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ABSTRACT This paper proposes a new method for addressing the problem of unsupervised domain
adaptation for robust object detection. To this end, we propose an energy-based curriculum for progressively
adapting a model, thereby mitigating the pseudo-label noise caused by domain shifts. Throughout the
adaptation process, we also make use of spatial domain mixing as well as knowledge distillation to improve
the pseudo-labels reliability. Our method does not require any modifications in the model architecture or
any special training tricks or complications. Our end-to-end pipeline, although simple, proves effective
in adapting object detector neural networks. To verify our method, we perform an extensive systematic
set of experiments on: synthetic-to-real scenario, cross-camera setup, cross-domain artistic datasets, and
image corruption benchmarks, and establish a new state-of-the-art in several cases. For example, compared
to the best existing baselines, our Energy-Based Curriculum learning method for robust object Detection
(EBCDet), achieves: 1-3 % AP50 improvement on Sim10k-to-Cityscapes and KITTI-to-Cityscapes, 3-
4 % AP50 boost on Pascal-VOC-to- Comic, WaterColor, and ClipArt, and 1-5% relative robustness
improvement on Pascal-C, COCO-C, and Cityscapes-C (1-2 % absolute mPC). Code is available at:
https://github.com/AutomotiveML/EBCDet.

INDEX TERMS Object detection, domain adaptation, energy, model robustness, curriculum learning.

I. INTRODUCTION
Deep learning has helped create many strong object detec-
tor neural networks over the past decade. State-of-the-art
detectors are being used in real-world applications, all the
way from small efficient models on smartphones to large
ensemble models on cloud clusters [1], [2]. In training neural
networks for such applications, engineers and practitioners
for the most part utilize existing public datasets or collect
a limited labeled dataset for supervised training. In practice
however, the labeled data collected for supervised training
are often diverted from the environment that the model will
eventually be deployed at, especially when there is little
control on the environment such as outdoors, or when there
are changes in the weather, location, lighting, or capturing
sensors. In other words, target data distribution is shifted
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away from the source distribution. This is referred to as
domain shift [3], [4], [5].

There are a wide range of existing techniques to miti-
gate the domain shift for object detection. Broadly speaking,
these methods can be classified into a number of catego-
rizes: augmentation based, domain alignment, reconstruc-
tions based, and self labeling. Augmentation based methods
such as [6], [7], and [8] are only suitable for certain kinds of
domain changes where the visual shifts can be manifested by
image augmentation operations [9], [10]. Domain alignment
methods are further divided to branches such as divergence-
based [11], [12] or adversarial-based domain adaptation [13],
[14], [15]. These methods are widely used for object detec-
tion domain adaptation [16], [17], [18], [19], [20], [21].
The goal in these methods is to align the intermediate rep-
resentations of the source and target domains. However in
doing so, they require non-trivial design changes or special-
ized modules such as gradient reversal layers, adversarial
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domain classifiers, etc. Reconstruction-based approaches use
an auxiliary reconstruction task (e.g. Generative Adversarial
Networks (GANs) [22] or Auto-Encoders) to synthesize a
look of target domain images [23], [24], [25], [26], [27]. Just
like the augmentation approaches, these methods also have
a limited capability since target domain distribution can’t
exactly be reconstructed from the limited available informa-
tion. Self labeling methods generate pseudo-labels for the
unlabeled target data, and use those to adapt a model [28],
[29], [30], [31]. However, depending on the severity of the
domain shifts, pseudo-labels can become noisy and therefore
unreliable.

In this paper, we propose an energy-based curriculum
for progressively adapting a model, thereby mitigating the
pseudo-label noise and domain shifts. Throughout the adap-
tation process, we also make use of our earlier ideas of
spatial domain mixing as well as teacher guided knowledge
distillation to improve the pseudo-labels reliability [32]. The
benefits of our approach are three-fold: First, our method is
data-centric, and therefore does not require anymodifications
in the model architecture or any special training tricks. Sec-
ond, it is architecture agnostic so that it can be applied on
different types of object detectors. Third, it can effectively
adapt detectors without the need for labeled data from the
target domain.
The main contributions of this paper can be summarized as:

• We introduce an energy-based method to partition the
unlabeled target domain data to subsets in the order of
divergence from the source distribution. This creates a
curriculum that can further be used by domain adaptive
object detection techniques.

• We build an end-to-end pipeline using our energy-based
curriculum, teacher guided pseudo-label distillation, and
spatial source-target domain mixing. Our framework
progressively adapts a model from source domains to
target domains, and results in adapted detectors with
high accuracy.

• We conduct an extensive set of experiments to show the
effectiveness of our method. Our results demonstrate the
efficacy of the method on: synthetic-to-real scenario,
cross-camera setup, cross-domain artistic datasets, and
image corruption benchmarks, and establish a new
state-of-the-art in several cases. Moreover, we perform
extensive ablation studies and provide insights and
discussions around different aspects of our method.

II. RELATED WORKS
This section reviews the relevant literature to our method.

A. IMAGE AUGMENTATION
Data augmentation is in general used to improve the general-
ization of neural networks. In the context of domain adapta-
tion however, data augmentation techniques are also used to
improve robustness against image corruptions. Authors in [7],
[33], and [8] investigate the use of augmentations for image

corruptions in image classification, and [6], [34] look at
object detection. These efforts have resulted in partial success
but fail to address the general problem. The main reason
is due to inability of augmentation operations to generalize
to various kinds of unseen corruptions. This was confirmed
by [9] where the authors found that the perceptual similarity
between augmentations and corruptions is a strong indicator
of the corruptions error. In another study, authors in [10]
observed that augmentations designed for synthetic corrup-
tions do not necessarily work well for natural corruptions.

