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ABSTRACT Stock portfolio is a hard issue in the Fintech field due to the diversity of data characteristics and
the dynamic complexity of themarket. Despite advances in deep learning that havemade great progress in the
complex and highly stochastic portfolio problem, the existing research still faces significant limitations. They
either consider only investment returns or simply use some macro-market data to guide their models against
risk. The preferred direction of the market greatly affects the choice of stock. And in practice, investors are
more inclined to portfolios with low correlation between assets because of the ripple relationships between
related things. In this paper, we propose a novel framework, called Mercury, which views stock screening as
a reinforcement learning process. In particular, to enhance the ability to perceive changes in the market and
generate higher returns, our framework models the sensitivity of the market preferences and learns dynamic
temporal and spatial dependency patterns between assets from historical trading data. Additionally, the
framework employs reinforcement learning to screen the overall low-correlation portfolio, which can better
improve the ability to withstand investment risks while guaranteeing returns. The daily dataset of China’s
A-share market is used as the research sample to verify the effectiveness and robustness of Mercury, and our
framework has strong generalization ability, which can be easily generalized to other trading procedures.

INDEX TERMS Deep reinforcement learning, risk-return balanced portfolio strategy, market preferences,
low-correlation assets.

I. INTRODUCTION
A stock portfolio is a selection of stocks made according to
specific rules and principles aimed at reducing investment
risks. In brief, there are two primary reasons for construct-
ing a stock portfolio: to diversify investment risks and to
maximize investment returns. Presently, many studies utilize
machine learning or deep learning techniques for predicting
asset trends and subsequently selecting the top-performing
assets to form an excellent portfolio. However, the majority
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of existing research [1], [2], [3], [4], [5] solely focus on
investment returns or simply includes certain macro-market
data as a risk indicator.

Historical data can only capture relevant features of short-
term returns [6], [7], [8], [9], whereas qualitative information
can provide a more complete picture of the underlying fac-
tors driving long-term trends [10]. Some analyses show that
investment decision-makers rely more on qualitative infor-
mation such as news, events, and even announcements when
making decisions. Incorporating financial text data into the
investment decision-making process can provide amore com-
prehensive and accurate understanding of the market [11].
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By modeling long-term trends in stocks, financial text data
can provide a more robust basis for making investment
decisions.

The stock market is inherently risky, and the level of
risk is typically positively correlated with potential profits.
However, investors generally aim to construct a portfolio that
offers a balance between risks and returns, with lower risks
and relatively high returns being the ideal scenario. One way
to achieve this is by investing in different asset classes that are
mutually independent or have low correlation, which can help
to reduce overall portfolio risk [12], [13]. Intuitively, it can
be viewed as a game between potential risk and reward in a
framework similar to reinforcement learning (RL) to obtain a
non-optimal but satisfactory strategy.

In this work, we formulate stock screening as a reinforce-
ment learning process (Sec. III-A). The goal is to identify the
optimal portfolio that balances return and risk. To facilitate
the subsequent research, we integrate the core modules into
the policy network (Sec. IV-B and IV-C): Firstly, we learn
evolutionary features and correlations among stocks in a data-
driven manner. Then, we incorporate market public sentiment
indicators to model the long-term trend of stocks, and com-
prehensively evaluate the performance of individual stocks.
Finally, we select portfolios with a lower overall associa-
tion based on a set of well-performing stocks. Due to the
discrete and non-differentiable nature of market fluctuations
and trading mechanisms, we use policy gradient to jointly
optimize targets in an end-to-end manner (Sec. IV-D). The
main contributions of this paper are summarized as follows:

1) We simultaneously extract spatiotemporal features of
trading data and capture inter-stock relations using hyper-
graph attention mechanisms.Modeling the long-term trend of
the stockmarket by referring to the public sentiment indicator
in natural language processing, and comprehensively evalu-
ating the performance of the stock with multi-granularity.

