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ABSTRACT Internet explosion and penetration have amplified the fake news problem that existed even
before Internet penetration. This becomes more of a concern, if the news is health-related. To address
this issue, this research proposes Content Based Models (CBM) and Feature Based Models (FBM). The
difference between the two models lies in the input provided. The CBM only takes news content as the
input, whereas the FBM along with the content also takes two readability features as the input. Under each
category, the performance of five traditional machine learning techniques: - Decision Tree, Random Forest,
Support Vector Machine, AdaBoost-Decision Tree and AdaBoost-Random Forest is compared with two
hybrid Deep Learning approaches, namely CNN-LSTM and CNN-BiLSTM. The Fake News Healthcare
dataset comprising 9581 articles was utilized for the study. Easy Data Augmentation technique is used to
balance this highly imbalanced dataset. The experimental results demonstrate that Feature Based Models
perform better than Content Based Models. Among the proposed FBM, the Hybrid CNN - LSTM model
had a F1 score of 97.09% and AdaBoost-Random Forest had a F1 Score of 98.9%. Thus, Adaboost-Random
Forest under FBM is the best-performing model for the classification of fake news.

INDEX TERMS Fake news, healthcare, classification, deep learning, machine learning, readability features.

I. INTRODUCTION
The Internet has revolutionized the way we access and
share information. Although the Internet has brought sig-
nificant benefits, it has also enabled the rapid spread of
misinformation and fake news. The term fake news has
become an increasingly buzzword in this era. It is nothing
but manipulated information that is incorrect and that cannot
be verified. It is ‘‘news that is intentionally and verifiable
false’’ [1] and is spread with the intention of misleading
users. The fake news is not something new. The ‘‘Great Moon
Hoax’’ was one of the historical examples of a series of
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articles published in the NewYork Sun about the discovery of
life on themoonway back in 1835 [2]. However, high internet
penetration has led to widespread information dissemination
from diverse sources such as online newspapers, blogs, social
media, magazines, and various forums, making it difficult to
identify the reliability of published news [3]. For instance,
the 2016 U.S. presidential elections created a buzz around
fake news [4]. According to Ipsos survey conducted by the
Center of International Governance Innovation (CIGI) in
over 25 countries, 86% of users admitted that they had been
exposed to fake news, and they initially believed that the news
was true [5]. In a survey by Microsoft, 60% of Indians have
seen fake news online, compared to the global average of
57% [6]. The political domain has maximum instances of
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fake news, but the spread has now widened to various other
domains. For instance, news of the Australian wildfire that
spread in January 2020 created a lot of misinformation about
the event [7]. The COVID-19 pandemic added fuel to the
fire of spreading fake news regarding the origin and spread
of the virus to remedies and cures. Medical professionals
found it very difficult to manage the spread of fake news
while handling the virus. World Health Organisation (WHO)
warned of a ‘infodemic’ along with the global pandemic as
lots of false information was getting circulated about the
cause, spread, treatment and prevention of the virus [8].
For instance, a US citizen who heard that chloroquine
could potentially treat COVID passed away after consuming
medicine [9]. The spread is not only for a newly found
virus or bacteria, but also for existing diseases such as
cause and cure of cancer, autism, dementia, and urological
conditions [9], [10], [11], [12], [13]. With very high Internet
penetration, over 70% of adults use the Internet to search for
healthcare-related information that might not always result in
correct information.

The impact of fake news in the health sector can lead
to more negative impacts than in other domains, as it
involves human life. The spread of fake news can lead to
negative outcomes, such as decreased trust in healthcare
providers, harm to patients, and increased healthcare costs.
A comprehensive review discovered that inaccurate and
misleading health-related content causes people to experience
mental, social, political, and/or economic hardship. For
instance, a single piece of fake news related to medicine
resulted in at least 800 fatalities and 5,800 hospital
admissions [14].
Thus, this study focuses on identifying fake news in the

healthcare domain. To address this, two categories of models,
Content Based Models (CBM) and Feature Based Models
(FBM), have been proposed. CBM uses the textual content of
the articles as the input, whereas FBM, along with content,
considers two readability features for model building. For
each category, the performance of various machine learning
models was compared with the two proposed hybrid Deep
Learning models (CNN-LSTM and CNN-BiLSTM) for
better accuracy.

The remainder of this paper is organized as fol-
lows. Section II comprises literature review, followed by
the methodology in Section III. Section IV constitutes
Model Building, followed by Model Evaluation Metrics
in Section V. Results and Discussions are presented in
Section VI, followed by Analysis of the Models Built in
Section VII. Conclusion is presented in Section VIII.

II. BACKGROUND STUDY
Politics, Tourism andMarketing are the threemost researched
whereas health care is the least researched domains for fake
news classification [15]. As the significance of identifying
fake news in healthcare is more significant than any other
domain due to its impact, this research focuses on this domain
and presents the literature for the same.

Based on methodology used, research in this domain can
be categorized as using either traditional machine learning or
Deep Learning approaches for fake news classification.

