k =

∑
e∈Pk SLe − λ). At this point,

this round of iteration ends. As described above, this is the

whole process of the proposed FuzLag algorithm based on
fuzzy inference and Lagrangian Relaxation.

In a word, the proposed FuzLag algorithm is capable of
eliminating frontiers that fail to meet relevant conditions
by means of network topology pruning, thus boosting com-
puting efficiency. Besides, it takes packet loss probability
and delay of each frontier into comprehensive consideration
with the help of a fuzzy inference system, thus acquiring
specific values of the corresponding cost. Based on thoughts
of Lagrangian Relaxation, a feasible path performing rather
well in satisfying users’ demands for delay, packet loss proba-
bility and control overhead optimization is also found by the
proposed algorithm on the premise. As a result, the goal of
building such a model is achieved.

V. EXPERIMETNAL RESULTS AND ANALYSES
A. EXPERIMENTAL CONFIGURATIONS
Simulation experiments are conducted in Windows 10 as
those described below specific to the proposed FuzLag
algorithm based on fuzzy logic and Lagrangian Relaxation.
Windows 10 system is provided with amemory of 16 GB, and
a CPU of Intel i7-9750H. MATLAB R2018b, programming
software, was utilized to complete the simulated experiments.
Moreover, the platform and software used in the experiments
are detailed in the following Table 4:

TABLE 4. Platform and software.

Some real network topologies were selected to carry out
the simulated experiments. Internet Topology Zoo consists
of some real network topologies in different places of the
world [11]. Here, AttMpls, SwitchL3 and GtsCe topologies
were chosen from the Topology Zoo, covering cross-sea and
inland topologies featuring high representativeness and gen-
eralizability. In terms of the corresponding network topology
scale, it is listed in the following Table 5:

TABLE 5. Network topology scale.

As indicated by node and frontier counts of the above three
network topologies, the network topology scale involved in
the simulation experiments shows a tendency of gradual
increases from being small to being medium and further to
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being large. Different algorithms were operated in such three
network topologies, which may contribute to synthesizing
different performance properties and differences of diverse
algorithms subjected to various network scales. In this way,
experimental results can be much more credible, scientific
and reasonable. Based on the law and specific situations of
practical network flow transmission in each network topol-
ogy, for a link with bandwidth overhead exceeding 50%,
network transmission congestion takes place in this link.
Considering this, bandwidth overhead conforming to (0,0.5)
uniform distribution is randomly generated for each link in
the present study. Similarly, the delay randomly generated
for respective links complies with (0,1ms) uniform distribu-
tion; and for the packet loss probability randomly generated
for all links separately, it is in consistency with (0,0.5%)
uniform distribution. Thanks to such configurations, delay
and bandwidth overhead of network frontiers are featured
with certain randomness on one hand, and also preferably
coincide with network transmission situations in practice.
Hence, experimental results are both scientific and reliable.

Two algorithms were utilized during each experiment for
comparison with the proposed FuzLag algorithm, clarifying
their advantages and disadvantages in diverse measurement
standards. Moreover, such two algorithms are described as
follows:

1) OSPF [12]. OSPF and OSPF protocols are most
extensively applied interior gateway protocols (IGPs).
To ensure consistency with the actual network situa-
tions, a path obtained by OSPF is assumed to be the
shortest path with the least hop counts between a given
source node and a given destination node; and this path
also acts as the default path Pdefault of the source and
the destination nodes.

2) QRS [13]. This is a QoS optimization algorithm raised
in 2019. After QoS parameter aggregation for network
frontiers, the Dijkstra algorithm is adopted to figure
out the shortest path, which is known as the QoS opti-
mization scheme of QRS. The corresponding formula
is given (54) below:

C (i, j) = w1 × pkl + w2 × U + w3 × SL (54)

where, constants w1, w2 and w3 are designed to control
proportions occupied by different items in the link computing
formula, where w1,w2andw3 ∈ [0, 1]. After network flow
transmission related information andQoS demands have been
collected, the SDN controller is able to work out weights of
respective links based on the current network topology and
network status information captured. Eventually, the shortest
path is obtained by means of the Dijkstra algorithm; and the
shortest path serves as a path of QoS optimization.

During experiments, some parameters should be set up
and used to evaluate performance of different algorithms.
As the present chapter focuses on a QoS optimization routing
problem under constraints of QoS and control overhead, the
following three different parameters are configured to assess
algorithm performance and results.

