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ABSTRACT This paper outlines the operation of a Smart Distribution Network (SDN) that couples a Virtual
Power Plant and Electric Springs (CVEs). In fact, CVEs participate simultaneously in energy and reactive
service markets. The prime aim of the proposed scheme is to maximize the predicted profits of CVEs in the
mentioned markets. The constraints in the problem formulation are the AC optimal power flow equations,
flexibility limits in the network, and the operating model of CVEs. Further, the design is in a nonlinear
formulation, which is followed by a linear approximation model to access a unique optimal response.
Stochastic optimization is used to account for uncertainties in energy price, load, renewable power, and
energy consumption of mobile storage devices. In addition, the results from implementing the design on the
IEEE 69-bus SDN confirm the potential of CVEs to enhance the network’s operation and access significant
profits for power sources, storage devices, and responsive load. Finally, the design achieved 100% flexibility
for the SDN through proper management of CVEs, resulting in an improvement of operating indices between
15-97% compared to power flow studies. Moreover, the CVEs profit in the modeling of uncertainties reduces
approximately 19.6% compared to the deterministicmodel of the proposed scheme under complete flexibility
conditions.

INDEX TERMS Electric spring, energymarket, flexibility limit, reactive market, smart distribution network,
virtual power plant.

NOMENCLATURE
INDICES
b Bus.
i CVE .
j Line segment in the piecewise linearization

technique.
k Bus.
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w Scenario.
τ Operation hour.
ω Sides of a regular polygon.

DECISION VARIABLES
F Profit of CVEs in energy and reactive

power markets ($).
PCH, PDCH Active power of charge and discharge

(p.u.).
PCVE, Q

+

CVE Active and reactive power of CVE (p.u.).
P+

CVE, P
−

CVE Positive and negative components of
PCVE (p.u.).
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PDR, PVPP Active power of DRP and virtual power
plant (VPP) (p.u.).

PDL, QDL Active and reactive power of the distribution
line (p.u.).

PDS, QDS Active and reactive power of the distribution
substation (p.u.).

PLO Active power loss of ES (p.u.).
V, 1V Voltage amplitude and voltage deviation (p.u.).
σ Voltage angle (rad).

PARAMETERS
A Incidence matrix of buses and

CVEs (the element i,b is 1 if the
ith CVE is connected to bus b;
otherwise, it is 0.).

B Incidence matrix of buses and
distribution lines (the element
b,k is 1 if the distribution line
is between buses b and k; other-
wise, it is 0.).

bDL, gDL Susceptance and conductance of
the distribution line (p.u.).

C Space vector of CVE in the net-
work (element b of the vector is
1 if CVE is connected to bus b;
otherwise is 0.).

CR, DR Charge and discharge rate in the
storage (p.u.).

E lo, E in, Eup Minimum stored energy, initial
energy, and maximum stored
energy in the storage (p.u.).

KQ The ratio of reactive power price
to energy price.

PL , QL Active and reactive load (p.u.).
PPV, PWT Active power of photovoltaic

(PV) and wind turbine (WT)
(p.u.).

SDLup , SDSup , SDLCVE Maximum apparent power of
distribution line, distribution
substation, and CVE (p.u.).

sl Line slope in the piecewise lin-
earization technique.

V LF Voltage amplitude in power flow
studies (p.u.).

V lo, V up Minimum and maximum ampli-
tude of voltage (p.u.).

Z, I, P Constant parameters in constant
impedance, current, and power
load model (ZIP).

α, β Loss coefficients of electric
spring (ES) in p.u.

αF Flexibility tolerance (p.u.).
ηCH, ηDCH Charge and discharge efficiency

of the storage.
ρE Energy price ($/MWh).

ψ Rate of participation of consumers in the demand
response program (DRP).

1σ Angle deviation (rad).

I. INTRODUCTION
A. MOTIVATION
Nowadays, the use of renewable energy sources such as
wind and solar systems is increasing globally, particularly
in distribution networks, due to the clean electricity they
produce with low pollution levels [1]. However, the high
penetration of these resources with the advantages of produc-
ing clean energy at cheaper operating costs in the distribu-
tion network can negatively impact the system’s operation
and flexibility indices. Operation indices are voltage pro-
file, energy waste, and distribution line congestion. If the
integration of RESs in the network increases, overvoltage,
network losses, and congestion of distribution lines will also
increase [1]. A widely accepted understanding of flexibil-
ity involves adjusting the amount of energy generated and
reconfiguring the system in response to market-determined
prices [2]. Therefore, decreased flexibility in a network
causes a mismatch between actual energy utilization during
real-time operations and predicted energy use in day-ahead
operation; hence, this discrepancy can lead to a fine or penalty
for imbalance in the energy market [2]. This occurs because
renewable energy sources (RESs) often have limited control
and management, and consumers typically consume low-cost
energy while network management prioritizes resources with
low pollution levels. Therefore, these sources inject their
energy generation capacity into the network, which is pro-
portional to the weather conditions and their intermittent
nature [1]. In particular, controllable resources are required
with RESs to tackle this issue. Further, batteries and demand
response programs (DRP) are generally suitable alternatives
due to very low time constants [3].They are used to balance
out fluctuations in renewable energy source power during
real-time operation in comparison to day-ahead predictions
In addition presence of these resources can also improve net-
work operation indices and, that achieving such goals requires
the proper energy management in distribution systems. The
first step in desirable energy management in distribution
systems is adopting a suitable aggregator, e.g. a virtual power
plant (VPP) for generation units, storage equipment, and
responsive loads [4]. Most importantly, through coordination
between the aforementioned components and the operator,
a Virtual Power Plant (VPP) can achieve an efficient sched-
ule for both renewable and flexible energy sources. Further,
coordination of the VPP operator and the distribution system
operator (DSO) can optimize the operation of distribution
systems by ensuring optimal scheduling for Virtual Power
Plants (VPPs). Moreover, the electric springs (ESs) contains
a bidirectional DC-AC converter which could control their
load on the AC side [5], regulate voltage, and control active
and reactive power simultaneously. Hence, the coupling of
VPP and ES (CVE) can play a key role in the simultaneous
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management of the mentioned parameters. This results in
improved technical and economic performance indicators for
the system. Additionally, the system can participate in various
energy and auxiliary service markets, leading to benefits for
Virtual Power Plants (VPPs).