B. UNSUPERVISED DOMAIN ADAPTATION (UDA) FOR
DETECTION
As mentioned in Section I, object detection UDA meth-
ods span over a diversity of approaches including domain
alignment or reconstruction based techniques. Unlike image
augmentation methods that do not use unlabeled target data,
UDA attempts to leverage information available in the unla-
beled target data for a better adaptation. Domain alignment
methods (e.g. divergence-based or adversarial-based) learn
to align the semantic representations of the source and tar-
get domains. For example, Domain Adaptive Faster-RCNN
(DAF) [16] or Adversarial Feature Learning (AFL) [35] learn
domain-invariant representations through adversarial train-
ing of object detectors. There are also methods that build
on top of the traditional domain-invariant feature learning
strategies. To this end, Selective Cross-Domain Alignment
(SCDA) [18] incorporated a hierarchical alignment mod-
ule; Coarse-to-Fine (C2F) [19] and C2FDA [36] performed
coarse-to-fine feature adaptation; Strong-Weak Distribution
Alignment (SWDA) [20] enforced strong local but weak
global alignment; Every Pixel Matters (EPM) [21] designed
a center-aware alignment framework for anchor-free FCOS
model [37]. The alignment based methods have made a great
progress, however, they usually come at a cost of adding extra
modules and require non-trivial architectural manipulations.

In addition to the domain aligning, there is the family of
reconstruction based methods in which a model learns to gen-
erate images similar to the unlabeled target examples. These
methods usually involve a Conditional GAN [23], [38], [39],
[40] or a stack of auto-encoders [41] for image synthesis, and
transfer the source images to target-like images. The main
issue with such methods is that image generation and style
transfer have their own limitations. Although improvements
have been observed, but some of the domain gap still remains.

Other than domain aligning and reconstruction based
methods, batch-norm adaptation techniques are also worth
a special mention. Batch-normalization (BN) layers play
an important role in training convolutional neural networks
for object detection. They reduce over-fitting, accelerate
training, and allow a better convergence for deeper neural
networks [42], [43]. In addition to the utilizations of BN
layers mentioned above, BN-adaptation has also shown to
be effective against image corruptions [44] and adversarial
attacks [45], and in general useful in UDA [46], [47]. As we
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will show in Section IV, BN-adaptation alone won’t entirely
close the domain gap in object detection UDA. That being
said, we do use it as a part of our iterative gradual adaptation
framework.

C. SELF PSEUDO-LABELING IN OBJECT DETECTION UDA
A variety of UDA methods use pseudo-labels for adapta-
tion [29], [30], [31], [48], [49]. To this end, they generate
pseudo-labels from the unlabeled target images and use those
to train an adapted model, or to fine-tune a source-trained
model. For object detection, pseudo-labels come in the form
of bounding boxes and a class category assigned to each
box [29]. Due to domain shifts however, often times the
pseudo-labels are noisy, unreliable, and not confident. This
may hurt the performance of the adapted model. To address
this issue MTOR [48] used consistency regularization terms
on region parts and graph-structures between a student and a
mean teacher model. In another work, RLDA [30] modeled
the region proposal distribution of Faster RCNN detector to
reduce the pseudo-label noise (which makes RLDA tied to a
specific architecture).Moreover, in [31], pseudo-labelingwas
combined with a method of style transfer. Overall, using high
quality pseudo-labels is a promising direction since it can be
combined with other techniques and be implemented in an
architecture-agnostic manner.

D. ENERGY-BASED MODELS
Our method generates an adaptation curriculum based on the
energy distribution of unlabeled target samples. Here, we pro-
vide a brief overview of the energy models. Energy-based
models are alternatives to probabilistic decision-making,
as they don’t have a requirement for standard normalizations.
As a result, energy-based methods avoid the problems asso-
ciated with estimating the normalization constant in proba-
bilistic models. The absence of the normalization condition
further allows for a higher degree flexibility in designing
machine learning algorithms [50], [51].
Energy-based analysis has been adopted in many applica-

tions. For example, [52] proposes to use energy values as a
measure of out-of-distribution detection for image classifi-
cation. Moreover, [53] designs a joint inference mechanism
based on the energy values. In another recent work, [54]
leveraged energy to build a framework for open-set object
detection. In Section III, we provide an energy formulation
based on the popular Helmholtz free energy definition [50],
[51]. In our work, we relate the domain shifts to energy
distributions and propose a method of creating a training
curriculum from the unlabeled target images.

E. CURRICULUM LEARNING FOR OBJECT DETECTION
There exists a body of work related to curriculum learning
for image classification [55], object detection [56], [57], [58],
[59] and image segmentation [60], [61], [62], [63]. A general
theme in these works is to partition the training examples
to easy-vs-hard cases, start training with easy examples, and

then continue the training with harder samples. The idea is
that the models learn the detection task holistically from the
easy examples, but then later learns to detect harder cases
such as small or occluded objects from the difficult samples.
In our work, instead of classifying each example as hard
or easy, we partition the unlabeled target data to a number
of subsets based on their energy distribution, and gradually
adapt the model according to how much domain shift they
exhibit with respect to the labeled source dataset.

In summary, compared to existing works, our method is
simpler as it does not require trainingGANs for synthetic data
generation, does not enforce an architecture change (data-
centric), and does not pose a change in the loss definitions.
Despite its simplicity, our method shows to be very effective
on several domain adaptation scenarios and benchmarks.