2) We propose a novel ensemble framework Mercury that
incorporates reinforcement learning into the stock screening
process to generate a suitable portfolio that effectively with-
stands risk while guaranteeing returns.

3) All the modules are seamlessly integrated and jointly
trained. Through the experiment on the real-world stock of
China’s A-sharemarket, we demonstrate the applicability and
effectiveness of Mercury in the quantitative portfolio with
50 stocks within 3305 trading days.

II. RELATED WORK
A. QUANTITATIVE PORTFOLIO
Quantitative investing is an investment strategy that uses
mathematical and computer technology to guide investment
decisions. Traditional quantitative methods mainly include
statistical analysis, regression analysis, and time series anal-
ysis [14], [15], [16]. The core of these methods is to sta-
tistically analyze historical data to find patterns, trends and
predict future market trends based on them. Existing mean
regression strategies do not fully consider the noise and

outliers of trading data. Given, Because of this problem,
references [17] added a robust L1-median estimator to mean
regression and proposed a robust median regression online
portfolio selection strategy. However, these methods cannot
accurately predict market changes, especially when facing
complex and nonlinear markets. In recent years, with the
rapid development of artificial intelligence technology, tra-
ditional quantitative methods are no longer the only choice.

Machine learning and deep learning can help us deal with
these complex market data and improve the accuracy of
predictions [7], [18], [19], [20], [21], [22]. Lim et al. [23] pro-
posed deep momentum networks by combining trading rules
based on deep learningwith time seriesmomentum strategies.
Agrawal et al. [24] developed an Evolutionary Deep Learning
Model (EDLM) that utilizes stock technical indicators to
identify the prices of stock trends. Ding et al. [25] use a deep
convolutional neural network to model both short-term and
long-term effects of events on the movement of stock prices.
Wang et al. [26] proposed an improved self-attention encoder,
utilizing adaptive pattern interactions supported by temporal
representations at different granularity, and constructed a
data-driven adjacency graph to reveal the implicit similarity
of volatility across different stocks.

Due to the development of reinforcement learning tech-
nology, the model combines deep neural networks with rein-
forcement learning for strategy transactions [27], [28], [29],
[30], [31]. Under the reinforcement learning framework, EIIE
[32] considers the weight of portfolio in network training and
combines CNN, RNN, and LSTM three neural networks to
achieve respectively. RAT [33] leverages transformer archi-
tecture to capture complex price sequence patterns of assets
and price relationships between multiple assets for portfolio
selection. However, the above methods do not involve addi-
tional market factors. DeepTrader [2] takes into account the
interconnections and interactions between stocks and incor-
porates market conditions that work together to produce a
risk-return balanced portfolio. While the methods mentioned
above are effective in analyzing the correlation between
assets and their sequential features, they may not be fully
applicable to real-world investment scenarios where investors
typically prefer a portfolio of assets with low correlation.
Portfolio diversification is a commonly used strategy to mini-
mize risk and maximize return by investing in a mix of assets
that have a low correlation with each other.

B. CONVOLUTIONAL RECURRENT NEURAL NETWORK
CRNN is a general term for a series of convolutional neural
networks (CNNs) combined with recurrent neural networks
(RNNs) and derives from the graphic and text recognition
task [34]. In a CRNN, the CNN layers are responsible for
extracting features from the input data, while the RNN layers
are responsible for processing the sequential information and
capturing temporal dependencies. The CNN layers typically
generate a fixed-length feature vector for each input sample,
which is then fed into the RNN layers. The RNN layers
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process the feature vectors sequentially andmaintain a hidden
state that captures the context of the previous inputs. By com-
bining these two types of layers, a CRNN can effectively
capture both the spatial and temporal information in the
input data, making it useful for a wide range of applications,
and in this case, spatio-temporal modeling for financial data
analysis. ConvLSTM [35] is one of the pioneering works
with a convolutional structure. Since then, other advanced
spatio-temporal modeling networks have also been proposed,
such as PredRNN [36], PredRNN++ [37] series, and E3D-
LSTM [38]. In this paper, we select one of the pioneers and
concise ConvLSTM as the module to extract features. The
transformation between the states is shown below:

it = Sigmoid (Conv (xt ;Wxi)+ Conv (ht−1;Whi)+ bi) ,

ft = Sigmoid (Conv (xt ;Wxf)+ Conv (ht−1;Whf)+ bf) ,

ot = Sigmoid (Conv (xt ;Wxo)+ Conv (ht−1;Who)+ bo) ,

gt = Tanh
(
Conv

(
xt ;Wxg

)
+ Conv

(
ht−1;Whg

)
+ bg

)
,

ct = ft ⊙ ct−1 + it ⊙ gt ,

ht = ot ⊙ Tanh (ct) ,

where W∗, b∗ is the learnable weight and bias, ⊙ is the
Hadamard product.

III. PRELIMINARY
A. PROBLEM DEFINITION
Portfolio management is a sequential decision-making pro-
cess that naturally fits into the framework of a Markov Deci-
sion Process (MDP) {S, A, T , R}. Herein, S = {st } is the
set of states abstracting stock sequences during exploration,
and A = {at } is the set of actions, which adds a stock to the
current stock sequences at each step t . When action at ∈ A
is executed, st−1 ∈ S changes according to the transition
distribution st ∼ T (st | st−1, at). Next, the agent receives
a reward rt = R (st−1, at , st). Its goal is to learn a policy
function, which action at ∈ A should be performed under the
state s to maximize cumulative returns. Such as, the trajectory
(s0, a1, s1, · · · , at , st) naturally describes the formation of a
portfolio, where the reward rt = R (s0, a1, s1, · · · , at , st)
reflects the returns under this portfolio. Here we elaborate on
the foregoing key elements as follows.

1) STATE SPACE
At step t , the state st indicates the set of selected stocks that
have a low correlation and perform well, where the initial
state s0 = ∅.

2) ACTION SPACE
Observing the state st−1, the available action space At is the
complement of st−1, formally At = S \ st−1. The RL agent
picks up a suitable stock from At to join in the previous
selection st−1.

3) STATE TRANSITION DISTRIBUTION
Having made the action at at step t , the transition of the state
st is merging at into the previous state st−1: st = st−1 ∪ at .

TABLE 1. Notations in the paper.

4) REWARD DESIGN
We consider two factors in the reward design: Portfolio
returns with the price rising rate and portfolio risks with the
negative maximum drawdown as the reward function. It will
be detailed later in Section IV-D.

B. TRADING PROCEDURE
The trading program in the T + 1 market is more complex
compared to the T +0 market. In the T +1 market, the deliv-
ery of stocks needs to be completed on the second trading
day after buying or selling, which requires more time and
procedures for settlement. In contrast, in the T + 0 market,
the delivery of stocks can be completed on the same trading
day, and the trading process is relatively simple. Our strategy
can easily generalize to the T + 0 market.

At the end of the t-1 holding period, traders holdQt−10 cash
and βt−1=

{
bt−1,1, bt−1,2, · · · , bt−1,G

}
volume of stocks.

The trader will finish the t period according to the following
steps: 1) sell all stocks and wait for fund settlement; 2) meet
with the remaining funds Qt−10 after receiving the cash; 3)
reallocate funds based on new portfolio ratio ω and portfolio
weight ρ for the next purchase.

IV. METHODOLOGY
A. FRAMEWORK OVERVIEW
Investment decisions rely on precise stock selection. Portfo-
lio theory shows that diversified portfolios with low inter-
asset correlation can effectively reduce individual risks [39].
Furthermore, in his seminal paper [40], Sharpe emphasizes
the importance of optimizing portfolios to maximize risk-
adjusted returns and achieve a more efficient risk-return
tradeoff. Constructing well-diversified investment portfolios
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can help investors reduce individual risks while obtaining
better overall returns.

