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ABSTRACT Image fusion model based on autoencoder network gets more attention because it does not
need to design fusion rules manually. However, most autoencoder-based fusion networks use two-stream
CNNs with the same structure as the encoder, which are unable to extract global features due to the local
receptive field of convolutional operations and lack the ability to extract unique features from infrared and
visible images. A novel autoencoder-based image fusion network which consist of encoder module, fusion
module and decoder module is constructed in this paper. For the encoder module, the CNN and Transformer
are combined to capture the local and global feature of the source images simultaneously. In addition, novel
contrast and gradient enhancement feature extraction blocks are designed respectively for infrared and visible
images tomaintain the information specific to each source images. The feature images obtained from encoder
module are concatenated by the fusion module and input to the decoder module to obtain the fused image.
Experimental results on three datasets show that the proposed network can better preserve both the clear
target and detailed information of infrared and visible images respectively, and outperforms some state-of-
the-art methods in both subjective and objective evaluation. At the same time, the fused image obtained by
our proposed network can acquire the highest mean average precision in the target detection which proves
that image fusion is beneficial for downstream tasks.

INDEX TERMS Image fusion, convolutional neural network, transformer, infrared image, visible image.

I. INTRODUCTION
The image fusion technique is the merging of images from
different scenes into a single fused image that has multiple
source image features [1], [2], [3], [4], [5], [6], [7]. As men-
tioned in [8], ‘‘an alternative to maximize the segmentation
accuracy is to jointly leverage the multimodal data to further
enhance feature representations’’, multimodal image fusion
is one of the effective means to improve the performance of
tasks such as image segmentation and target detection, et al.
Various modalities of images can be combined to complete
image fusion, such as infrared and visible images, infrared
and SAR images, visible and SAR images, and CT and
MRI images in medicine, etc. Among them, infrared images
are beneficial to promote target detection and recognition
ability, which can avoid the influence of environments, such
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as smoke, light, rain, etc. [9]. However, it also has some
shortcomings like low pixel resolution, poor contrast, insuf-
ficient texture in the background, etc. Visible images have
high resolution, and can reflect rich scene information, such
as texture and detail information. However, it is susceptible
to environmental factors including weather, smoke, occlu-
sion [9], and it cannot highlight targets in case of interference.
Therefore the fusion technique becomes a necessary choice,
which can combine the complementary advantages of both
to obtain a fused image with bright targets and detailed
background. Currently, infrared and visible image fusion
techniques are widely used in image enhancement [10], agri-
cultural automation [11], remote sensing detection [12], and
especially in object recognition, detection and tracking [13],
[14], [15]. Seal et al. [16], [17] proposed thermal and visible
image fusion methods for face recognition. Experimental
results demonstrated significant performance improvements
in recognition over individual modality.
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In the past decades, many different image fusion methods
have been proposed, which can be classified into different
categories, including multiscale transform [18], [19], sparse
representation [20], [21], neural network [22], [23], sub-
space [24], saliency [25], hybrid model [26], and other fusion
methods [2], [27], [28]. In [23], the authors illustrated the
basic implementation of each groups above, and pointed out
that each of the groups has its strengths and shortcomings.

Although traditional fusion methods have made some
progress, there still exist some problems. In general, these
methods rely on manually designed feature extraction and
fusion rules, which make the fusion process increasingly
complex [9], [29]. Thus the lack of diversity in the features
extracted in this way often leads fused images to be in low
contrast, blurred textures, and artifacts in the target.

The deep learning-based image fusion models are adap-
tively trained to update the model parameters with the help
of the learning capability of the network to form an end-to-
end fusion models. Compared with traditional methods, deep
learning fusion methods avoids activity level measurement
and fusion rule design, which greatly reduces the influence
of human factors on fusion results [29]. In addition, the
deep learning methods exploit the ability of network feature
extraction to fully preserve the complementary information
of the source images in the fused image, which improves the
quality of the fused image.