III. METHOD
In this section we first provide a problem formulation and
then explain the details of our method.

A. PROBLEM STATEMENT AND SETUP
As a whole, our problem follows an unsupervised domain
adaptation setting, in which a source model θS , trained on
source data D with distribution pS : X × Y −→ R+, has a
target test data D with a distribution pT : X × Y −→ R+.
In this case, pS (y|x) = pT (y|x) but pS (x) ̸= pT (x). Note that
in the case of images, both data distributions are still coming
from the domain of images i.e. data point from either will be
an image with d pixels, with each pixel value falling within
0 and 1; this part is the same even if the images are different.

For the task of object detection, dataset D will contain
images and their corresponding bounding boxes and object
classes/categories. Dataset D however, contains only images
from a target domain, which have a distribution shift/drift
compared to images in D. A common technique in such situ-
ations is to generate and use pseudo-labels fromD. However,
due to domain shift, pseudo-labels will be noisy and thus less
reliable, and may result in an under-performing adaptation.

We propose a method for estimating the distribution shift,
and then quantize the shift into a number of bins (See Fig. 1).
These bins are calculated based on the free energy of repre-
sentation vectors, and are then used for our curriculum-based
gradual adaptation approach, which will be explained later in
this section.

The energy function is defined as E(x) : Rd
−→ R for a

d-dimensional data example x and a scalar non-probabilistic
energy value. Note that the energies are uncalibrated, as in
they are measured in arbitrary units, and energies of two
separately trained models cannot be combined. As such, it is
a common practice to turn the energy values to probabilities
(positive values between 0-1). A simple way to do that is via
the Gibbs distribution. Other ways are also possible, but can
be reduced to Gibbs by a suitable redefinition of energy [51].
The probability distribution of the set of energy values for an
energy-based model according to the Gibbs distribution [50],
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FIGURE 1. An example curriculum for the case of vehicle detection during different light conditions. Domain shift increases from left
to right.

FIGURE 2. System overview: we take a labeled source dataset D,
an unlabeled target dataset D, and use our energy-based technique to
create a curriculum, with which we then gradually adapt a model. For
illustration purposes, we choose vehicle detection in daylight images as
the source task, and vehicle detection at night as the target task.

[51], [52] is defined as follows:

p(y|x) =
e−E(x,y)∫
e−E(x,y′)dy′

. (1)

The denominator is referred to as the partition function and
marginalizes over y (For simplicity, we dropped a temperature
parameter that can otherwise exist in the exponents). We use
the Helmholtz free energy [51], [52] in our method, which for
a data point x is defined as:

F(x) = −log
( ∫

e−E(x,y
′)dy′

)
. (2)

With this setup and definitions, we describe our method next.

B. ENERGY-BASED CURRICULUM FOR OBJECT
DETECTION
Fig. 2 shows a big picture overview of our approach.
As observed, we take a labeled source dataset D and an
unlabeled target dataset D and use our energy-based tech-
nique to create a curriculum, with which we then gradually
adapt a model. Our system supports self-adaptation as well
as teacher-student adaptation. In self-adaptation, we use one
fixed model architecture throughout all steps of our method.
However, as we show in our experiments, smaller models
with low learning capacity may not have enough power to
adapt on their own. For such ‘Student’ models, we first use
a larger ‘Teacher’ architecture with higher capacity to adapt
and generate higher quality pseudo-labels, and then use these

pseudo-labels to train the ‘Student’ model. Next, we describe
the three major components of our method: creating cur-
riculum, gradually adapting the Teacher, and adapting the
Student.

1) ENERGY-BASED CURRICULUM
As shown in the literature [52], [53], the negative free energy
can be used for out-of-distribution (OOD) detection. This is
achieved by interpreting data samples with a low likelihood
in the data density function as OOD, i.e.:

p(x) =
e−F(x;S)

Z
, (3)

where F(x; S) denotes the free energy for the student model
θS , and Z =

∫
e−F(x;S)dx defines the normalized densities,

which can be intractable to compute or estimate [52], [53].
Taking the logarithm of (3) yields:

log
(
p(x)

)
= −F(x; S)− log(Z ). (4)

In (4), log(Z ) is constant with respect to x, therefore, the
likelihood of a sample being OOD becomes directly related
to its negative free energy. In other words, the negative free
energy can be used as an indicator of distribution shift. To this
end, we first train a Teacher neural network model using an
ordinary supervised training algorithm over the source data,
and then compute the energy over the representation vector of
the last layer (logits) for the unlabeled target examples. Based
on their free energy values, we divide them into a number
of nc equally sized bins. The early bins attain low negative
energy and are thus considered as highly shifted samples.
Towards the end bins on the other hand have a distribution
that is closest to the source distribution. Fig. 1 provides a
visualization of a curriculum generated for the example of
vehicle detection during day (source) versus night (target).
Fig. 3 shows a flow-diagram of the curriculum generation
procedure.

a: CLASSIFICATION TASKS
It is also worth noting that the formulation of free energy will
slightly change depending on the task. For a classification
network with C target classes, a categorical distribution with
softmax is used. Therefore:

p(y|x) =
eS

c
y (x)∑C

i e
Sci (x)

, (5)
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FIGURE 3. Creating curriculum: We use a source-trained Teacher model, T0, to compute the energy values over the
unlabeled target dataset. Then, we quantize the sorted energy values to nc bins, thereby sorting the unlabeled data
according to the domain shift with respect to the source data.