In the portfolio, the decision-maker needs to select a suit-
able asset portfolio to achieve specific investment goals. This
process can be viewed as a series of decisions made in a
sequence of time steps. Therefrom, we adopt a reinforcement
learning framework to select candidate stocks with low cor-
relation while guaranteeing returns.

Formally, given the candidate set S = {s1, · · · , sN } of
N stocks, on any trading day t ∈ T , each stock i con-
tains a feature sequence Xt

i =
[
x t1, · · · , x

t
D

]
∈ RT×D,

where D is the feature dimension. As shown in Figure 1,
the input signals of 1) the Representation Learning and 2)
Market Preference Sensitivity Modeling are the stock feature
sequence X and the word vector of stock bar comment em,
respectively. The performance of the stocks is quantified
as scores Y, which is used to select a set of actions Z.
Then, the portfolio is determined with the covariance of Z,
yielding the state SG. 3) The portfolio with low correla-
tion is selected based on the action set. Next, the quanti-
tative score YG of the state SG is mapped to the portfolio
weight and portfolio ratio. Specifically, the Action-Set Z =
{Z1, · · · ,ZL} is obtained through the policy network, denoted
as YL= PN(X,em).YL = {y1 > y2 > · · · > yL} and L ≤
N . To obtain the SG via SG= LC (Z). Subsequently, out-
put the portfolio weight of G stocks and the proportion of
funds according toYG. Formulated as: ρ, ω= Generate (YG).
Finally, we optimize the training goal using policy gradient.

B. POLICY NETWORK
Our policy network first learns the characteristic represen-
tation for each stock and utilizes the hypergraph attention
(HGAT) network for embedding the neighbor information of
the stocks. Considering the long-term impact of the market,
model the sensitivity of the market and then predict the pref-
erence for each stock. Subsequently, the performance of all
stocks is assessed based on stock representation and market
factors. Take the well-performing stocks as an action set.

1) REPRESENTATION LEARNING OF STOCK CANDIDATES
SET
The ConvLSTM layer is responsible for learning the spa-
tiotemporal representation of the trading data, capturing its
dynamics and spatial relationships. And the HGAT mecha-
nism further learns the dependency relationships and impor-
tance among features. By combining the ConvLSTM layer
and the HGAT mechanism, a more comprehensive feature
representation can be obtained. The model can acquire richer
feature representations that better reflect the interdependence
and dynamic changes among stocks.

Specifically, we use the ConvLSTM [35] layer to han-
dle spatial-temporal relations in long-range sequences. The
ConvLSTM structure can not only establish the LSTM-like
temporal relationship but also have a spatial feature extraction
capability similar to the CNN. After conducting the Con-
vLSTM operation, we denote the output of this layer by

h ∈ RN×T×H , where H is the dimension of hidden features,

h = ConvLSTM (X) . (1)

We then use the hypergraph attention (HGAT) network to
capture the inter-stock relationships. More specifically, the
covariance matrix of the input X ∈ RN×T×D is calculated
and the industry relationship of stocks is considered to jointly
construct a hypergraph. This enables HGAT to learn dynamic
and higher-order dependencies among assets. For each node
vi and its hyperedge ej, we compute an attention coefficient
â using the stock’s temporal feature hi and the aggregated
hyperedge features hj, indicating the importance of the cor-
responding relationship ej to the stock vi. Each entry is further
normalized via softmax to obtain âij:

âij =
exp

(
LeakyReLU

(
aT [Whi∥Whj]

))∑
f ∈Ni exp

(
LeakyReLU

(
aT [Whi∥Whf ]

)) , (2)

where W ∈ RH×Hd , a ∈ R2∗Hd×1 are the learnable parame-
ter matrix, Hd is the dimension of projected feature space. Ni
is the neighborhood set of stock i. Add the multi-head atten-
tion mechanism to stabilize the learning process and enhance
the node representation. That is, K -independent attention
heads are applied to compute the hidden states. Afterward,
the final layer output is represented by the concatenation of
all attention heads:

Zi = ∥Kk=1σ
(∑

j∈Ni
âkijW

khj
)

, (3)

where ∥ is the concatenation operator and σ is an activation
function. Thereby all stocks’ representations are formed as
Z = [Z1;Z2; · · · ; ZN ] ∈ RN×T×KHd .