1) Path computing success rate ξ . According to the above
proof, a NP-Hard problem is investigated in this chap-
ter. Not only are network status information variations
rather complicated, but users’ QoS demands may be
rigorous or relaxed. Under such circumstances, a QoS
optimization path that satisfies all constraints may not
be always figured out when the algorithm is exe-
cuted. Therefore, the success rate ξ is designed to
measure computing capability of the QoS optimization
algorithm, which can be expressed in equation (55)
below:

ξ =
S

S + L
(55)

In different network topologies, some network flow sets with
particular QoS optimization demands may be randomly gen-
erated. In the above equation, S is the number of paths that
are worked out by a given algorithm and conform to QoS
transmission requirements. L refers to the number of paths
that are worked out by a given algorithm and fail in conform-
ing to corresponding QoS transmission requirements. If ξ is
rather high, it is much likely for the path found by the given
algorithm to meet relevant QoS optimization demands; but
if ξ is low, probability for the obtained path to meet QoS
optimization demands can be also low.

1) Delay of the obtained paths satisfying QoS constraints.
Likewise, a path with the best possible QoS perfor-
mance is found in this chapter for users on the premise
of satisfying QoS constraints of network flow. There-
fore, delay is also an index measuring QoS perfor-
mance of links and paths. Here, such delay is worked
out by a given algorithm to evaluate the algorithm
performance. Regarding given network topologies and
algorithms, algorithm performance is assessed by cal-
culating avgD, that is the average delay of all paths that
satisfy QoS constraints and are obtained provided that
all algorithms produce results. It is expressed in the
following (56):

avgD =

∑
D∈S D
S

(56)

where, S stands for the number of paths that can be worked
out by means of all algorithms and also satisfy QoS require-
ments for transmission, and

∑
D∈S D for the total sum of

delay values corresponding to a path worked out by a specific
algorithm.

1) Packet loss probability of paths found to satisfy QoS
constraints. The present chapter is intended to find
a path with the best possible QoS performance on
the premise of satisfying QoS constraints for network
flows. Considering this, packet loss probability is also
an index that can be utilized to measure QoS capability
of links and paths here. Therefore, the packet loss prob-
ability worked out by a particular algorithm is selected
to measure performance of this algorithm.With respect
to given network topologies and algorithms, algorithm
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performance is evaluated by calculating avgpkl , that is
the average packet loss probability of all paths that
satisfy QoS constraints and are obtained provided that
all algorithms produce results. It is expressed in the
following (57):

avgpkl =

∑
pkl∈S pkl

S
(57)

In the above equation (57), S represents the number of
paths that can be worked out by all algorithms and satisfy
QoS requirements for transmission; and

∑
pkl∈S pkl is the

total sum of packet loss probabilities corresponding to a path
obtained by a particular algorithm.

During the experiments, 100-500 transmission requests
from source to destination nodes are randomly generated
in accordance with the network topology. Thanks to such a
large sample size, algorithm comparison results can be quite
scientific and credible.

B. PATH COMPUING SUCCESS RATE ξ

When delay and packet loss probability constraints are raised
gradually in small-sized, medium-sized, and large-sized net-
work topologies (i.e., AttMpls, SwitchL3, and GtsCe), path
computing success rates of three different algorithms accord-
ingly change in a condition of given QoS requirements for
transmission, as depicted in Fig. 5 to Fig. 10. It can be
observed from Figures 6, 8 and 10 that constraints over
path delay are gradually relaxed along with gradual increases
in delay constraints. This signifies that the path computing
success rates of such three algorithms progressively go up
in succession. Similarly, as shown in Fig. 5, Fig. 7, and
Fig. 9 where the packet loss probability constraints are raised
progressively, constraints over the packet loss probability of
a path are gradually relaxed. Considering this, the success
rate of finding a path by such three algorithms is progres-
sively elevated in succession. Under the circumstance of
quite strict delay or packet loss probability constraints, the
success rates of such three algorithms are all very low in
early phases for the following reasons. When lots of network
frontiers fail to meet constraints, a vast majority of paths
selected on the premise of successful pathfinding can coin-
cide with each other, so that their success rates are the same.
If the constraints become gradually relaxed, the success rate
of the FuzLag algorithm can be substantially improved by
3∼20% in comparison with another two algorithms. In terms
of QRS that takes QoS related indexes of network fron-
tiers into comprehensive consideration, its success rates are
raised by 2∼10% if compared with OSPF in a condition
of rather relaxed constraints. Through such comparisons,
it is much more likely for the proposed FuzLag algorithm
to find a path for users on the premise of satisfying their
particular QoS demands and optimizing the control over-
head. In other words, the path computing success rates of
the FuzLag algorithm are higher than those of another two
algorithms.

FIGURE 5. Success rates under packet loss probability variations in a
small-sized network.

FIGURE 6. Success rates under delay variations in a small-sized network.

FIGURE 7. Success rates under packet loss probability variations in a
medium-sized network.