B. LITERTURE REVIEW
Several research have been conducted on the operation of
generation sources, storage, and responsive loads for the
SDN. For example, in [6] and [7], the robust operation of
the SDN with aggregation of electric vehicles (EVs) and
distributed generations (DGs) has investigated. These compo-
nents participate in both energy and reactive power markets,
allowing for financial gain from these markets. According
to research, the cost of charging electric vehicles (EVs)
decreases by 30%when participating in both energy and reac-
tive power markets, compared to not participating in these
market. Moreover, the power management of EVs and DGs
in the SDN has led to the reduction of energy losses in the
24-hour horizon while increasing the voltage profile. In [8],
energy management (active power exchange) of generation
units, storage equipment, and responsive loads in the form
of microgrid (MG) tied to the distribution network is pre-
sented. In this reference, only the participation of MGs in the
energy market is considered. Two-layer energy management
has adopted, hence, MGs are divided into two main and sub-
categories. In the first layer, the operation of the mentioned
elements under the management of the MG operator is con-
sidered. In the second layer, the operation of sub-MGs under
the management of main MGs has studied. This resulted in
low computational time, and more financial benefits for MGs
compared to the independent management. A multi-objective
optimization for the operation of MGs connected to the SDN
in the presence of power sources and storage devices, is pre-
sented in [9]. Multi-objective optimization has been applied
to simultaneously model the operation, reliability, and envi-
ronmental indicators. This is also the case for the unbalanced
distribution network in [10]. The studies in references [9]
and [10] reveal that through optimal management of internal
resources and storage, the MG operator can enhance various
technical indices in the network, outperforming power flow
studies, while also promoting clean energy. In [11] and [12],
flexible operation of electric spring (ES)-coupled batteries in
MG with renewable sources is modeled. The results confirm
that the battery-ES coupling system can simultaneously con-
trol active and reactive power, therefore, they play a highly
impact role in enhancing operation and flexibility indices as
compared to power flow studies in MG’s.

In addition, significant research have carried out in the
field of VPP operation. Reference [13] presents a two-layer
formulation for the presence of VPPs in the SDN. In the
study, the upper level formulate the model with renewable
resources and aggregation of EVs in the form of VPP in the
energy and reserve markets. The operation of the SDN is
mentioned at the lower-level problem to reduce energy losses

and voltage deviations. Thereafter, Bender’s decomposition
method is used to solve the problem. In [14] and [15], a virtual
power plant (VPP) format is studied tomanage the integration
of responsive loads and wind turbines in energy markets. The
model focuses on the VPP’s involvement in the DA and RT
energy markets and the balance market. In addition, the gen-
eration power of wind turbines is associated with uncertainty,
hence the bidding in these markets may differ. The balance
market is used to compensate this issue. According to the
results, the use of the VPP format for wind turbines compared
to single VPP management can provide high flexibility and
lower cost in the balance market. A similar study has been
conducted in [16], with the difference of the VPP format,
which has employed to coordinate the storage, wind turbine,
and responsive loads.

In study [17], it is assumed that VPP elements can simulta-
neously control active and reactive power, while contributing
to harmonic compensation of nonlinear loads. Accordingly,
VPP have a great potential in enhancing operation indices and
power quality. Further, the planning-operationmodel of VPPs
in the SDN has been studied in [18]. In this work, the siting
and sizing of generation units and storage in the form of VPP
significantly enhances the operating indices of the distribu-
tion system, with a minimal planning costs. References [19]
and [20] examined the involvement of flexible VPPs consist-
ing of PVs, hydro sources, and pumped storage in the energy
market. Consequently, a two-step problem is analyzed. In the
first step, the role of VPPs in the energy market is studied.
Then, in the second step, a power correction model that takes
into account the constraints imposed on irradiance, water, and
environmental conditions for VPPs is analyzed. The bi-level
operation of the active distribution network with VPPs was
discussed in [21]. In the upper-level problem, the operation
of the active distribution system is considered to minimize
the operating costs, while the VPP operation to maximize
its profit to provide ancillary services is considered in the
lower-level problem. An optimal VPP energy management
method is proposed in [22] for optimal energy and operat-
ing reserve scheduling. VPP operator has to make decisions
based on the uncertainty coming from the stochastic variable
renewable energy, load demand, as well as market electricity
price. Thus, a dynamic risk reserve quantification method is
proposed to cover both variable renewable power and load
forecast uncertainties, while information gap decision theory
is applied in the unit commitment procedures to study the
impact of price uncertainty on the decision-making of VPP
operators. References [23] and [24] proposes a statistical
measure and a stochastic optimization model for generating
risk-seekingwind power offering strategies in electricity mar-
kets. Inspired by the value at risk (VaR) to quantify risks in
the worst-case scenarios of a profit distribution, a statistical
measure is proposed to quantify potential high profits in the
best-case scenarios of a profit distribution, which is referred
to as value at best (VaB) in the best-case scenarios. Then,
a stochastic optimization model based on VaB is developed
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FIGURE 1. A framework of the suggested design.

for a risk-seeking wind power producer, which is formulated
as a mixed-integer linear programming problem. In addition,
Table 1 reports the abovementioned references in summary.

C. RESEARCH GAPS
According to Table 1, following gaps could be identified in
operation of VPPs in SDNs:

noitemsep,nolistsep

• In most studies, the energy exchange model (active
power) has been established in VPP and its components.
However, several studies have a simultaneous exchange
of active and reactive power of the VPPwith the network
and its internal elements. Under these conditions, a reac-
tive power control element such as a DC-AC converter
is used for each power source and storage. However,
in the case of a CVE, its internal elements can only
exchange energy with each other, which reduces the cost
of the reactive power control element. Nonetheless, the
ES, which is a DC-AC converter and has a controllable
load on its AC side, which can control the reactive power
flow with the network. Additionally, through adjusting
the load on its AC side, the ES (Energy Storage) can
regulate the voltage at the connection point with the grid,
resulting in a nearly steady voltage profile across the
network. However, that the ES and VPP coupling has
rarely been addressed.