2) MARKET PREFERENCE SENSITIVITY (MPS) MODELING
Given, Because of the highly stochastic and abruptness of
stock data, investment strategies consistent with market tone
will be more stable. Obtain market sentiment by modeling
related stock bar comments, and predict the investment ten-
dency of the market. Specifically, we crawled the stock bar
comment data of the related stocks of Eastmoney.com and
preprocessed the data such as cleaning and word segmenta-
tion. The text information is processed as the word vector em

by Word2Vec, and uses a Long Short-TermMemory network
to recursively extract the sequential representation of input
em:

hmt = LSTM
(
hmt−1, e

m)
, t ∈ [1,T ] , (4)

where hmt denotes the hidden state encoded by LSTM at
step t . The last hidden state HT can be seen as a global
representation of the input signal.

3) TEMPORAL ATTENTION MECHANISM
Since information fever tends to decay over time, earlier
information may not be effectively modeled over a long
periods span. To model these characteristics, we adopt the
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FIGURE 1. Mercury framework.

temporal attention mechanism to model the nonlinear rela-
tionship adaptively, and the attention weights are calculated
as:

αmt = Softmax
(
UT tanh

(
Wm

1
[
hmt ;HT

]))
, (5)

where U, Wm
∗ are parameters to learn, and b is the bias

vector. The hidden state is further represented as the market’s
preferenceM ∈ RN×1 for each stock,

M =Wm(
∑T

t=1
αmt ∗ h

m
t )+ bm. (6)

4) GETTING A WELL-PERFORMING ACTION SET
Z andMwere added up to obtain the evaluation scores, where
η is a parameter to balance two parts.
More specifically, we first sort all stocks in descend-

ing order based on score. Then we select the top L
(L is greater than the number of invested stocks) stocks as
a well-performing candidate set Z = [Z1;Z2; · · · ; ZL] ∈
RL×T×KHd .

score = Sigmoid ((W · Z+ b)+ ηM) . (7)

C. OVERALL LOW CORRELATION PORTFOLIO
1) SELECTION OF ACTION WITH OVERALL LOW
CORRELATION (LC)
Having established the representation of action candidates,
we aim to select one action from the space and perform it.
Instead of trying candidates exhaustively, the policy network
learns the importance of taking an action at = Zl to the
current state st−1 = Zst−1 :

Cl∈[1,··· ,L] = Sigmoid
(
COV

([
Zl ∥ Zst−1

]))
, (8)

where Zl , Zst−1 is the representation of the selected stock
and current state, respectively. COV (·) denote the covariance
operation of Zl and Zst−1 . Then we clamp this value into the

range [0, 1] by Sigmoid, and values are directly proportional
to the correlation. In other words,Cl indicates the correlation
between the newly-added stock and the previously-selected
stocks.

Thereafter, we apply an inverse proportional function (IPF)
overall action candidatesAt to convertCl into the probability
distribution. The intuition is that actions with large covariance
should have a smaller probability to be selected, ensuring a
low correlation between stocks to balance risk.

Pθ

(
Zl |Zst−1

)
= Softmax

(
IPFAt (Cl)

)
. (9)

Eventually, a low correlation sequence of G stocks is
obtained, with G being the number of stocks given to the
investment in advance.

2) PORTFOLIO GENERATING NETWORK (PGN)
PGN consists of two parts, respectively portfolio weight and
portfolio ratio. When the prospect of the portfolio is good,
give a larger proportion of investment, otherwise reduce the
investment amount appropriately.

3) PORTFOLIO WEIGHT
After obtaining the portfolio state SG, we utilize the softmax
function to transfer the previous evaluation score to portfolio
weight ρ.

ρ =


exp

(
scorej

)∑
i∈SG

exp (scorei)
, j ∈ SG

0, others.