At present, image fusion methods based on deep neu-
ral network can be divided into CNN (convolutional neu-
ral network)-based methods, autoencoder-based methods,
GAN (generative adversarial network)-based methods and
Transformer-based methods. The image fusion networks
based on autoencoder do not need manual design of fusion
rule, and it has become a widely studied method nowadays.
However, most of the existing encoders of autoencoder use
the convolution operation which cannot fully extract the
global features because of the local receptive field prop-
erty. In addition, the current feature extraction subnetworks
of the fusion models do not make a distinction for differ-
ent source images, and complementary information is not
reflected enough in fused images therefore. To solve the
above problems, a novel autoencoder-based infrared and vis-
ible image fusion network combining CNN and Transformer
is proposed in this paper. The contributions of this paper can
be summarized as follows:

• A novel encoder composing of CNN and Transformer is
established to extract the local and global information of
the infrared and visible images simultaneously.

• Contrast enhancement block and gradient residual block
are designed separately for infrared and visible images to
maintain the complementary information of the source
images.

• Extensive experiments on three datasets (TNO,
OTCBVS and RoadScene) show that the proposed net-
work can obtain the fused image containing both clear
targets and rich textures, and surpasses some state-
of-the-art methods, including U2Fusion, DDcGAN,

SDDGAN, DenseFuse, RFN-Nest, STDFusion and
SwinFusion.

The rest of this article is organized as follows. In section II,
related work is introduced. The proposed method is pre-
sented in detail in section III. Section IV conducts qualita-
tive and quantitative comparisons of the proposed method
and other state-of-the-art methods. The article is concluded
in section V.

II. RELATED WORK
In recent years, more and deep neural network models have
been applied in the field of image fusion, which can be clas-
sified into four categories: CNN-based methods, GAN-based
methods, autoencoder-basedmethods and Transformer-based
methods.

A. CNN-BASED FUSION METHODS
In 2017, Liu et al. [30] introduced CNN to the field of image
fusion, where they used blurred background and foreground
images to train the network and obtained a binarized weight
maps. In the testing phase, the source images were combined
with the weight maps to obtain a fused multi-focus image.
Meanwhile, many researchers have tried to introduce the
CNNmodules in the traditionalmethod, and these approaches
inject rich semantic information into the fused images. For
example, Li et al. [31] used the VGG19 network to further
process the detailed part obtained by multiscale decompo-
sition, thus preserving rich texture information in the fused
image. Liu et al. [32] found that the features extracted by
CNN could reflect the proportion of the source images to
a certain extent in the fusion process, so they used the
downsampling sequence of the convolutional weight maps
as the fusion ratio map of the two branch downsampling
sequences, avoiding artificially designed fusion strategies.
Similarly, zero-phase component analysis and L1-norm were
used to obtain the weight maps reflecting the proportion of
the source images [33], overcoming the problem of informa-
tion loss in the process of downsampling the source images.
These methods retain rich detailed information in the fused
image with the help of the powerful feature extraction abil-
ity of the CNN network. However, in the above methods,
CNN are mainly used in the feature extraction stage, and
the traditional multiscale decomposition or fusion strategy
are still applied in the fusion process. The main shortcom-
ings of such methods include: 1) design of activity level
measurement or fusion rule are still required in most CNN-
based methods. 2) CNN is only used to obtain the weight
maps needed for fusion and is not sufficiently involved in
the whole image fusion process as a result. Also, simple
weighted fusion strategy is applied as the fusion rules which
will lost the information of the source images. The reason
for the above problems is that the CNN-based fusion meth-
ods do not get rid of the limitations of traditional methods,
and thus cannot maximize the advantages of the network
itself.
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B. GAN-BASED FUSION METHODS
In 2019, Ma et al. [9] proposed a novel fusion model based
on the generative adversarial network (FusionGAN), which
is mainly divided into two parts: generator and discriminator.
The input of the generator is the cascaded infrared and vis-
ible images, and the input of the discriminator is the image
generated by the generator and the visible image. The loss
function is divided into two parts: the generator loss and
the discriminator loss. The generator loss is divided into
adversarial loss and background loss, and the discriminator
loss forces the fused image and the visible image to be more
similar. The fusion network takes advantage of the GAN to
preserve textures and target information for the fused image.
Further, two discriminators were designed in [34] to retain the
information of infrared and visible images simultaneously.
Besides, researchers also designed targeted loss functions to
better reserve the details of the fused image or optimize the
models [35], [36], [37]. Li et al. [38] penalized the atten-
tion maps of shallow discriminators of the source and fused
images, aiming to preserve more attention region of source
images. The Wasserstein distance with gradient penalty were
used as the loss function of the discriminator in [37] and
the experimental results demonstrated that the model was
more easily trained. In terms of network structure, a multi-
scale attention mechanism forcing the generator to focus on
the most discriminative regions of the source image was
proposed in [39]. In order to make the fusion results more
balanced, Ma et al. [40] designed the discriminator as a
classification network, and the training process ends when
the discriminator cannot distinguish between fused image
and real image. Considering that the most important purpose
of the fusion of infrared and visible images is to highlight
the target in infrared images and preserve the background
in the visible image, the literature [41], [42] used semantic
segmentation methods [43] to obtain the mask image of the
source images, and combined with this mask image to further
obtain the ‘label’ for discriminator. Hong et al. [44] pro-
posed a decoupled-and-coupled network for the hyperspectral
image super-resolution task. A decoupled subnetwork was
first designed by means of GANs, and then a model-driven
coupled subnetwork was developed.