• VPP can be operated in energy and ancillary service
markets simultaneously due to having various control-
lable elements such as non-renewable sources, storage,
and responsive loads. In this regards, a suitable financial
benefit is obtained for its elements. The topic of VPP
participation in the energy market has received more
attention in research, while the VPP model for partici-
pating in the reactive power or reactive ancillary services
market has received comparatively less attention. Simul-
taneous, the examination of VPPs participating in both

energy and auxiliary services markets has also received
limited attention in research.

• Due to low operating cost and emission level, renew-
ables have widespread applications in the power system.
However, renewable energy sources produce unpre-
dictable and inconsistent power output, as they rely on
natural phenomena, thereby decreasing their flexibil-
ity. Different research adopts flexibility resources such
as storage and responsive loads in the power system.
Nonetheless, less research such as [11] and [25] state
a numerical index for evaluation of system flexibility.
Analysis of the status of an index requires its numerical
value.

D. CONTRIBUTIONS
In order to address the identified research gaps and to pro-
vide coverage for these instances, this paper introduces the
concept of stochastic operation of CVEs within the con-
text of SDN, as depicted in Fig 1. In this figure, CVEs
simultaneously participate in energy and reactive ancillary
services (reactive power) markets. In the formulation, this
plan is responsible for maximizing the expected profits of
CVEs in the energy and reactive power markets. The con-
straints include the model of AC optimal power flow and
flexibility limit in SDN in the presence of RESs; operating
model of generation units, storage, and responsive loads in
a VPP format; and ES formulation. Further, The proposed
scheme features a nonlinear formulation, leading to varying
solutions from different solvers, where the convergence time
is also high. Therefore, the coefficient of confidence in its
response is low [6], [8], [9], [10], [11]. However, in this study,
a novel approach is presented, the Linear Approximation
Model (LAM), which enables solvers to quickly determine
a singular optimal solution In other words, in the distribution
network, the voltage angle deviation of the two sending and
receiving buses of a distribution line is generally smaller than
6 degrees [11], [13], [26]. By considering such an assumption
as well as voltage magnitude linearization according to tradi-
tional piecewise linear linearization method, a suitable linear
approximation model can be obtained for AC power flow in
SDN, which has a low computational error [13]. In addition,
the allowable capacity of distribution lines, substations, and
ES generally has a circular plane. By substituting a regular
polygon plane instead of a circular one, a linear approxi-
mation model with a small computational error is obtained
for the permissible capacity of distribution lines, substations,
and ES [13], [27]. Consequently, the design of the suggested
approach incorporates a Linear Approximation Model with
minimal computational error. Moreover, the parameters of
load, market price, renewable power, and energy consump-
tion of mobile storage devices (EVs) are uncertain. This
method uses stochastic optimization to model them. Finally,
the novelties of the present study could be listed as below:

noitemsep,nolistsep
• Modeling the simultaneous participation of CVEs in
energy and reactive power market;
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TABLE 1. A brief description of the literature.

• Presenting the optimal operation of CVE in the SDN by
considering the simultaneous management of active and
reactive power and voltage regulation in the network;

• Mathematical modeling of flexibility index to investi-
gate the network flexibility with CVEs.

E. PAPER ORGANIZATION
The layout of the paper includes 5 sections as described here.
Section II states the formulation of the suggested scheme in
both nonlinear and linear models. Section III describes the
stochastic modeling of uncertainties. Numerical results are
analyzed in Section IV. Eventually, Section V presents the
conclusions.

II. SDN OPERATION WITH CVES
A. ORIGINAL NON-LINEAR FORMULATION
The deterministic formulation of SDN operation in the pres-
ence of CVEs is presented here. The plan is to maximize the
predicted profits of CEVs in energy and reactive power mar-
kets, while at the same time adhering to the AC-OPF power
flow limits and flexibility limit in the SDN and operation
model of CVEs. Therefore, this plan is formulated as follows:

max F =

∑
i,τ,w

πwρE τ,w
(
PCVE i,τ,w + KQQCVE i,τ,w

)
(1)

where

PDS b,τ,w + PPV b,τ,w + PWT b,τ,w +

∑
i

Ai,bPCVE i,τ,w−

∑
k

Bb,kPDL b,k,τ,w= (1 − Cb)PL b,τ,w

+ CbPL b,τ,w

Z(Vb,τ,w
V LF
b,τ,w

)2

+ I

(
Vb,τ,w
V LF
b,τ,w

)
+ P

 ∀b, τ,w

(2)

QDS b,τ,w+
∑
i

Ai,bQCVE i,τ,w −

∑
k

Bb,kQDL b,k,τ,w =

(1 − Cb)QL b,τ,w + CbQL b,τ,w

 Z
(
Vb,τ,w
V LFb,τ,w

)2

+ I
(
Vb,τ,w
V LFb,τ,w

)
+P


∀b, τ,w (3)

PDL b,k,τ,w = gDL b,k
(
Vb,τ,w

)2
−

Vb,τ,wVk,τ,w

{
gDL b,kcos

(
σb,τ,w − σk,τ,w

)
+

bDL b,ksin
(
σb,τ,w − σk,τ,w

) }
∀b, k, τ,w

(4)

QDL b,k,τ,w = −gDL b,k
(
Vb,τ,w

)2
+

Vb,τ,wVk,τ,w

{
bDL b,kcos

(
σb,τ,w − σk,τ,w

)
−

gDL b,ksin
(
σb,τ,w − σk,τ,w

) }
∀b, k, τ,w

(5)

σb,τ,w = 0 ∀ b = Slack bus,τ,w (6)√(
PDL b,k,τ,w

)2
+
(
QDL b,k,τ,w

)2
≤ SupDL b,k ∀b, k, τ,w

(7)√(
PDS b,τ,w

)2
+
(
QDS b,τ,w

)2
≤ SupDS b

∀b = Slack bus,τ,w (8)

V lo
b ≤ Vb,τ,w ≤ V up

b ∀b, τ,w (9)

− αF ≤ PDS b,τ,w − PDS b,τ,w=1 ≤ αF

∀b = Slack bus,τ,w (10)

PVPP i,τ,w = PPV i,τ,w + PWT i,τ,w + PDR i,τ,w+(
PDCH i,τ,w − PCH i,τ,w

)
− PL i,τ,w∀i, τ.w (11)
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−ψiPL i,τ,w ≤ PDR i,τ,w ≤ ψiPL i,τ,w ∀i, τ,w (12)

∑
τ

PDR i,τ,w = 0 ∀i,w (13)