Portfolio Ratio: To better adapt to market conditions,
a variable δ is set to dynamically adjust the proportion of
the investment amount. Specifically, map the evaluation
scores of the stocks to the range [1, 0] through an aggrega-
tion function F that consists of a linear layer and a sigmoid
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function, namely δ = Sigmoid (WS · score+ bS). Given a
threshold λ = 0.5, the portfolio ratio ω is divided into two
levels:

ω =

{
λ+ δ/2, if λ ≤ δ

λ− δ/2, others.

D. OPTIMIZATION VIA POLICY GRADIENT
Weuse policy gradient to optimize the investment policy in an
end-to-endmanner. The reward consists of two parts: 1) select
a well-performing candidate set based on historical data and
market indicators, and 2) obtain the stock portfolio with low
correlation on this basis.
Training Goal: The rate of return for holding period t is

r ti = Y ti · νθ − 1, where νθ :=
exp(scorei(θ))∑N
n=1 exp(scoren(θ))

, scorei (θ)

is the evaluation score of ith stock. Y ti =
pti
pt−1i

is the price

rising rate and pi is the closing price of the stock i. Given
the initial investment amount Q0, the cumulative wealth of a
trajectory τ is Q|τ | = Q0

∏|τ |
ε=0

(
r t + 1

)
= Q0

∏|τ |
ε=0 Yε · νθ .

In this way, the optimization goal is to maximize the log-
accumulated wealth of a given trajectory.

Under the premise of ensuring wealth, we employ the
negative maximum drawdown (MDD) rate as the reward
function Rε, to effectively measure the risk of the stock state
st . In summary, the training goal is to maximize ‘‘(10)’’:

L (θ) =
∑

τ∼(νθ ,Pθ )

(∑|τ |

ε=0
log (Yε∇νθ )

+γ
∑|τ |

ε=0
Rε∇log

(
Pθ

(
Zl |Zst−1

)))
,

θ ← θ + µL (θ) , (10)

where γ is a parameter to balance the two goals. These two
goals are trained simultaneously and updated θ by gradient
ascent with a learning rate µ.

V. EXPERIMENTS
To comprehensively evaluate the performance of Mercury,
we conduct extensive and targeted experiments to answer the
following questions: Q1: How are the portfolio profitability
and risk performance generated by Mercury?Q2: How much
do the core modules (such as MPS and LC) in Mercury
contribute to the overall framework? Q3: How does Mercury
personalize the portfolio for different users? Q4: What is the
impact of different sizes of action sets L and the number of
assets G on the portfolio?

A. EXPERIMENTAL SETUP
1) DATASETS
We have collected 50 representative stocks from various
industries in the Chinese A-share market, A-50 for short,
including trading data and its related stock bar information.
As policies or traders change over time, the distribution
structure of trading data may also change accordingly, and
the use of too-long trading data is counterproductive. So,
the time range of our data is from Jun. 2005 to Dec. 2018,

with the period from Jun. 2005 to Dec. 2012 used as the
training/validation set and the rest as the test set.

2) DETAILS
Mercury is implemented with PyTorch. We collect daily data
on all stocks from the Tushare interface, including normal-
ized opening-high-low-closing prices, trading volumes, and
amounts. We follow [2] and generate data samples along the
trade length by setting the window size to 7 days. For the
ConvLSTM in presentation learning, the number of layers is
set as 3, and the dimensions of hidden layers are 64, 64, and
32 respectively. In market preference sensitivity modeling,
the attention heads of temporal attention mechanism K is 2.
The batch size is 15 and the learning rate is 1e-06.

3) BASELINES
Mercury is compared with several baselines including:
• EIIE_LSTM [32] and DeepTrader (DT) [2]: two devel-
oped RL-based methods.

• Time SeriesMomentum (TSM) [6]: a classicmomentum
strategy.

• RobustMedian Reversion (RMR) [17]: a newly reported
reversion strategy.