where Scy (x) denotes the logit (probability) of the y-th class
and Sc(x) : Rd

→ RC . The energy for a given input (x, y) in
this case is defined as E(x, y) = −Scy (x), and the free energy
function Fc(x; Sc) is then expressed similar to (2) as:

Fc(x; Sc) = −log
C∑
i

eS
c
i (x). (6)

b: REGRESSION TASKS
In this case, Sr (x) : Rd

→ R, and E(x, y) = −Sr (x, y). The
conditional density can be expressed by:

p(y|x; Sr ) =
eS

r (x,y)∫
eSr (x,y′)dy′

. (7)

And the free energy is defined by:

F r (x; Sr ) = −log
(∫

eS
r (x,y′)dy′

)
. (8)

It is worth noting that the above formulations follow the
typical definitions of the literature [52], [53]. However, other
variations can also be incorporated.

c: OBJECT DETECTION TASKS
Object detection architectures usually involve with a bound-
ing box regression output and a class/category prediction
output [64], [65], [66], [67]. As such, it will involve both the
classification and regression formulations mentioned above.
The total energy is therefore expressed by:

Fo(x; Sc, Sr ) = Fc(x; Sc)+ F r (x; Sr )

=
−

∑nb
b log

∑C
i e

Scb,i(x)

nb

+
−

∑nb
b

∑4
j log

∫
eS

r
b,j(x,y

′)dy′

4nb
, (9)

where Scb,i is the classifier’s output for the i-th class label of
the b-th bounding box, Srb,j is the regression output for the j-
th value of the b-th bounding box, b ∈ [1, nb], i ∈ [1,C],
j ∈ [1, 4], and nb denotes the total number of bounding boxes
over C categories.

FIGURE 4. Adapting teacher: within each iteration, first we extract
pseudo-labels of the corresponding data partition. Then, we generate
mixed domain examples from source and target data. At last, batch
normalization layers of the Teacher are updated, before going to the next
iteration.

2) GRADUAL ADAPTATION USING THE GENERATED
CURRICULUM
Once the unlabeled data D is partitioned according to our
energy-based curriculum, we then use partitions in a sequen-
tial manner to gradually adapt the Teacher model. To this end,
as illustrated in Fig. 4, we start adapting the teacher with the
least shifted data partition, D1. In doing so, we first generate
pseudo-labels of D1 using the current Teacher, T0. Then,
we create mixed domain collages of both labeled and unla-
beled images. Next, we adapt the batch normalization (BN)
layers of T0 using the mixed collages and their labels/pseudo-
labels. The updated teacher is called T1. This process will be
repeated for the rest of the curriculum until the final teacher
TA is achieved. TA has been gradually updated with the target
domain images, and its pseudo-labels are gradually improved
compared to the preceding teachers.

a: DOMAIN MIXED COLLAGES
We created these collages from source and target images in
order to organically mix their distributions, thus making it
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FIGURE 5. Mixing domains: For an improved adaptation, we create a
mixed collage of source and target images and corresponding
labels/pseudo-labels.

easier for models to adapt. In our experiments, we use a
2 × 2 collage. To obtain the training labels for a collage
image, we use the ground-truth labels of source examples,
and pseudo-labels of target examples. Moreover, we leverage
a weighted balanced sampling strategy to take into account
the fact that source data size might be much different than
target data size. Fig. 5 shows a schematic of how these mixed
domain examples are generated and Fig. 6 demonstrates sev-
eral examples. Note that our sample mixing is more effective
than [32] in that we mix samples iteratively for each data
split (due to model updates pseudo-labels get more accurate),
versus [32] mixes samples only once.

b: ADAPTING BN LAYERS
In each round of Teacher adaptation, we freeze all param-
eters, except the batch normalization (BN) layers, and use
the mixed domain examples to fine-tune the BN layers. This
helps the Teacher to adapt better to target examples. Note
that this is not a new idea and has been used for domain
adaptation before [44], [46], [47], [68], [69]. The key idea
is that in UDA (unsupervised domain adaptation), the model
was already trained with ground truth labels on the source
data, and ‘‘knows’’ about the task of object detection, but has
a difficulty of handling images from the shifted distribution.
In other words, batch-norm parameters are used as proxy
parameters to shift back the distribution to an interval similar
to the source distribution so the model can do as good of a job
as on the source data. This approach while simplistic, is effec-
tive and hence it is adopted in the literature. A side benefit of
updating only BN layers instead of the whole NN is to save
on computations. The implementations of domainmixing and
BN adaptation described above have been adopted from our
earlier work [32].

3) ADAPTING THE STUDENT USING MIXED DOMAIN
EXAMPLES AND HIGH QUALITY PSEUDO-LABELS
The final adapted Teacher TA in general will have a strong
adaptation performance due to its high capacity and the grad-
ual adaptation explained previously in this section. We use
TA to generate high quality pseudo-labels over D, and then
mix those with D. The Student S0 is next fine-tuned with
these mixed examples to generate the final adapted Student

FIGURE 6. Domain mixed examples: In each case, bounding box labels of
the source data (in yellow) are mixed with the bounding box
pseudo-labels of the target data (in red), to create a collage image.

FIGURE 7. Adapting student: We first generate the pseudo-labels of the
unlabeled target dataset using the adapted Teacher model TA. Then,
we fine-tune the source-trained Student with the resulting domain-mixed
examples to achieve the final adapted Student model SA.

SA. Fig. 7 shows these steps, and Algorithm 1 summarizes
the proposed method.