0 ≤ PCH i,τ,w ≤ CRi ∀i, τ,w (14)

0 ≤ PDCH i,τ,w ≤ DRi ∀i, τ,w (15)

E loi ≤ E ini +

τ∑
o=1

(
ηCHi PCH i,o,w −

1

ηDCHi

PDCH i,o,w

)
≤ Eupi

∀i, τ,w (16)

PCVE i,τ,w = PVPP i,τ,w + PLO i,τ,w ∀i, τ,w (17)

PLO i,τ,w = αi|PCVE i,τ,w| + βi|QCVE i,τ,w| ∀i, τ,w (18)√(
PCVE i,τ,w

)2
+
(
QCVE i,τ,w

)2
≤ SupCVE i ∀i, τ,w (19)

In Eq. (1) the objective function of the operation problem of
SDN with CVEs is formulated. This equation represents the
maximization of expected CVEs profits in the energy market
(the first part of Eq. (1)) and the reactive power market (the
second part of Eq. (1)) [6]. Profit in each market equals the
multiplications of the market price and power of the CVEs
associated with that market. If the CVEs have a positive
value, it means that they are making a profit from the relevant
market. However, if the CVEs have a negative value, it means
that they are purchasing from the relevant market, and Eq. (1)
in this case represents the cost. In addition, based on [6], the
reactive power price was considered as a ratio (KQ) of the
energy price.

The AC-OPF limits in SDN are expressed in Eqs. (2)-(9)
[13], [14], [17], [18]. Eqs. (2)-(6) represent the AC-PF
equation [30], [31], which shows active and reactive power
balance in SDN buses, active and reactive power across the
distribution line, and the voltage angle of the slack bus [13],
[14]. Eqs. (7)-(9) represent the operating limits of the SDN,
which denote the maximum apparent power limit across the
distribution line and distribution substation, and the bus volt-
age limit R28, respectively [17], [18]. As per the equations,
a distribution substation located on the slack bus connects
the SDN to the upstream network. Thus, the PDS and QDS
variables in other buses have a value of zero, and Eq. (8) is
expressed only for the slack bus. In the context of Eq. (9), its
upper limit is to prevent equipment insulation failure because
of overvoltage, and the lower limit is to prevent power outages
caused by high voltage drop [18]. Moreover, it is assumed in
the problem that there are two types of critical and non-critical
loads. Critical loads are placed on buses whose voltage ampli-
tude changes are not significant. Therefore, in these buses,
the voltage amplitude is generally maintained in the range
of [0.98 1.02] [11]. In non-critical loads, a wider range of

voltage amplitude can be tolerated, so that in these conditions
the voltage amplitude range is generally [0.9 1.05] [11]. The
network flexibility constraint has been presented in Eq. (10).
In this constraint, the parameter αF represents flexibility
tolerance, and if its value tends to zero, then 100% flexibility
is obtained. It is noted that there is uncertainty in generated
active power of RESs, therefore there will be different values
for active power in different scenarios. Thus, the flexible
sources such as storage and responsive loads which are able
to control active power, can compensate for the power fluctu-
ation of RESs in network. This leads that network being able
to inject a certain amount of active power in each scenario,
which means a high flexibility of network [11]. Eq. (10) can
be used to address this issue.

The operation model of CVEs is stated in Eqs. (11)-(19).
In these constraints, Eqs. (11)-(16) relate to the formulation of
VPPs. As provided in Eq. (11) of power balance inVPP. Then,
the DRP operation model is presented in Eqs. (12)-(13). This
DRP is an incentive model based on energy prices. In this
DRP, consumers shift part of their energy demand from
expensive periods to cheap intervals. Since expensive (cheap)
energy hours generally correspond to the peak (off-peak)
period [13], consumers in this DRP provide a percentage
of energy consumption required during peak hours during
off-peak hours. Thus, Eq. (12) indicates the extensive of
variations in active power in the DRP, and Eq. (13) guarantees
that the total energy demand during peak times is provided
during off-peak periods [13]. The operation model of stor-
age devices is expressed in Eqs. (14)-(16) [1], [32]. These
equations represent the boundaries of charge and discharge
rates, respectively, and the limits of the energy stored in the
storage. In stationary storage devices such as batteries; charge
and discharge rates, CR and DR; initial energy, E in; and the
minimum and maximum storable energy in storage, E lo and
Eup, are independent of time and scenario [13]. However,
in mobile storage devices such as EVs, these parameters
change over time and scenario, because the number of EVs
changes at any moment and scenario [33], [34]. Hence, in the
operating model of EVs, these parameters will have an index
of τ and w. EVs must also store a certain amount of energy
during the day. In this paper, it is assumed that EVs tend to
fully charge their batteries [34]. Accordingly, Eq. (16) for
EVs is modeled as Eq. (20). Note that at moment τ and w, the
CR, DR, and E lo for EVs equals the sum of the charge rate,
discharge rate, and minimum energy of the EVs integrated
with the network at this time, respectively. The value of
E in at moment τ is equal to the total initial energy of the
recently-connected EVs at moment τ . The value of Eup at
moment τ andw equals the sum of energy demand of the EVs
disconnected from the network at that moment. Considering
the full charge for each EV, its power consumption will be
equal to its battery capacity [34]. The following is the formu-
lation of ES in Eqs. (17)-(19). Note that PCEV is on the SDN
side, PVPP is on the VPP output side. Therefore, between
these two powers, there are ES losses. So, the active power of
CVE as Eq. (17) will be equal to the sum of the active power
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of VPP and the active losses of ES. In Eq. (18), the ES loss is
calculated, which is a factor of the absolute value of the active
and reactive power of CVE [11]. Finally, the ES capacity
limit is presented in Eq. (19), which represents the maximum
apparent power flowing through the ES. Also note that, as in
Fig. 1, there is a controllable load at the ES output, which
is used for voltage regulation. In this paper, as in [11], it is
modeled as an impedance, current, and constant power (ZIP)
load, which appears to the left of Eqs. (2) and (3). Finally, the
expressions λ and µ represent the dual variables of different
constraints.