• Relation-Aware Transformer (RAT) [33]: a novel
attention-based method.

• Mercury/MPS: a model without the market preference
sensitivity modeling structure, which means that the
short-term returns of stocks are considered only.

• Mercury/LC: a model without the low correlation struc-
ture, which means that when selecting stock actions,
it does not consider the overall low correlation (LC), and
only selects the stocks with good performance.

4) METRICS
We use five indicators to evaluate our model, which can be
roughly divided into three categories:
• Annualized Rate of Return (ARR) as a profit indicator.
• Annualized Volatility (AVL) and Maximum Drawdown
(MDD) as risk indicators.

• Annualized Sharpe ratio (SR) and Calmar ratio (CR) are
used as risk-profit indicators.

Among them, for risk indicators (AVL and MDD), the
lower the better, and the higher the better for other indicators.

B. EXPERIMENTAL COMPARISON AND ANALYSIS
1) RESULTS 1 PERFORMANCE IN PROFITABILITY AND RISK
For Q1. Overall, the performance of Mercury is much better
than other baselines. The goal of the portfolio is to achieve
long-term returns. We can see that the overall performance
of Mercury, Mercury/MPS, and Mercury/LC are better than
other models, as shown in Table 2.
Figure 2 shows the portfolio wealth comparison of Mer-

cury and the baselines. TSM and EIIE_LSTM have smaller
investment returns, but their maximum drawdown is low and
their performance is relatively flat. Conversely, RAT and
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FIGURE 2. The portfolio wealth on A-50.

TABLE 2. Performance comparisons on different models.

RMR showed large fluctuations. The curve of RAT and RMR
is interesting, moving relative to before 2015 and gradually
overlapping after 2015. During the 2015 bull market, most
portfolio returns rose to varying degrees and then fell. Among
them, the performance of DT is different, with higher returns
in the early stage (2013-2015) and an obvious decline when
the general trend is good (early stage of 2015).

Among our three models, Mercury and Mercury/LC out-
performed Mercury/MPS. It can be seen that before 2016,
the trend of the three dashed lines is relatively consistent, and
after 2016, Mercury/MPS begins to move away from the first
two models. Compared with other models, our model is more
robust in long-term profitability and risk.

2) RESULTS 2: ABLATION STUDY
ForQ2.Weperform ablation experiments with two simplified
versions of Mercury.Mercury/MPS outperformsMercury in
terms of risk, this may be due to its lower ARR. In the stable
and slow bull period (2016/6/30-2018/6/29), it can be found
from Figure 2 that Mercury/MPS is relatively stable in this
interval, with no obvious upward trend, and even a hint of fall.
While Mercury and Mercury/LC in this interval performance
are better. Verify the effectiveness of the MPS insight into the
market environment.

All metrics of Mercury in Table 2 are better than
Mercury/LC. However, the portfolio wealth curve of

FIGURE 3. The performance of different reward functions.

Mercury/LC in Figure 2 is comparable to Mercury overall,
and even the trend is higher than Mercury before 2018. This
is because in a better market, regardless of the low correla-
tion between assets, a good stock will also lift the related
stocks. A portfolio is a long-term process, and investors want
relatively stable long-term returns. The trend in Figure 2
also indicates that Mercury/LC began to go downhill after
experiencing a peak, with Mercury steadily rising.

3) RESULTS 3: PERSONALIZED PORTFOLIO
For Q3. To achieve personalized service, we investigate the
effects of different choices of the reward function Rε on the
experimental results in the selection of low correlation action.
Examples include rate of return (ROR), Sharpe ratio (SR),
and Calmar ratio (CR). We use the form of the Mercury-ROR
to indicate that the reward function used for the Mercury is
the ROR.