IV. EXPERIMENTS RESULTS
We review the experiment results and ablation studies in this
section. The main results are organized in three parts:
• Synthetic-to-real & cross-camera domain shifts.
• Cross-domain artistic domain adaptation.
• Robustness against image corruptions.

These results are followed by ablation studies to understand
different aspects of our approach. Note that for real-world
applications, it is particularly challenging to collect real data
that generalizes to diverse situations.With the datasets chosen
for the experiments, we show that our method can not only
adapt from real data (captured with different setup/sensors),
but can also adapt from synthetic data, and even paintings,
cartoons, or clip-arts.

A. TRAINING PROCEDURE AND HYPER-PARAMETERS
For the experiments, we used the YOLOv5 [1] architec-
ture, at different scales or input resolutions. For the most
part we used the default hyper-parameters in the YOLOv5
repo [1], but tuned the learning rate. We employed a stan-
dard SGD optimizer with momentum 0.937, weight decay
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Algorithm 1 Energy-Based Curriculum for Robust Obj.
Detection
Inputs: Labeled source data D, unlabeled target data D, Student

model θS0 (trained on D), adaptation epochs ea, fine-tuning
epochs eft , number of curriculum partitions nc.

Output: Adapted Student model θSA
1: procedure EBCDet (θS0 ,D,D, ea, eft , nc)

# Create a curriculum
2: Choose a Teacher architecture θT (with capacity ⩾ θS )
3: θT0 ← Train θT supervised on D
4: Fo(D)← ComputeEnergy(D; θT0 ) according to (9)
5: {Di}

nc
i=1 ← PartitionBasedOnEnergy(D;Fo(D))

# Adapt the Teacher model
6: for l ∈ θT0 .layers do
7: if l is not BatchNorm then FreezeLayer(l)
8: for i ∈ {1, 2, . . . , nc} do
9: Di

mixed ← MixSamples(D,Di, θ
Ti−1 ) w.r.t. Fig. 5

10: θTi ← MinimizeLoss(θTi−1 ,Di
mixed , ea)

11: θTA ← θTnc ▷ Adapted Teacher
# Adapt the Student

12: Dmixed ← MixSamples(D,D, θTA ) w.r.t. Fig. 5
13: θSA ← MinimizeLoss(θS0 ,Dmixed , eft )

5e−4, warmup, and cosine decay. For the object detection
hyper-parameters, we used a NMS IoU threshold of 0.65,
and confidence threshold of 0.001 for training and 0.4 for
pseudo-label generation. Following [1], we incorporated the
generalized IoU (GIoU), focal, and objectness losses.

We provide various experiment results on several
datasets including Pascal-VOC [70], Microsoft COCO [71],
Cityscapes [72], Sim10k [73], KITTI [74], and the Cli-
pArt1k, WaterColor2k and Comic2k datasets [31]. In all
cases, we used a default nc = 5 partitioning, and 40 epochs
for each adaptation iteration (an ablation study on nc is
available later in this section). Moreover, the fine-tuning of
Student models was done in 100 epochs with a batch size of
128 and learning rate of 4e−5. In addition, for baseline COCO
models, we trained for 300 epochs (similar to [1]) and used a
learning rate of 0.01. Pascal and Cityscapes baseline models
were transfer learned on top of the COCO models with the
same strategy as the Student fine-tuning.

It is also worth noting that we opted for single resolution
training for simplicity. Unless otherwise specified, the default
resolution was set at 416 (max width). However, we also
examined higher/lower resolutions to explore the potential
of our models at different capacities. For example, YOLOv5
S320 denotes a small scale model at 320 resolution, whereas
YOLOv5X1280 represents a larger model with 1280 size [1].

B. SYNTHETIC-TO-REAL & CROSS-CAMERA EXPERIMENTS
1) DATASETS
For these experiments, we employ the widely used settings
of Sim10k [73] and KITTI [74] datasets adapted to the
Cityscapes [72] dataset. Sim10K-to-Cityscapes signifies the
synthetic to real domain adaptation, andKITTI-to-Cityscapes
evaluates the cross-camera adaptation. We followed the com-
mon practice and used the car class for comparison with

existing methods. In these two experiments, we used the
training set of KITTI and Sim10K as labeled source datasets,
training set of Cityscapes as unlabeled target dataset, and
validation set of Cityscapes as the target test set.

2) METRICS OF PERFORMANCE
To facilitate a fair comparison, methods are grouped based
on their ‘Source’ performance/capacity (i.e. AP50 of the
source-trained non-adapted model). We then compare the
performance of the adapted models on the target test set.
Metrics of comparison are the AP50, absolute gain τ , and
effective gain ρ defined as follows:

τ = AP50(θSA )− AP50(θS0 ), (10)

ρ = 100×
AP50(θSA )− AP50(θS0 )

AP50(Oracle)− AP50(θS0 )
, (11)

where ‘Oracle’ (upper-bound) is a model that is directly
trained on the target data with ground-truth labels. Note that
the AP50 (or mAP in general) is the standard metric used for
the assessment of object detection models. We followed [19],
[32] in using the τ metric to measure the absolute gains. This
metric was designed to enable a comparison between models
that had a different source performance (due to the diversity
of architectures, many different models have been developed
for similar tasks). τ evaluates the gains achieved only due
to the adaptation algorithm. Furthermore, ρ was introduced
in [32], to measure effective/relative adaptation gains. This
metric gives a perspective of how much of the domain gap
can be closed by an adaptation algorithm. A ρ = 0% denotes
no adaptation gains, and a ρ = 100% means the target
performance is as high as the Oracle.