E loi,τ,w≤ E ini,τ,w+

∑τ

o=1

(
ηCHi PCH i,o,w −

1

ηDCHi

PDCH i,o,w

)
= Eupi,τ,w ∀i, τ,w (20)

The proposed scheme includes an optimization model.
Optimization formulation contains objective function [35],
[36], [37], [38], [39], [40], [41], [42] and constraints [43],
[44], [45], [46], [47], [48], [49], [50], [51], [52], [53].
To apply the optimization problem on the distribution net-
work, the grid needs to smart devices [54], [55], [56], [57],
[58] and Telecommunications equipment [59], [60].

B. LINEAR APPROXIMATION MODEL
Eqs. (1)-(19) is in the form of non-convex nonlinear program-
ming (NLP) (due to AC-PF constraints [1], [2]). Solvers of
this problem generally do not have the same solutions [6],
so the coefficient of confidence in response to this problem is
low. This formulation is also an operation problem. In oper-
ation problems, the execution step is generally small, thus
the low calculation time is of particular importance in these
problems [6]. However, NLP solvers work based on iterative
approaches, which are time-demanding [1]. Therefore, a lin-
ear approximationmodel (LAM) is extracted for the proposed
scheme because its solvers are able to find a unique solution
shortly [13].

To linearize AC-OPF constraints, it should be noted that
according to [6], the voltage angle deviation at the two
sending and receiving end buses of a distribution line for a dis-
tribution network is generally less than 6 degrees. Therefore,
the expressions cos(σb,τ,w − σk,τ,w) and sin(σb,τ,w − σk,τ,w)
are approximated to 1 and (σb,τ,w−σk,τ,w), respectively. Also,
to linearize the expression of the squared voltage amplitude
and the product of the voltage amplitudes, the conventional
piecewise linearization technique is used. In this method, the
variable V is expressed as

∑
j1Vj where1V and j represent

the voltage deviation and the piecewise index, respectively.
In this case, based on [13], V 2 is formulated as (V lo)2 +∑

j slj1Vj, andVbVk will be equal to (V
lo)2+V lo∑

j(1Vb,j+
1Vk,j). So, the variable 1V replaces the variable V in
AC-OPF, whose maximum value is equal to the ratio between
the difference between V lo and V up to the number of linear
pieces (nJ ). Therefore, the linearized formulation of con-
straints (2)-(5) and (9) can be written as Eqs. (21)-(25),
respectively. With AC-OPF linearization, it is known as

linearized AC-OPF (LAC-OPF).

PDS b,τ,w + PPV b,τ,w + PWT b,τ,w +

∑
i

Ai,bPCVE i,τ,w−∑
k

Bb,kPDL b,k,τ,w = (1 − Cb)PL b,τ,w+

CbPL b,τ,w


Z

( (
V lob

)2
+
∑

j slj1Vb,τ,w,j(
V LFb,τ,w

)2
)

+

I
(∑

j1Vb,τ,w,j
V LFb,τ,w

)
+ P

 ∀b, τ,w

(21)

QDS b,τ,w +

∑
i

Ai,bQCVE i,τ,w −

∑
k

Bb,kQDL b,k,τ,w

= (1 − Cb)QL b,τ,w+

CbQL b,τ,w


Z

( (
V lob

)2
+
∑

j slj1Vb,τ,w,j(
V LFb,τ,w

)2
)

+

I
(∑

j1Vb,τ,w,j
V LFb,τ,w

)
+ P

 ∀b, τ,w

(22)

PDL b,k,τ,w

= gDL b,k

∑
j

((
slj − V lo

b

)
1Vb,τ,w,j − V lo

b 1Vk,τ,w,j
)

−

(
V lo
b

)2
bDL b,k

(
σb,τ,w − σk,τ,w

)
∀b, k, τ,w (23)

QDL b,k,τ,w

= −gDL b,k

∑
j

((
slj − V lo

b

)
1Vb,τ,w,j − V lo

b 1Vk,τ,w,j
)

−

(
V lo
b

)2
gDL b,k

(
σb,τ,w − σk,τ,w

)
∀b, k, τ,w (24)

0 ≤ 1Vb,τ,w,j ≤
V up
b − V lo

b

nJ
∀b, τ,w, j (25)

Eqs. (7)-(8) and Eq. (19) are a circular plane with the
center of origin and the radius S in PQ coordinates, i.e.,√
P2 + Q2.To linearize this equation, a circular plane is

approximated to a plane in the form of a regular polygon with
nP sides [6]. Each side of this plane has a linear relationship in
the form ofP×cos(ω×1σ )+Q×sin(ω×1σ ) = S [6]. In this
equation, ω represents the side that varies between 1 and nP.
Also, indicates an angle deviation of 360

nP
. Next, from each

side, a square plate can be extracted as P × cos(ω × 1σ ) +

Q× sin(ω ×1σ ) ≤ S; considering the planes from all sides
in the proposed problem, a plate is extracted in the form of a
regular polygon [13]. Therefore, Eqs. (7)-(8) and Eq. (19) are
linearized as Eqs. (26)-(28), respectively.

PDL b,k,τ,wcos (ω ×1δ)+ QDL b,k,τ,wsin (ω ×1δ)

≤ SupDL b,k ∀b, k, τ,w, ω (26)

PDS b,τ,wcos (ω ×1δ)+ QDS b,τ,wsin (ω ×1δ)
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≤ SupDS b ∀b = Slack bus,τ,w, ω (27)

PCVE i,τ,wcos (ω ×1δ)+ QCVE i,τ,wsin (ω ×1δ)

≤ SupCVE i ∀i, τ,w, ω (28)

In Eq. (18), the nonlinear expression is the resultant of the
active and reactive power of the CVE. Since the distribution
network generally has an ohmic-inductive load, the CVE is
expected to operate to control reactive power in capacitive
mode (reactive power generation). Hence, the phrase |QCVE|

will be QCVE. Yet, to linearize |PCEV|, the variable PCVE is
first divided into positive (P+

CVE) and negative (P
−

CVE) compo-
nents, which have positive values and contain the positive and
negative values of the PCVE variable, respectively. As a result,
PCVE is equal to the difference of P

+

CVE and P
−

CVE, and |PCEV|

equals the sum of the positive and negative components of
active power of CVE. Accordingly, Eq. (18) is linearized
as Eqs. (29)-(31), where Eq. (29) represents the linearized
model of Eq. (18). In Eq. (29), PCVE is expressed in terms
of positive and negative components. The limitations of these
components are also stated in Eqs. (30) and (31).