In Figure 3, We choose the profit indicator ARR, risk
indicator MDD, and risk-profit indicator CR to evaluate the
performance of the reward function. Interestingly, MDD and
CR of the other three reward functions have obvious changes
compared with Mercury-MDD. Among them, Mercury-CR
has the best risk resistance and good profit. Mercury-SR has
a slightly higher ARR than Mercury-CR, but its MDD and
CR performed less thanMercury-CR.Mercury-ROR has high
ARR and lowMDD, which is different from our original cog-
nition, and the investment with high returns should often be
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FIGURE 4. The performance of different values of L and G.

accompanied by high risk. This may be due to the bull market
situation, by reducing the correlation between stocks, making
portfolio risk resistance capacity better, are more likely to
increase earnings. MDD is generally used for the worst-case
scenario possible after a constant investment. As a reward
function, Mercury-MDD reflects the worst performance of
the portfolio in history, that is, our strategy can maintain an
acceptable result for investors in a poor environment.

In summary, on the premise of resisting risks, Mercury-
CR and Mercury-SR tend to provide cost-effective portfo-
lios, Mercury-ROR has higher portfolio returns but may be
volatile, and Mercury-MDD’s portfolio tends to accumulate
steadily.

C. RESULTS 4: EFFECT OF THE VALUES OF L AND G ON
THE PORTFOLIO
For Q4. In the Mercury-MDD framework, we analyze the
performance of the portfolio when L and G take different
values. As shown in Figure 4, we calculate the mean values
of the portfolio’s SR and CR to reflect the stability and
generalization ability of the strategy in terms of risk-return.
Of course, considering the mean alone does not fully reflect
its performance. Because we are usuallymore concernedwith
the optimal performance of investment strategy in practical
applications. For a more comprehensive analysis and com-
parison, we visualized the mean and optimal values under
different L and G portfolios.
It can be found that when L = 5, the gap between the mean

value and the optimal value of SR and CR is small. When
G = 3, both SR and CR are higher, indicating that both the
returns and risks of the portfolio perform relatively well and
have good investment value. At L = 7, the overall trend of SR
and CR decreases with increasing G. Moreover, the distance
between SR and CR is widening, indicating that the portfolio
is more volatile. At L = 9, although the overall SR and CR
are not high, the mean_SR and mean_CR are steadily rising.
For L = 11, the portfolio performs best at G = 8, but it can
be found that its SR and CR are not very different from those

when L = 5, G = 3. This suggests that the two portfolios
perform roughly equally well.

As a whole, a larger action set L can provide more options
for constructing the portfolio and may offer greater diversifi-
cation potential, but it can also increase the complexity of the
optimization problem and make it more difficult to find an
optimal solution. For example, in the case of L = 11. On the
other hand, a smaller action set L can simplify the problem
but may limit the potential for diversification and may result
in a less optimal portfolio.

Similarly, the number of assets G in the portfolio can also
have a significant impact on the portfolio’s performance.
A larger number of assets can provide greater diversification
andmay reduce the portfolio’s risk, for example, when L = 9,
the value scenario ofG, but it can also increase the complexity
of the portfolio construction problem andmay result in higher
transaction costs. On the other hand, a smaller number of
assets can simplify the portfolio construction problem, but it
may also limit the potential for diversification and may result
in a portfolio that is more susceptible to risk.

In general, the optimal size of the action set L and the num-
ber of assetsGwill depend on the specific investment strategy
being employed, and the goals of the portfolio. Experiments
show that large L and G are detrimental to the performance
of our strategy.

VI. CONCLUSION
We proposed the Mercury in the framework of reinforce-
ment learning. In this paper, we considered the correlations
between stocks and market conditions and combined his-
torical data and market preferences of individual stocks to
learn about assets that fit both tonalities. Stock screening was
integrated into the learning process of reinforcement learning,
and market preferences were also learned to jointly opti-
mize the investment strategy with a low correlation between
assets but acceptable returns. On this basis, we set the core
modules into a policy network to easily replace them with
more advanced models, which is conducive to our subsequent
research work. Through the experiment in a real A-share
stock market, to verify the effectiveness of the Mercury. And
a simple modification of the trading procedure can easily
generalize to the T + 0 market.
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