C. DELAY
In AttMpls, SwitchL3, andGtsCe, values of the average delay
are obtained for a path set that is worked out by three different
algorithms when the corresponding packet loss probability
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FIGURE 8. Success rates under delay variations in a medium-sized
network.

FIGURE 9. Success rates under packet loss probability variations in a
large-sized network.

FIGURE 10. Success rates under delay variations in a large-sized network.

remains unchanged and the delay constraint changes from
being rigorous to being relaxed gradually, as revealed in
Fig. 11 to Fig. 13. Clearly, the average delay of paths obtained
by three algorithms shows a rising tendency as the delay

FIGURE 11. Delay of a small-sized network.

FIGURE 12. Delay of a medium-sized network.

constraint becomes relaxed. The corresponding reasons are
that: 1) a gradual increase in delay constraints leads to an
increasing number of paths satisfying delay requirements;
2) the average delay also goes up on the whole due to con-
straint relaxation. In early phases when the delay constraint
is rather rigorous, paths obtained by three algorithms are con-
sistent, making it difficult to present their differences in per-
formance. As it becomes relaxed little by little, the proposed
FuzLag algorithm gradually outperforms another two algo-
rithms in their average delay. Due to its stronger adaptability,
it can find the optimal path in a shorter period. To be specific,
the delay arising from FuzLag is about 0.3∼11% lower than
that of OSPF; and when comparing with the delay perfor-
mance of QRS, FuzLag generates a delay 0.2∼8% smaller
approximately. Therefore, FuzLag is superior to OSPF and
QRS as far as their performance is concerned in a case where
their delay constraints are comparatively relaxed.
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FIGURE 13. Delay of a large-sized network.

FIGURE 14. Packet loss probability of a small-sized network.

D. LOSS PACKET PROBABILITY
In AttMpls, SwitchL3, and GtsCe, likewise, when their delay
constraints are fixed and packet loss probability constraints
become relaxed, the average values of packet loss probability
in a set of paths worked out by such three algorithms are plot-
ted in Fig. 14 to Fig. 16. In the process where the packet loss
probability constraints are relaxed progressively, the average
packet loss probability of paths obtained by OSPF, QRS, and
FuzLag is also raised for the following reasons. First, a grad-
ual increase in the packet loss probability makes the number
of paths satisfying users’ QoS demands for delay increase;
and second, constraint relaxation enables the average packet
loss probability of paths to go up. In the early phases of strict
constraints, average packet loss probabilities of paths worked
out by such three algorithms are quite close to each other.
With constraint relaxation, the average packet loss probability
of paths obtained through FuzLag turns out to be smaller
than those generated by OSPF and QRS. More particularly,

FIGURE 15. Packet loss probability of a medium-sized network.

FIGURE 16. Packet loss probability of a large-sized network.

the performance of FuzLag is improved by 0.2∼9% if com-
pared with OSPF as far as their packet loss probabilities are
concerned; and by contrast to QRS, the performance of the
former is boosted by 0.1∼6%. What is worth mentioning is
that GtsCe has a rather strict requirement for the computing
capability of such three algorithms due to its large size.
Thus, the average packet loss probability of OSPF is almost
the same as that of QRS; and their performance difference
remains no more than 0.1%. FuzLag shows no quite obvious
performance advantages in this aspect. In comparison with
OSPF and QRS, its performance is improved by about 1%.

VI. CONCLUSION AND PROSPECTS
To achieve the purpose of QoS assurance for transmission in
a smart ocean network, the present study considers control
overhead incurred by SR, and selects methods of link QoS
index fuzzification and Lagrangian Relaxation. It is expected
to work out a path that satisfies users’ QoS requirements and
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provides the best possible QoS, and improves user experience
in network transmission. By simulation experiments, we ver-
ify the performance of the proposed algorithm. The concrete
contributions of this study are as follows:

To realize QoS assurance in a smart ocean network,
a model is built based on users’ QoS demands, which is
proved to be a NP-Hard problem. Specific to this objective
function, a FuzLag algorithm is put forward based on fuzzy
inference and Lagrangian Relaxation. QoS related perfor-
mance of links is fuzzified, so that weights of the correspond-
ing path can be obtained. In addition, QoS constraints are
relaxed into the objective function, figuring out a path that
satisfies users’ QoS demands and provides the best possible
QoS at last.

Moreover, it turns out in this study that the proposed
FuzLag algorithm based on fuzzy inference and Lagrangian
Relaxation not only generates a very low path computing
success rate in a case where constraints are comparatively
rigorous, but also lowers the corresponding delay and packet
loss probability to a small extent. Considering this, we will
focus on how to further reduce delay and packet loss prob-
ability in future research. Besides, because the smart ocean
network architecture is not implemented in a practical ocean
network system, concrete implementation of its functionswill
be conducted in a real ocean network system.
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