PLO i,τ,w = αi

(
P+

CVE i,τ,w + P−

CVE i,τ,w

)
+ βiQCVE i,τ,w

∀i, τ,w (29)

PCVE i,τ,w = P+

CVE i,τ,w − P−

CVE i,τ,w ∀i, τ,w (30)

0 ≤ P+

CVE i,τ,w ≤ SupCVE i ∀i, τ,w (31)

0 ≤ P−

CVE i,τ,w ≤ SupCVE i ∀i, τ,w (32)

Finally, the linearized model of the suggested scheme can
be stated as Eqs. (33)-(34):

max F =

∑
i,τ,w

πwρE τ,w
(
PCVE i,τ,w + KQQCVE i,τ,w

)
(33)

subject to:

Eqs 6, 10 − 17, and 21 − 31 (34)

III. UNCERTAINTY MODELLING
Parameters of load, PL and QL ; renewable power, PPV and
QWT; energy price, ρE ; charge and discharge rates of EVs,
CR and DR; initial energy of EVs, E in; minimum and
maximum stored energy in EVs, E lo and Eup; are uncer-
tainty parameters. Thus, stochastic programming based on
the hybrid Monte Carlo Simulation (MCS) method and Kan-
torovich technique have been adopted to provide a modeling
of these parameters [14]. To this end, first, theMCS generates
many scenarios based on the normal PDF for power demand
and energy price [61], beta/Weibull PDFs for solar/wind type
RES [62], and Rayleigh PDF for EV parameters [63]. More-
over, the PDF of uncertainties specifies themean and standard
deviation. After that, the probability of each generated sce-
nario (π0) can be found by multiplying the probability of
uncertainties in this scenario. Next, the Kantorovich method
selects several scenarios that are more probable to happen.
In this case, the probability of scenario s obtained from

the Kantorovich method (πw) is equal to π0
w∑
w π

0
w

so that∑
w πw = 1. Ref. [14] provides more details about the

proposed approach.

IV. NUMERICAL RESULTS AND DISCUSION
A. CASE STUDY
The scheme suggested in this section is applied to the IEEE
69-bus radial SDN [13] as shown in Fig. 2. This network
has 1 MVA base power and 12.66 kV base voltage. The
allowable voltage range for non-critical (critical) loads is
[0.9 1.05] ([0.98 1.02]) per-unit (p.u.) [11]. The locations of
critical loads in this network are buses 30-32, 49, 8-9, and
41-44. Other buses have non-critical loads. Information about
distribution lines and substations along with peak load data
are available in [13]. The daily load profile can be obtained
by multiplying the peak load and the daily load factor curve
(Fig. 3) [1]. Energy prices for the three off-peak (1:00-7:00),
medium load (8:00-16:00 and 23:00-00:00), and peak
(17:00-22:00) periods is 16 $/MWh, 24 $/MWh, and
30 $/MWh, respectively [1]. KQ is assumed to be 8% based
on [6]. The network has renewable sources such as WTs and
PVs. WTs with a size of 0.5 MW are installed at buses 17 and
49, and PVs with a size of 0.5 MW are installed at buses
41 and 53. The daily profile of their active generating power
is equal to the product of their capacity and the daily curve of
their generating power rate (Fig. 3) [13]. In addition, there are
up to 7 flexible-renewable VPPs in the network, abbreviated
FRVPP. These FRVPPs contain renewable sources as well
as flexibility sources (storage and responsive loads). The
locations of FRVPPs are shown in Fig. 2. These FRVPPs are
connected to the network by ES and form a CVE. The loads
on the connecting buses of CVEs are assumed to be control-
lable, hence the ZIP load is used on these buses. In the ZIP
load model, the coefficients Z , I , and P have values of 0.3,
0.3, and 0.4, respectively [11]. Loss coefficients of ES, i.e.,
α and β, are 0.09 and 0.075, respectively [6]. Each ES also
has a capacity of 5 MVA. The active peak load per FRVPP
is 200 kW. Each FRVPP has WT, PV, batteries, EVs, and
responsive loads. The capacity ofWTs and PVs in FRVPPs 1,
2, 6, and 7 is equal to 0.3 MW, but in other FRVPPs, it is
equal to 0.5 MW. FRVPPs 1, 2, 6, and 7 each have up
to 150 EVs, but other FRVPPs each have up to 200 EVs.
The number of EVs per moment equals the multiplication
of the number of EVs per FRVPP and the daily EV pene-
tration rate curve (Fig. 3) [6]. Other characteristics of EVs
such as charge/discharge rate, charge/discharge efficiency,
battery size, initial energy, and minimum energy storage in
the battery are stated in [6] and [34]. Consumers at each
FRVPP participate in DRP at a rate of 50%. There is a battery
with a capacity of 1 MWh per FRVPP, where the minimum
energy stored in it and its initial energy are 10% of the battery
capacity. The charging and discharging rate of the battery
is 0.5 MW, and the charging and discharging efficiency is
92%. To achieve high flexibility in the network, the flexibility
tolerance is considered to 0.05 p.u. Also, in the stochastic
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TABLE 2. Convergence status of the scheme obtained by different solvers
in αF = 0.05 p.u.

optimization, MCS generates 1000 scenario samples, then,
the Kantorovich method selects 60 scenario samples from
generated scenarios.

B. RESULTS AND DISCUSSIONS
Here, we simulate the suggested approach in accordance with
the data of sub-section IV-A in the GMAS software [64].
For the linear model Eqs. (31)-(33), the circular plane is
approximated to a plane in the form of a regular 90-gon. Also,
in the conventional piecewise linearization technique, 5 linear
pieces are used.