3) RESULTS
Table 1 shows the results of the Sim10K-to-Cityscapes exper-
iment. We observe from Table 1 that our Energy-Based
Curriculum learning method for object Detection, EBCDet ,
performs competitively compared to the state-of-the-art
approaches.We used model scales that achieve similar source
AP50 to groups of existing methods, to be able to draw
a fair comparison. Similarly, Table 2 shows the results
of the KITTI-to-Cityscapes experiment. We observe that
EBCDet outperforms the baselines across the Adapted AP50,
absolute, and effective gains.

C. CROSS-DOMAIN ARTISTIC EXPERIMENTS
1) DATASETS
These experiments include three datasets of WaterColor2k
(watercolor paintings), Comic2k (comic strips), and Cli-
pArt1k (clipart images), introduced in [31]. We investigated
the adaptation from a natural image dataset such as the VOC
to each one of these datasets. To this end, VOC07 trainval
is used as the labeled source data, and the training set of
WaterColor2k, Comic2k, and ClipArt1k datasets are used as
the unlabeled target data. Models are evaluated on the test set
of these three datasets.
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TABLE 1. Sim10K-to-Cityscapes results: to facilitate a fair comparison, methods are grouped based on their ‘Source’ performance. We compare the
performance of the adapted models on the target test data. Metrics of comparison are the AP50, absolute gain τ as in (10), and effective gain ρ as in (11).
In addition, we report the AP50 of an upper-bound ‘Oracle’, a model that is directly trained on the target data with ground-truth labels. ‘S320’, ‘M416’,
‘X640’, ‘X1280’ represent different scales of Yolov5 architecture with increasing depth, width, and input resolution. Note that some methods such as [57]
can operate in multiple ways (variations on how curriculum is defined in this case). In such cases, we added a separate entry in the table for each
variation.

TABLE 2. KITTI-to-cityscapes adaptation results.

2) METRICS OF PERFORMANCE
Similar to Section IV-B, we used the adapted AP50, τ , and ρ

for performance assessment.

3) RESULTS
Table 3-5 show the results of these experiments for theWater-
Color2k, ClipArt1k, and Comic2k datasets, respectively. Our
method shows a solid performance on the three benchmarks,
reaching effective gains of around 98%, 75%, and 67%, for

WaterColor, ClipArt, and Comic datasets, respectively. This
corresponds to the adapted AP50 improvements of +1.64%,
+2.49%, and +2.16% over the state-of-the-art [32].

D. IMAGE CORRUPTION EXPERIMENTS
1) DATASETS
Image corruption datasets were introduced to understand how
robust neural networks are against common corruptions [6],
[10], [33], [82]. To this end, over a dozen common distortions
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TABLE 3. Real (VOC)-to-WaterColor2K results: Methods implemented on the same architecture achieve a same source AP50.

TABLE 4. Real (VOC)-to-ClipArt1k adaptation results.

such as Gaussian/shot/impulse noise, Defocus/motion/zoom
blur, snow, frost, fog, rain, brightness/contrast modifications
or JPEG compression were emulated and applied on top of
existing datasets. It was shown that models trained on clean
data (i.e. source data) are not very robust against the corrup-
tions. We treat these datasets as a kind of domain/distribution
shift, and apply our method to adapt the models trained on
clean data, to corrupt target data.

We performed experiments on Pascal-C, COCO-C, and
Cityscapes-C datasets with the 15 standard types of corrup-
tions [6], [33]. We used a similar experiment setting as [32]
where for Pascal-C, the VOC07 trainval was used as labeled
source data, corrupt VOC12 trainval as unlabeled target data,
and corrupt VOC07 test set as the target test data. For COCO-
C, we used the first half of the train set as the labeled source

data, the second half (corrupt) as unlabeled target data, and
the validation set (corrupt) as the target test data. We follow
a similar approach of halving the train set for Cityscapes
as well. We choose images from the following cities as
source labeled set: ‘aachen, bremen, cologne, darmstadt,
hanover, jena, krefeld, stuttgart, and tubingen’. The rest of
the cities constitute the (corrupt) unlabeled target data, and
the Cityscapes validation set (corrupt) is used as the target
test set.

2) METRICS OF PERFORMANCE
Since image corruption benchmarks use different kinds of
corruptions, the experiments are reptead for different kinds of
corruptions and severity levels and are therefore very exten-
sive. The metrics of performance are also slightly different
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TABLE 5. Real (VOC)-to-Comic2k adaptation results.

than the the ones used in Section IV-B-IV-C. Following [10],
[33], and [32], we use the following metrics:

• mPC: mean performance under corruption
• rPC: relative performance under corruption
• τc: relative robustness

averaged over K corruption types, and defined as:

mPC =
1
K

K∑
k=1

1
Ns

Ns∑
s=1

APk,s, (12)

rPC =
mPC
APclean

, (13)

τc = mPC(θSA )−mPC(θS0 ), (14)

where APk,s denotes the test average precision with corrup-
tion type k at severity level s.

3) RESULTS
Table 6-8 show the results of the image corruption experi-
ments. In addition to our method, we adopt the results of
the baselines from [32]. Note that the BN-adapt method
only adapts the batch normalization layers, and we observe
from the results that this is not enough. Also, augmentation
methods such as DeepAugment [8] can’t address the corrup-
tion domain shifts as shown in the results. For our method,
we employed a YOLOv5X Teacher in these experiments for
high quality pseudo-label generation on the unlabeled target
dataset, and a YOLOv5M Student. Results of the corruption
experiments show a consistent strength for our method across
Pascal-C, COCO-C, and Cityscapes-C datasets.