It provides great inspiration for the design of fusion net-
works for the infrared and visible images.

The GAN-based fusion method relies on the adversary
between the generator and the discriminator to generate the
fused images. During the training process, the ‘adversarial
game’ can force features of the fused image to be consistent
with the source images, so the fusion network can realize
unsupervised training. However, this kind of fusion network
is relatively difficult to be trained due to the unstable opti-
mization of the model.

C. AUTOENCODER-BASED FUSION METHODS
In 2018, Li and Wu [45] proposed a fusion network con-
sisting of encoding module, fusion module, and decoding
module. In the coding module, the method cascaded the

extracted feature images from each layer and input them
to the next layer, which increased information flow capa-
bility. Also, the network was easier to be trained, and the
final fused image retained a large amount information of
source images. However, due to the lack of datasets, grayscale
images from MS-COCO dataset [46] were used to train the
autoencoder network. Zhao et al. [47] used infrared and vis-
ible images as training data, and combined with the hopping
connection operation to highlight the information specific
to source images. Liu et al. [48] proposed a fusion net-
work with adaptive weight assignment strategy. That is to
say, each transmitted feature image was assigned different
weight. The fusion network was optimized and the fusion
results could retain more detailed information as a result.
To prevent the loss of information in the intermediate lay-
ers during the transfer process, in [49], a nested network
was applied to fully extract the feature images correspond-
ing to each convolutional layer. So the features at different
scales were better retained in the fused image. Compared
with CNN-based fusion models, autoencoder-based fusion
models needs to design the fusion strategy, while the current
fusion strategy of most networks is still simple summation,
averaging, or L1-norm [45]. Li et al. [50] designed a fusion
model by training the coder, decoder and the residual fusion
module separately, thus avoiding the design the fusion strat-
egy manually. To make the network more sensitive to the
target as well as the background, Ma et al. [51] introduced
semantic segmentation method to obtain a binary mask that
can separate the target and the background. This binary mask
was then applied to the source images to obtain training data.
In [52], inspired by coupled spectral unmixing, a two-stream
convolutional autoencoder framework is taken as backbone
to jointly decompose MS and HS data into a spectrally mean-
ingful basis and corresponding coefficients, and a network for
unsupervised hyperspectral super-resolution is proposed.

The underlying structure of the autoencoder model belongs
to the CNN and the generator of the GAN can also be
designed as an autoencoder structure, so the autoencoder-
based fusion models are more migratory and can be more
easily modified and monitored. As a result, we designed our
fusion model based on autoencoder structure in this paper.