noitemsep,nolistsep

• Evaluation of the convergence status of the proposed
scheme: Table 2 reports the convergence status of the
stochastic problem in two NLP Eqs. (1)-(19) and LAM
Eqs. (31)-(33) models for different solvers at flexibil-
ity tolerance of 0.05 p.u. In the NLP model, IPOPT,
CONOPT, DISOPT, and BARON solvers [64] are used
to solve the problem. Among these algorithms, DISOPT
is not able to achieve the optimal solution. Other algo-
rithms do not have a unique optimal solution so IPOPT
has a better situation than other solvers because it has
a more optimal point (maximum objective function or
F) and higher convergence speed (lower convergence
iteration (CI) and lower computational time (CT)) than
other algorithms. CPLEX, CONOPT, and BDMLP algo-
rithms are used to solve the linear problem [64]. These
algorithms succeed to reach a unique solution. The dif-
ference is in CI and CT, which makes CPLEX more
suitable because its convergence speed is the highest
(minimum CI and CT). Therefore, the CPLEX solver
has been employed to find a solution to the problem.
Concerning calculation time, the nonlinear IPOPT-based
model has a CT of 891.7 s. But in the CPLEX-based
linear model, it has been reduced to about 19.8 s. That
is, CT in the linear model is reduced by about 97.8%
compared to the nonlinearmodel. Therefore, the CPLEX
algorithm is in a good position compared to othermodels
and solvers, because it has a unique optimal solution
and considerably low computational time. Finally, the
computational error of the power and voltage variables
in the linear model compared to the main formulation
based on the nonlinear model is reported in Table 3 for
αF= 0.05 p.u. The computational error of active and
reactive power is about 2%, but it is about 0.3-0.45%
for voltage. Computational time in the linear method is

very low, which corresponds to the operation goals in
the operation problems, the computational errors in this
regard can be ignored.

• Evaluation of the performance of VPPs in CVEs: Fig. 4
illustrates he predicted daily curve of the total active
power of VPPs and its devices for αF= 0.05 p.u. as is
observed in Fig. 4(a), the daily active power curve of
WTs and PVs is the same as the daily power rate curve
of their output in Fig. 3. The reason is that, according
to sub-section IV-A, the active power generation of a
renewable source equals themultiplication of its size and
the generation power of the mentioned source. Fig. 4(a)
depicts the daily curve of the active power of storage
devices, i.e., stationary (batteries) and mobile (EVs)
storage, and the responsive loads. As is seen, storage
and responsive loads operate generally at low energy
price hours (1:00-16:00 and 23:00-00:00) corresponding
to the off-peak and medium load intervals in the charge
mode or in the mode of receiving energy from VPPs.
However, at high energy price hours (17:00-22:00) cor-
responding to the peak load period, they operate in the
mode of discharging or injecting energy into the VPPs.
In Fig. 4(a), the EVs perform two charging operations.
Once to supply the energy they need to travel, which
has a high energy level and appears between 1:00-7:00
and 23:00-00:00. The other is when they are charged
from 12:00-16:00 until they inject the stored energy
of the EV batteries into the VPPs or SDNs during the
peak load period. This trend of performance of storage
devices and responsive loads aims to gain high finan-
cial profit in the energy market. For example, batteries
purchase 6.3 MWh (7 hours×0.9 MW according to
Fig. 4(a)) energy at 16 $/MWh during 1:00-7:00 from
SDN. Nonetheless, they sell the same amount of energy
to SDN during peak hours at 30 $/MWh. Therefore,
it is expected that the operation of these batteries will
increase the financial benefit of CVEs in the energy
market.
It is noteworthy that in the flexibility discussion, as given
in Eq. (10), the goal is for CVEs to minimize power
swings of renewable sources in the different scenarios
in comparison to the scenario related to the determin-
istic model. According to Fig. 4(a), since renewable
sources have active generation capacity at all hours,
it is expected that CVEs will operate at all hours for
flexibility. Hence, the flexibility sources in CVEs, such
as storage devices and responsive loads, are operating
at most hours. Fig. 4(b) depicts the daily active power
curve of VPPs, which depends on the performance of
renewables, storage devices, responsive loads, and pas-
sive load based on Eq. (11). Finally, using this figure,
it can be seen that VPPs are in energy consumptionmode
during off-peak periods, 1:00-7:00, because during these
hours, storage devices and responsive loads according
to Fig. 4(a) are in the charging mode. However, at other
hours, VPPs appear as power generators in the SDN.
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FIGURE 2. The 69-bus SDN in the presence of FRVPPs [13].

FIGURE 3. The daily curve of RESs power rate [13], load factor [1], and EVs
penetration rate.

TABLE 3. Calculation error of different variables in linear model
comparison to original non-linear model in αF = 0.05 p.u.

• Assessing the operation and economic status of CVEs
in SDN: Predicted daily curve of active and reactive
power of CVEs along with the CVEs’ profit in energy
and reactive power markets for αF= 0.05 p.u. are drawn
in Fig. 5.
The daily active power curve of the CVEs is shown
in Fig. 5(a), the trend of which is the same as that of
the active power of VPPs in Fig. 4(b). This is because,
according to Eq. (17), the active power of CVEs equals
the sum of the active power of VPPs and ES losses. Since
the coefficients α and β are less than 0.1 according to
sub-section IV-A, the effect of the active power of VPPs
is much greater than the effect of ES losses on the active
power of CVEs. Therefore, the curve of variations in
active power of CVEs will be close to that of the active
power of VPPs. Fig. 5(a) shows the daily reactive power
curve of CVEs. According to this figure, the maximum
reactive power of CVEs injected into SDN appeared
during 1:00-7:00 because VPPs are in consumer mode
at this time and receive significant active power from
SDN. Therefore, to prevent high voltage drop, CVEs