E. ABLATION STUDIES
In this section we study different aspects and components of
our method, and provide insights/discussions on the results.

TABLE 6. Results on the Pascal-C benchmark: metrics defined in IV-D.

TABLE 7. Results on the COCO-C benchmark.

TABLE 8. Results on the Cityscapes-C dataset.

1) CONTRIBUTION OF DIFFERENT COMPONENTS
Table 9 provides an ablation study on the different com-
ponents of our method, on the Pascal-C with YOLOv5M.
We observe that:
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TABLE 9. Ablation study on the Pascal-C dataset with yolov5m. Results
show the added benefits of different components. TG, GA, DM, and FT
refer to Teacher Guidance, Gradual Adaption, Domain Mixing, and Fine
Tuning. ‘1-cycle’ adaptation means no curriculum learning was used.

TABLE 10. Image corruption experiments for different model sizes.

1) Batch norm adaptation helps reduce the domain shifts,
as much as +10.8%, but it’s not enough on its own.

2) Mixing source and target domain images into collages,
and using teacher models both improve the adaptation
performance by +2.2% and +8.6%, respectively.

3) Adaptation based on the curriculum outperforms the
non-curriculum case (single pass over the entire unla-
beled data), even with domain mixing or teacher guid-
ance.

4) Overall, different components are organically com-
bined to mitigate the domain shift and pseudo-label
noise.

2) RESULTS FOR DIFFERENT MODEL CAPACITIES/SIZES
Table 10 contains the results of image corruption experiments
on COCO-C and Cityscapes-C datasets, at different scales of
YOLOv5 model. As we expect, models with higher capacity
achieve better results.

3) PER-CORRUPTION TYPE RESULTS
Next, we study the performance of our method for the image
corruptions benchmark, on a per-corruption basis. This is to
ensure our method is not biased towards a certain kind of
corruption. To this end, Table 11 shows the results of image
corruption experiment on Pascal-C with YOLOv5M model.
We observe that our results are for the most part consistent
across different corruptions.

4) THE NUMBER OF CURRICULUM PARTITIONS
As mentioned earlier in this section, we use a default nc =
5 number of partitions in our curriculum generation step.
Experiments in Fig. 8 show an ablation on the number of
partitions. We observe that increasing the number of parti-
tions improves the performance, although it saturates at some
point.

FIGURE 8. Ablation on the number of curriculum partitions. Different
datasets/experiments seem to saturate at a different nc value.

5) ENERGY VS SOFTMAX VS ENTROPY VS RANDOM VS
NONE
Besides the free energy, there are other alternatives that can
be used to create a learning curriculum. Here, we exam-
ine softmax and entropy of logits. In addition, we evaluate
a random baseline were unlabeled examples are randomly
partitioned into nc groups. We run the Pascal-C experiment
with YOLOv5M and report the results in Table 12. Note
that in this table, we also report the case where no curricu-
lum was used, i.e. the rest of the method except unlabeled
examples were not partitioned. We observe from this table
that the energy criterion achieves better results, suggesting
that it can better distinguish the domain shift. Nonetheless,
softmax and entropy functions also work well. It is also
worth noting that a bad curriculum can hurt the results,
which is due the fact that the batch normalization layers
are updated with unrepresentative smaller set of examples
frequently, and therefore pseudo-label quality degrades. Also
note that the comparisons in Table 12 are based on choosing
different curriculum data splitting criteria in our method.
We provided end-to-end comparisons with other curriculum
and non-curriculum strategies in Table 1-8. Among oth-
ers, we provided results on the following curriculum-based
strategies: Curriculum Self-Paced [57] (including the original
method of #objects/average-size, random curriculum, image
difficulty predictor and domain discriminator curriculums),
and SGA-S [59] on multiple datasets.

6) ENERGY VERSUS ACCURACY
Fig. 9 shows the progress of gradually adapting a YOLOv5S
model in the Sim10K-to-Cityscapes scenario (from Table 1).
In this figure, we show the energy intervals used for curricu-
lum generation on the horizontal axis, and the corresponding
adapted teacher’s accuracy on the vertical axis. We observe
that the model is gradually adapting better to the target
domain.
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TABLE 11. Results of image corruptions experiment for different types of corruption on Pascal-C and YOLOv5M.

TABLE 12. Comparing mPC50 of various techniques for curriculum
generation; results are on YOLOv5M and Pascal-C.

FIGURE 9. Energy vs accuracy: gradual adaptation of teachers across
different energy intervals - Sim10K-to-Cityscapes scenario with YOLOv5S.

FIGURE 10. Energy distribution before and after adaptation on Pascal-C.
For a better visualization, the frequencies are normalized for each
dataset.

7) ENERGY DISTRIBUTION BEFORE AND AFTER
ADAPTATION
Fig. 10 shows the distribution of negative free energy values
for the Pascal-C experiment, before and after adaptation over
the source and target datasets. We observe from this figure
that before adaptation, source and target datasets exhibit
somewhat separate distributions. This domain shift is indeed
the cause for the low performance of source-trained mod-
els evaluated on target test set. On the other hand, after
adaptation, the model identifies less of the data examples as
out-of-distribution.

8) BASELINE [32] WITH TEACHER ADAPTATION
It is worth noting that like our method, [32] can also take
advantage of pseudo-labels generated by an external teacher

FIGURE 11. Adaptation from COCO to real videos captured in/out of city.