D. TRANSFORMER-BASED FUSION METHODS
In 2017, Vaswani et al. [53] proposed a network model
with a completely different principle from CNN, namely
Transformer. The model was first applied to the field of
natural language processing, including machine translation,
sentiment classification, andword prediction. The key feature
of Transformer is the self-attention mechanism, which helps
the model learn the global context and enables the model to
acquire remote dependencies. Driven by the great success
of natural language processing, Transformer models have
also been applied in computer vision tasks (Vision Trans-
former, ViT) [54] and achieved considerable success in many
fields, such as image classification, video classification, tar-
get detection, semantic segmentation, etc.
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FIGURE 1. Samples for network training.

FIGURE 2. Proposed infrared and visible image fusion network.

In the field of image fusion, VS et al. [55] proposed
an embedded autoencoder structure. In the fusion layer of
the network, they designed spatial and Transformer fusion
modules aiming to fuse local and global information. How-
ever, the fusion results were not satisfactory. In addition,
Ma et al. [56] proposed a multi-task fusion network for
cross-channel information interaction. They first extracted
the shallow and deep feature of the source images using
CNN, and later passed the feature images into the Trans-
former model with cross- channel information interaction to
complete the interaction of source imageswhile extracting the
global information, and finally completed multi-task image
fusion.

Thanks to the Transformer, a new way to extract global
information from images has been gained. As a result, CNN
and Transformer are combined to form an encoder in this
paper, which is used to extract the local and global features
of source images simultaneously, solving the shortcomings of
traditional CNN-based autoencoder fusion network. In addi-
tion, based on the principle of image fusion, feature enhance-
ment blocks have been designed separately for infrared and
visible images to maintain the complementary information
of the source images. The next section provides a detailed
introduction to the method proposed in this article.

III. THE PROPOSED METHOD
A. TRAINING DATA
A publicly available and well-aligned MSRS dataset [57]
is selected as the training dataset, including 1083 pairs of

images of different scenes, whose scene targets contain peo-
ple, cars, etc. The images in the dataset have a uniform size
(640× 480) with a bit depth of 24. To be suitable for network
training, these images are processed into grayscale images
and cropped the image to 128 × 128 size. Some samples
from MSRS dataset are shown in Fig.1, where the first four
columns are the image pairs in poor-light scenes and the last
four columns are the image pairs under good-light scenes.

B. OVERALL FRAMEWORK
The proposed fusion model consist of feature extraction, fea-
ture fusion, and feature reconstruction. The feature extraction
module is divided into three stages, the CNN-based feature
enhancement block and Transformer are concatenated in each
stage for two streams (infrared stream and visible stream).
The feature fusion module stacks the extracted features and
feeds them into the decoder which is composed of three
convolution layers to realize feature reconstruction and gen-
erate a fused image that contains both infrared and visible
image features. The overall framework of our proposed fusion
model is presented in Fig.2. Next, we will provide a detailed
introduction to the CNN feature extractor designed in the
encoder for infrared and visible images, as well as the Trans-
former module.

1) CONTRAST ENHANCEMENT BLOCK (CEB) FOR INFRARED
IMAGE
Contrast enhancement block is designed to enhance the con-
trast of the infrared image, as shown in Fig.3. The input
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FIGURE 3. Contrast enhancement block.

FIGURE 4. Gradient residual block.

feature image is maximally pooled (the maximum pool-
ing operation can retain the larger pixel information in the
infrared image and filter out the unimportant information)
using pooling layers with step sizes of 2, 4 and 8, followed by
a 3×3 convolution operation, respectively. After which these
feature images are linearly interpolated to the input feature
image size and summed with the input feature image. Then,
a 3 × 3 convolution kernel is used to prevent artifacts in the
superimposed pixels. The contrast-enhanced feature image is
obtained eventually.

2) GRADIENT RESIDUAL BLOCK (GRB) FOR VISIBLE IMAGE
Gradient residual block is designed to enhance the details of
the visible image. The block adopts a residual connection
mode, and its structure is shown in Fig.4. The Sobel filter
is responsible for extracting the gradient information of the
visible image or features. A convolutional kernel of size
3× 3 is applied as the main channel feature extractor and the
activation function is Leaky ReLU. A convolutional kernel of
size 1 × 1 is used as the secondary channel feature extractor
and the activation function is still Leaky ReLU.