provide high reactive power into SDN during these
hours. At other times, CVEs inject high active power
into the SDN as shown in Fig. 5(a). Therefore, to prevent
overvoltage in the SDN, CVEs inject low reactive power
into the SDN during these hours. However, in these
intervals, the increase in reactive power of CVEs in
the peak load interval is due to the increase in load
in this interval based on the daily load factor curve in
Fig. 3. The daily profit curve of CVEs in the energy
and ancillary services (or reactive power) markets is
plotted in Fig. 5(b), the trend of changes of which is
very similar to that of the active power of CVEs. This
is due to the very low reactive power price compared to
the energy price based on sub-section IV-A. Therefore,
this issue has made an impact on the energy market on
the profits of CVEs more than on the ancillary services
market. The benefit of CVEs and the cost of modeling
uncertainty for the deterministic and stochastic models
of the proposed plan are presented in Table 4. There is
only one scenario in the deterministic model that con-
tains the expected values of the uncertainty parameters.
The cost of modeling uncertainty equals the difference
between the objective function (Eq. (1)) (profit of CVEs)
in deterministic and stochastic models. Due to the inclu-
sion of expected uncertainty values in the scenario of the
deterministic model, it is impossible to evaluate the flex-
ibility of the proposed design. In contrast, the quantity
of the objective function for various values of flexibility
tolerance is reported in Table 4 for the stochastic model.
According to this table, the increase in flexibility toler-
ance (corresponding to the decrease in the importance
of flexibility based on Eq. (10)) results in a rise in the
profit of CVEs because, in order to increase flexibility
based on Fig. 4(a), the flexibility resources must be
active at all times and compensate the power fluctuations
of RESs in various scenarios. However, if the value
of flexibility decreases, the flexibility resources can be
switched off in some hours. For instance, if flexibility
is not incorporated into the proposed plan (αF −→ ∞),
flexible sources such as storages will only charge (dis-
charge) during times when energy prices are low (high).
Consequently, they are off duringmid-peak hours and do
not incur any costs for CVEs during this time. Therefore,
the value of CVEs increases as the value of flexibility
decreases. Moreover, according to Table 4, uncertainty
modeling in stochastic optimization as compared to the
deterministic model reduces the profit of CVEs. The
difference between this profit in two deterministic and
stochastic models is considered the cost of modeling
uncertainties. In the deterministic model, the benefit of
CVEs does not depend on flexibility and has a fixed
value. However, in the stochasticmodel, as the flexibility
tolerance increases, so does the benefit of CVEs, which
corresponds to a decrease in the cost of uncertainty mod-
eling. However, under the condition of total flexibility,
or 100% (αF = 0), the cost of modeling uncertainties
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FIGURE 4. Expected daily active power curve of, a) RESs, storages and DRPs, b) VPPs in the αF = 0.05 p.u.

FIGURE 5. Expected daily curve of, a) active and reactive power, b) profit of CVEs at αF = 0.05 p.u.

TABLE 4. Values of economic indicators for different uncertainty
modeling and values of flexibility tolerance.

is approximately 19.6% (199.3/1019.3). However, this
quantity decreases as the value of flexibility declines.

• Assessment of SDN operation status: Table 4 reports the
values of operation indicators including energy losses
(EL), maximum voltage drop (MVD), and maximum
overvoltage (MOV) in buses without/with critical loads
for different flexibility tolerance for two cases:
noitemsep,nolistsep

– Case study 1 (CS1): Power flow studies
– Case study 2 (CS2): Proposed scheme

Table 4 shows that the network without CVEs (CS1) has
high energy loss and voltage drop. Also, in buses with critical
load, the voltage drop exceeds its permissible limit of 0.02
(1-0.98). Hence, critical loads will be off with high prob-
ability in these conditions. However, in this case study,
overvoltage is zero because there is no power source in the
network to establish a situation with overvoltage by injecting
its power into the network. In the proposed scheme (CS2),
the status of energy loss and voltage drop becomes better
compared to that of CS1. In other words, in the case of 100%
flexibility (αF= 0), energy loss in the SDN reduces about

16.3% (2.299−1.925)
2.299 by optimal energy management of CVEs

compared withCS1 as shown in Fig. 5. Moreover, inCS2 for

TABLE 5. Values of operation indicators for different cases and values of
flexibility tolerance.

αF= 0, the maximum voltage drop in buses without critical
load decreases roughly 46.7% compared to CS1. This index
has 0.02 p.u. increase in buses with critical load, which is
about 97.7% improvement compared withCS1. This happens
for maximum overvoltage of 0.007, but its value is less than
its allowed value of 0.05 (1.05-1) p.u. In addition, based
on Table 4, with decreasing the importance of flexibility in
the SDN (a reduction in αF ), the amount of improvement in
operation indices increases. This is due to the performance of
power sources, storage, and responsive loads in accordance
with the operation status enhancement. For example, in the
absence of flexibility, the storage and responsive loads will
be in the charging mode during the period with inexpensive
energy price, i.e. 1:00-7:00. In these conditions, based on
Eq. (1), more profit will be earned for CVEs and energy loss
and voltage drop decreases.

V. CONCLUSION
This paper presents the operation problem of an SDN in the
presence of CVE systems. CVEs participate in energy and
reactive power markets, in which VPP is in an aggregating
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format for power sources, storage devices, and responsive
loads. The model of the suggested design is responsible for
maximizing the profit of CVEs in the energy and reactive
power markets by observing the AC-OPF constraints and
flexibility limit of SDN and the operation model of CVEs.
Then, a linear approximation model was derived for this
scheme, and stochastic optimization was adopted to model
the uncertainties of load, energy prices, renewable power,
and energy consumption of mobile storage devices. Finally,
numerical results showed that the linear algorithm can extract
a unique optimal solution for the scheme. The computational
time of CPLEX is much lower than that of the nonlinear
model of the proposed scheme, and the computational error of
2% and 0.4% for power and voltage in this algorithm, respec-
tively, compared to the original nonlinear model of the pro-
posed scheme can be ignored with respect to computational
time. Then, with the optimal operation of power sources,
responsive loads, and storage in the form of VPP, CVEs
were consumers (producers) of energy in off-peak (medium
and peak) load periods. CVEs generated high reactive power
during the off-peak period compared to other hours to prevent
voltage drop due to the energy consumption of CVEs during
this interval. Ultimately, this performance of CVEs has led
them to receive financial benefits in most of the operating
hours of these markets. In the 100% flexibility condition,
the suggested approach was able to reduce energy losses
and maximum voltage drop in buses with non-critical load
by about 16.3% and 46.7%, respectively in comparison with
power flow studies. It also increased the maximum voltage
drop across buses with critical load to the permissible value of
0.02 p.u., whereas in power flow studies it had a value greater
than 0.02 p.u. Also, modeling of the uncertainties leads to
a reduction of 19.6% in the CVEs profit in the mentioned
markers compared to the proposed deterministic model. In
the proposed plan, the scenario-based stochastic optimization
is used to model the uncertainties. This method requires a
significant number of scenarios to reach a reliable solution,
which leads to an increase in the volume of the problem.
Nonetheless, in operation problems, due to the low execution
step, low computing time is of particular importance, which
may not be achieved in stochastic optimization. To compen-
sate for this issue, the use of robust optimization can be
effective, which is suggested as a future work. Also, the risk
caused by uncertainties is not included in the proposed plan.
Therefore, the suggested scheme based on the risk model is
considered as a future study.
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