TABLE 13. AP50 for our method and [32], when adapting with teachers.
Results on Sim10k-to-Cityscapes with YOLOv5 at different scales and
resolutions.

model. In the result tables of Section IV, for brevity and sim-
plicity, we reported the self-adapted results of this method,
and compared with the self-adapted version of ours. Here,
we provide a comparison for the teacher-adapted case in
Table 13.

9) ABLATION ON DOMAIN MIXING
In this work, we created domain mixed examples by creating
collages from source and target domains. However, there
could be various ways of mixing image samples and their
bounding box annotations.We explored a simple alpha blend-
ing (0.5 coefficient) of two randomly sampled images from
the source and target domains in the SIM10k-to-Cityscapes
task. The annotations, in this case bounding boxes, were
the union of all present objects. While this resulted in an
improvement over the source-only method (adapted AP50
of 41.63 vs 39.57) it was still considerably lower than our
current method (47.05). We suspect this is because the mixed
images don’t look like either of the domains and look arti-
ficial. Nonetheless, this is an interesting area for future
research.
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FIGURE 12. Examples of domain adaptation from VOC to WaterColor2k, Comic2k, and ClipArt1k, datasets. Each pair shows source-trained model
output (left) versus the adapted model output (right). We observe a better detection across adapted models.

FIGURE 13. Examples of image corruptions from COCO-C: Adapted model
performs well in the presence of different kinds of corruptions.

10) REVERSE ADAPTATION
The datasets chosen in the main experiments follow the lit-
erature in evaluating the performance of adapted models for
the purposes of: 1) synthetic-to-real adaptation tomeasure the
usefulness of synthetic data, 2) cross-camera shifts, 3) natural
to artistic (watercolor, comic strips, cliparts) to measure the
usefulness of models trained on natural everyday images for
artistic use-cases, 4) clean to distorted setup to measure the
robustness of lab-trained models in practical situations. With
the exception of the cross-camera scenario, the literature has
followed the above mentioned evaluation pipelines. For the
cross-camera setup however, it is possible and interesting to

TABLE 14. Results on Cityscapes-to-KITTI. For other methods, results are
directly used from the original papers, where available.

TABLE 15. Results with and without curriculum adaptation.

evaluate in the reverse direction of adaptation. We provide
the results for this experiment in Table 14, where we evaluate
different methods on Cityscapes-to-KITTI adaptation.

11) RESULTS WITH AND WITHOUT THE CURRICULUM
Here, we provide the results with and without curriculum
adaptation. In other words, we use our end to end pipeline
in both cases, but report the impact of using curriculum along
with the rest of the pipeline. This will show how much of the
‘‘remaining’’ gap the curriculum can close. Note that these
results are not new, but are gathered fromFig. 8 and the results
tables (we used the self-adaptation results from Tables 1-5).
Table 15 shows the results (nc = 10). We observe that the
impact varies depending on the dataset/task, and how large
the gap with the oracle is, but in most cases 20+% of the gap
can be closed.

12) QUALITATIVE VISUALIZATIONS
In this subsection, we provide visualizations to better eval-
uate the performance of our method qualitatively. To this
end, Fig. 11 demonstrates examples of adapting from COCO
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FIGURE 14. Example curriculum: images from ClipArt1k are sorted according to their similarity to VOC.

models to videos captured in/out of city streets during the
day/night. Fig. 12 demonstrates qualitative results of adapting
the VOC dataset to WaterColor2k, ClipArt1k, and Comic2k.
We observe that the adapted model can better identify objects
in the target datasets than the source-trained model. Next,
we demonstrate examples of image corruptions from the
COCO-C dataset. Fig. 13 shows examples of images with
different kinds of corruptions. We can see that the adapted
model can successfully detectmost of objects in these images,
even in the presence of severe corruptions. Finally, Fig. 14
shows an example curriculum.

13) A NOTE ON COMPUTATIONAL COMPLEXITY
Previously we mentioned that our method is simple as it
does not require architecture changes or modifications in
the loss functions. We also note that although our method
adds an overhead in terms of computational complexity, this
overhead is usually not significant. A naive baseline that
uses a source-trained model to generate pseudo-labels on
unlabeled target data, requires training the Student for eSD
epochs, generating pseudo-labels i.e. 1 epoch inference onD,
and training the Student for eSD epochs. Our method requires
training the Student for eSD epochs, training the Teacher for
eTD epochs, computing the energy values forD i.e. 1 epoch of
inference, adapting (training) the Teachers for ea epochs on
eachDi partition, generating pseudo-labels onDi, generating
pseudo-labels with the adapted teacher onD, and fine-tuning
the Student for eft epochs withD. Assuming that an inference
epoch is significantly cheaper than training a full model, the
difference between computational complexity of our method
and the naive baseline rounds up to be as much as training
the Teacher model for eTD epochs on D plus eaD epochs on

D. In case of self adaptation (i.e. no Teacher), this difference
reduces to only eaD epochs on D, which is much less than
training a full model. In case the teachermodel is significantly
larger than the student however, the computational overhead
can be meaningful and in some cases may be significant.

V. CONCLUSION
In this paper, we introduced an energy-based curriculum
generation method for robust object detection. In an unsu-
pervised domain adaptation setting, our method partitions the
unlabeled target domain data into a number of subsets based
on their energy values. This way, the partitions are sorted
based on their distribution shift with respect to the source
dataset. Next, a bigger Teacher model is iteratively adapted
over these partitions. In each iteration, the Teacher gradually

adapts its BN layers using domainmixed samples. Finally, the
Student model is fine-tuned with high quality pseudo-labels
provided by the Teacher. Our method showed a competitive
performance against the existing baselines, at times by a large
margin.
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