3) TRANSFORMER MODULE
The Transformer module designed in our model is similar
to the ViT model, but differs in its input and attention cal-
culation methods. First, the two-dimensional source images
are stretched to one dimensional matrix and input to the
traditional Transformer model along with information such
as the number of batches and the number of images per batch.
In addition, inspired by SwinFusion, the feature image is
divided into multiple small windows and the global atten-
tion is computed for these windows (window-based multi-
head self-attention mechanism, W-MSA) to overcome the

computational complexity of traditional models. The sliding
window size is set to 8, which has a larger perceptual field
compared to CNN. Fig.5 illustrates the calculation process
of our Transformer module. Followings are the computation
process of multi-head self-attention.

For a feature image X ∈ RM2
×C , three learnable weight

matrices WQ
∈ RC×C ,WK

∈ RC×C and WV
∈ RC×C are

employed to project it into query Q, key K , and value V ,

{Q,K ,V } = {XWQ,XWK ,XWV
} (1)

Then the attention mechanism is defined as:

Attention(Q,K ,V ) = Softmax(
QKT
√
dk

)V (2)

where dk is a constant value, which is convenient for finding
the gradient after the Softmax operation. After the patch
embedding process, the following calculations are performed,

f̂ l = W −MSA(LN (f l−1)) + f l−1 (3)

f l = MLP(LN (f̂ l)) + f̂ l (4)

where f̂ l and f l denote the output feature images of
the W-MSA and MLP (Multilayer Perceptron) block,
respectively.

C. LOSS FUNCTION
In this paper, the loss function of literature [51] is introduced
to make the local grayscale of the fused image similar to the
source image with a larger grayscale value in the correspond-
ing region, and to make the local gradient of the fused image
similar to the source image with a larger gradient. The loss
function is defined as the following equation.

L = αLint + βLtexture (5)

where αand β are the hyper-parameters that control the
trade-off of pixel loss function Lint and gradient loss function
Ltexture. Lint and Ltexture are defined as following respectively.

Lint =
1
HW

∥∥If − max(Iir , Ivis)
∥∥
1 (6)

Ltexture =
1
HW

∥∥∣∣∇If ∣∣ − max(|∇Iir | , |∇Ivis|)
∥∥
1 (7)

where H and W denote the width and height of feature
images, respectively, Iir , Ivis and If denote infrared image,
visible image, and fused image, respectively, Iir , Ivis and If
denote gradient of infrared image, visible image, and fused
image, respectively.

IV. EXPERIMENTAL RESULTS
In this section, ablation experiments are designed first to val-
idate the reasonableness of the model. Furthermore, to verify
the advantages of the proposed model over other state-of-the-
art methods, two traditional methods and seven deep learn-
ing methods are selected for subjective and objective com-
parisons. The objective evaluation metrics include mutual
information (MI), standard deviation (SD), average gradient
(AG), peak signal-to-noise ratio (PSNR), visual information
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FIGURE 5. Transformer block based on W-MSA.

FIGURE 6. Experiments to determine the optimal hyper-parameter value.

fidelity of fusion (VIFF), and gradient-based fusion perfor-
mance (QAB/F). We hope that fused images not only have
high-quality visual effects, but also benefit downstream tasks,
such as target detection and target recognition. Therefore,
we also verify the effectiveness of target detection using the
fused images in this experimental section.

A. MODEL CONFIGURATION
In our proposed fusion model, the learning rate is set to
2 × 10.5, the decay rate is 0.99, the weight update rule is
Adam, and the batch image size is set to 8, respectively.
The coefficients α and β in loss function of Eq.(5) are more
important in hyper-parameters. Experiments are conducted to
determine the value of these two parameters. Fig.6 presents
the fusion results with different hyper-parameter setting.

From the experiments, we can find that the background
texture is not rich when α = 1 and β = 50. The target is
not clear when α = 1 and β = 2. The target is clear and
the background is rich when α = 1 and β = 9. As a result,
we conducted all experiments using α = 1 and β = 9.
The experimental operating system is Windows 10.

The hardware platform is AMD Ryzen Threadripper PRO
3945WX with 4.0GHz, GPU RTX 3080, and 10G video
memory. The software platform is Python 3.7, and the model
is built using Pytorch to complete the training. Samples
are randomly selected from three public datasets, TNO,
OTCBVS, and RoadScene, as the test set.

B. ABLATION EXPERIMENTS
In our proposed model, different CNN feature enhancement
blocks are designed for the infrared and visible channels aim-
ing to extract the unique features of source images separately.
In addition, a Transformer module is added after the CNN
feature enhancement block at each stage to better extract the
global features of the source images. Therefore, the purpose

of the ablation experiment is to verify the effectiveness of the
CNN feature enhancement blocks and Transformer module.

Fig.7 (a) presents the fusion result using the Transformer
module and contrast enhancement blocks for both channels.
Fig.7 (b) presents the fusion result using the Transformer
module and gradient residual blocks for both channels.
Fig.7 (c) is the fusion result without using the Transformer
module and Fig.7 (d) is the fusion result of our proposed
model.

It can be found the visual contrast between the target and
the background of the first image is better, but the details
are not very rich in Fig.7 (a). Compared to the first image,
the second image Fig.7 (b) has a clearer texture (shown as
in the zoomed red box), but there is a ‘fault’ problem in the
background. From Fig.7 (c), we can find that the overall gray
value of the image is relatively high, with a lot of background
missing, and the global information of the fused image is not
complete enough.

Overall, the fusion result of the proposed network com-
bines the advantages of Fig.7 (a) and Fig.7 (b), balancing the
visual contrast and texture of the images with clear target
and good visual effects. The objective indexes of the fused
images in Fig.7 (recorded as (a), (b), (c) and (d) respectively)
are shown in TABLE 1 (bold numbers represent the best
performance).

We can find that the proposed model has the highest values
of MI and QAB/F indexes, so the method in this paper has the
best performance in terms of information richness and local
edge preservation of the fused image.

In addition, 20 images are randomly selected and the aver-
age values of the objective indexes of these 20 images are
computed and show in Fig.8.

It can be found that the results of the proposed fusionmodel
perform best, as reflected by the fact that theMI, SD, AG, and
QAB/F are greater than those of other methods, the PSNR and
VIFF are ranked second. In summary, the feature enhance-
ment strategy proposed in this paper that combines contrast
enhancement block, gradient residual block, and Transformer
module can improve the quality of fused images.

C. ALGORITM COMPARISON
To further verify the superiority of our proposed model,
nine methods are selected for subjective and objective com-
parison, including two traditional methods: MST_SR [18],
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FIGURE 7. Subjective comparison of fusion results. (a) fusion result with Transformer and contrast enhancement blocks
for two streams; (b) fusion result with Transformer and gradient residual blocks for two streams; (c) fusion result without
Transformer module; (d) fusion result with the proposed method.

TABLE 1. Performance comparison between different methods in terms of six objective indexes.

FIGURE 8. Mean values of objective indexes for different methods.

GTF [2]; one CNN-based method: U2Fusion [53]; two
GAN-based methods: DDcGAN [30], SDDGAN [40];
three Autoencoder-based methods: DenseFuse [42], RFN-
Nest [47], and STDFusion [48]; one Transformer-based
method: SwinFusion [52].

1) QUALITATIVE COMPARISON
Fig.9 shows the fusion results of a pair of infrared and visible
images from the TNO dataset by the above nine methods,
respectively. From the infrared target perspective, the target
brightness of Fig.9 (c), (d), (e), (f) and (g) is low. In addition,
the target in these four images is blurry, as shown in the
green box in the lower left corner of the fused image. The
edges of target of Fig.9 (h) appear vague, and the edges
of target of Fig.9 (i), (j) and (k) are not complete enough.
Comparing with the above targets of the fused image, the
targets of the fused image obtained by our proposed model
are bright and clear. In addition to comparing the degree of

preservation of infrared targets, we also compare the richness
of the background texture of different method, as shown in the
zoomed red box in the lower right corner of the fused image.
We can find that the background hierarchy is not prominent
enough in Fig.9 (c), (e), (f), (g) and (i). The background
textures are abundant in Fig.9 (h), (j), (k) and our proposed
method. Overall, the method in this paper outperforms other
methods in terms of target clarity and background texture
richness.

Fig.10 show the fusion results of a pair of infrared and
visible images from the OTCBVS dataset by the different
methods, respectively.

It is obviously that the target brightness is low in
Fig.10 (c), (d), (e), (f), and (g).The infrared target information
almost can’t be reflected in Fig.10 (d) and (g). Even though
the targets in Fig.10 (h), (i) and (j) are bright, artifacts still
exist around the target in Fig.10 (h); the target in Fig.10 (i) is
incomplete; the target in Fig.10 (j) only retains the infrared
image information and the texture is lost. Fig.10 (k) and
our proposed method have bright targets relatively. From the
region framed by the red box, we can find the texture of
the tree branches in Fig.10 (e), (g), and (i) are blurred. The
grayscale values of images (d), (f), (g), (h), and (i) are low
and the visual effect is not satisfactory. The fused image of
our method can preserve the target feature and the details of
background to the greatest extent. Therefore, the fusion effect
of the method in this paper is better than other comparison
methods.

Next, we conducted a comparative experiment on Road-
Scene dataset. The first row of Fig.11 shows a pair of infrared
and visible images of a road scene from the RoadScene
dataset. The green, red and blue boxes mark the target, street-
lights and tree backgrounds of the fused images, respectively.
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FIGURE 9. The fusion results of the sample from TNO dataset.

FIGURE 10. The fusion results of the sample from OTCBVS dataset.

We can find that Fig.11 (c), (e), (f), (g), and (h) have low
grayscale values for the target, and the targets in Fig.11 (g),
(h), and (i) are blurred. In Fig.11 (d), (h), (j) and (k), the
streetlights information is incomplete. The tree backgrounds
information are missing in Fig.11 (j). The tree backgrounds
are blurred in Fig.11 (d), (g), (i), and (k). In Fig.11 (h),
the background structures are not consistent with that of
the source image. In summary, we can see that the fused
image of the proposed method has bright target and plentiful
background, namely, better quality.

2) QUANTITATIVE COMPARISON
To further validate the advantages of the proposed method in
this paper, the objective evaluation metrics of each method on
the above fused images are compared.

TABLE 2 records the objective evaluation metrics of fused
image obtained by different methods on Fig.9. We can find
that proposed method obtained three highest metrics of SD,
VIFF, and QAB/F, which indicates that its fused images have
bright targets, rich local information, and good visual effects.
In addition, other indexes of the proposed method are at the
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FIGURE 11. The fusion results of the sample from RoadScene dataset.

TABLE 2. Performance comparison between different methods on FIGURE 9.

TABLE 3. Performance comparison between different methods on FIGURE 10.
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TABLE 4. Performance comparison between different methods on FIGURE 11.

FIGURE 12. Objective performance of different fusion methods on the test set.
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FIGURE 13. Fusion results and target detection results for source images and fused images.

top among all the methods, for example MI value ranks in
the second position, which is only 0.001 smaller than the
STDFusion method.

TABLE 3 records the objective evaluation metrics of
the fused image obtained by different methods on Fig.10.
In terms of objective metrics, the method in this paper simi-
larly achieves the optimal metrics except for the VIFF value,
which ranks second. Consistent with the subjective evalu-
ation, the information content, texture, contrast, and visual
effect of the fused images of the proposed method are better
than the latest state-of-the-art methods.

TABLE 4 records the objective evaluation metrics of the
fused image obtained by different methods on Fig.11. We can

find that our proposed method performs best in AG and VIFF
metrics, and the values of both MI and QAB/F metrics rank
second, which demonstrate the fused image of the proposed
method is of high quality and objectively evaluated well.

In addition to the above single image metrics comparison,
20 pairs of infrared and visible images are randomly selected
from the test set to objectively compare the performance of
the fused images obtained by different methods (in order to
present the results more clearly, we selected three deep neural
network fusion methods with better performance and com-
pared them with the proposed method), as shown in Fig.12.
It can be noticed that the proposed method outperforms the
other methods in SD, AG, VIFF, and QAB/F metrics overall,
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FIGURE 14. Failure case of the fusion methods.

TABLE 5. Computation Time of different fusion methods.

and 16 fused images rank among the top QAB/F metric values
of the compared methods.

At the same time, the average computation time of different
methods is provided in Table 5.We can find that our proposed
fusion network runs faster, especially compared to other
deep neural networks, which is beneficial for engineering
applications.

In summary, the objective evaluation of the fused images
of the proposed method is better than other methods overall.

D. COMPARATIVE EXPERIMENT OF TARGET DETECTION
BETWEEN THE SOURCE IMAGES AND FUSED IMAGES
To demonstrate the value of the fused images obtained by
the proposed method in the application, the target detection
results of the infrared images, visible images, fused images
by other fusion methods and our method are compared. Fifty
image pairs for target detection are selected from MFNet
dataset which contain some urban scenes, and some important
targets such as people and cars are manually labeled in this
paper. The infrared images, visible images, and the fused
images by different methods are fed to the target detection
network Faster R-CNN [58] separately to obtain the cor-
responding detection maps. The detection performance is
measured using the mean average accuracy (mAP) and the
detection results are shown in TABLE 6.

TABLE 6. Target detection accuracy of different fusion methods.

Obviously, the detection accuracy using source images is
relatively low, so the necessity of image fusion has been
verified. Secondly, among all the fusion methods, the detec-
tion accuracy of the proposed method is the highest, so the
fusion method proposed in this paper is more favorable for
application compared to other fusion methods.

In addition, Fig.13 provides two examples to illustrate the
advantages of the fusion method in this paper for the target
detection task.

For the first scene, two people are correctly detected in
each of the source infrared and visible images, and one truck
is mistakenly detected as the car in the infrared image. For
the RFN-Nest, DDcGAN, SDDGAN, STDFusion, and Swin-
Fusion methods, only one person are detected in the fused
image. For the MST_SR, GTF and DenseFuse methods, only
two persons are detected in the fused image. For our proposed
fusion model, three people are detected and category of the
targets (car or truck) is correctly identified for the fused
image. In the second scene, only one person at different
location is detected in the infrared image and the visible
image separately, while two people can be simultaneously
detected for the fusion result of the proposed method. Among
the compared methods, all the methods except MST_SR and
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SDDGAN methods cannot detect the target in the infrared
image. In summary, the fusion results of the proposed method
have great application value in other tasks, such as target
detection.

E. FAILURE CASES OF THE PROPOSED METHOD
Although the proposed network is effective in most case,
there are some failure cases with which large area of smoke
appears in visible images. Fig.14 shows a failure case of the
proposed method.

V. CONCLUSION
A novel CNN-Transformer architecture based autoencoder
for infrared and visible image fusion is proposed. On the
one hand, to address the problem that most encoders in
autoencoder networks use CNN, which is not sensitive to the
global information, Transformer is introduced and combined
with CNN to form the encoder which can retain both local
and global information, and improve the quality of the fused
image therefore. On the other hand, to address the prob-
lem that current encoders uses Siamese networks and fail to
adequately extract unique features from infrared and visible
images, a contrast enhancement block for infrared image
and gradient residual block for visible image are designed
respectively.

Compared with other state-of-the-art methods, the pro-
posed fusionmethod in this paper can obtain the fused images
with good subjective and objective evaluations, runs faster
and is more conducive to downstream tasks such as target
detection.

Although the proposed fusion network is effective in most
cases, the fusion results are not ideal in situations where
there is large smoke interference in visible images. In future
research, we will try to solve these problems by improving
the network structure and loss function.

In addition, the purpose of pixel level fusion is not only
to obtain high-quality fused images, but also to facilitate
other tasks including object detection and recognition. Sub-
sequently, multi-task neural networks can be developed to
efficiently complete tasks such as object detection while
obtaining high-quality fused images.
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