A HealthLies dataset consisting of facts and fake infor-
mation on various diseases such as cancer, Covid, Zika
virus, Ebola, and AIDS was built, and the performance of
various machine learning models was compared with the
BERT Model. The results indicated that BERT outperformed
all other traditional models [16]. A classifier to detect
fake news for autism was built using a Random Forest
Classifier with F1 score of 85% [17]. The performance of
traditional machine learning algorithms such as Naive Bayes,
Nearest Neighbor, Random Forest, Logistics Regression,
Adaboost, Neural Network was compared with four Deep
Learning approaches: - CNN, RNN, GRU, and RNN.
The results show that deep learning algorithms perform
better than traditional machine learning algorithms for the
COVID 19 dataset [18]. Cross-SEAN, an approach for
fake news detection and semi-supervised models for text
classification that learns from significant external facts and
partially generalizes to newly emerging false news, was
proposed and compared with seven cutting-edge techniques.
The results showed that it performed 9% better than the
best baseline with a 0.95 F1 Score on CTF, a large-scale
COVID-19 Twitter dataset [19]. In [20], the performance of
traditional machine learning algorithms, such as Multinomial
Naïve Bayes, Support Vector Machine, Logistic Regression
and Random Forest, considering topical, structural, and
semantic patterns was compared to identify fake news. Both
traditional and Deep Learning methods were compared for
the Covid-19 dataset to identify fake news. The results
showed that Deep learning-based models are better able to
detect fake news [21]. A classifier using Random Forest
to identify fake news for COVID-19, after incorporating
linguistic and sentiment features, was built [22]. A Random
tree-based classifier was built to identify ZIKA Virus
related fake tweets using feature selection with a F1 score
of 94.5% [23].

Relatively more work has been done in other domains
compared to the healthcare domain. For example, in [24],
researchers proposed a two-phase approach calledWELFake,
which uses word embedding over linguistic variables to iden-
tify false news using supervised machine learning models.
In the first stage, linguistic features were applied to check
the authenticity of news content. In the second stage, voting
classification was performed when linguistic feature sets
were combined with word embedding. The WELFake model
achieved an accuracy of 96.73%, which was higher than the
maximum accuracies of the CNN and BERT models, which
were 92.48% and 93.79%, respectively, for articles related to
the political domain. The performance of traditional machine
learning models (Binomial Linear Regression, Naïve Bayes
Classifier) was compared with Deep Learning models (CNN,
LSTM) and an accuracy and F1 score of approximately 94%
and 98% respectively was obtained with a Deep Learning
Model [25]. A comprehensive survey of the existing fake
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news identification techniques, along with a comparison of
traditional techniques (Naïve Bayes and Random Forest) with
Deep Learning based methods, like Passive Aggressive and
LSTM was conducted. The results of this study show that
LSTM has the highest accuracy of 92% [26]. A Content
Based transfer learning approach to detect fake news was
proposed and achieved an accuracy of 92% [27]. Very limited
work has been conducted on building hybrid models. For
instance, LSTM and CNN were used together to propose a
hybrid model for identifying fake news [28], [29].
As observed, few studies using limited techniques have

been conducted in the healthcare domain for fake news
identification, althoughmoremodels have been built for other
domains. Hence, this research bridges this gap by building
a fake news classifier specifically for the healthcare domain
with high accuracy.

III. METHODOLOGY
The proposed research methodology presented in Fig 1
consists of building Content Based and proposed Feature
Based models using machine learning and Deep Learning
techniques. In the first case, only the content (i.e., fake news)
is used to build the models, whereas, for the Feature Based
models, additional readability features are provided as input
along with the content to build models and their performance
is compared.

A. DATA COLLECTION
There are numerous open datasets available for the study
of fake news in the political domain, but datasets in the
healthcare domain are exceedingly infrequent and small.
One prominent publicly available dataset is the HealthLIES
dataset that contains 12,267 sentences, which are labelled
as either true or false based on whether they contain
factual health information or misinformation, respectively.
The HealthLIES dataset was created by collecting sentences
from various online sources, including social media, news
articles, and health-related websites [30]. In addition, there
is a compiled dataset focusing on fake news in the
healthcare industry, named the Fake News Healthcare (FNH)
dataset [31]. This dataset comprises 9581 labelled news
articles, with 1816 classified as fake and 7765 as genuine. The
dataset also includes additional information such as the URL,
article title, and article length. The fake and genuine news
samples in the FNH dataset were collected from credible
websites such as CNN, BBC News, and The Atlantic for
genuine news samples, whereas sources like theonion.com
and PolitiFact were utilized for fake news samples. The FNH
dataset was selected for this research because of the addi-
tional information available that will be utilized for model
building.

B. DATA AUGMENTATION
The FNH is a highly imbalanced dataset with two classes:
True and Fake. True news accounted for 76.4% of the
data, whereas fake news was 23.6%. When comparing the

number of documents that contain real news to those that
include fake news, the ratio of imbalance for the FNH
dataset was 4:1. This type of imbalance in the dataset affects
the accuracy of the results and is not feasible for building
accurate models. Hence, data augmentation techniques are
required to overcome this problem by randomly duplicating
samples from the minority class to provide a balanced
and effective dataset. Data augmentation is performed to
balance the dataset by generating synthetic data from the
available data [32]. This is a popular technique in the
computer vision domain; however, it becomes more difficult
in Natural Language Processing (NLP) because it involves
understanding the grammatical structure of the text [33].
The Easy Data Augmentation (EDA) technique is one of
the most widely used augmentation methods for textual
data [34]. In this technique, ’’n’ words, other than stop
words, are selected from the sentence and replaced with their
random synonyms using WordNet. EDA was deployed for
data augmentation in this research. After augmentation, the
final dataset consisted of 7625 fake articles and 7765 genuine
articles.

C. DATA PRE-PROCESSING
After balancing the dataset, the next step was to obtain a
valid set of tokens for each article. This was achieved by
removing the numbers and special characters. Stop words and
punctuation marks are not removed, as they provide more
context to the text while incorporating word embedding for
feature extraction. Finally, lemmatization was performed to
obtain the root words. This preprocessing resulted in a list of
valid tokens.

D. FEATURE EXTRACTION
Term Frequency- Inverse Document Frequency (tf-idf) and
GloVe Word Embeddings are used for feature extraction
in traditional machine learning and deep learning mod-
els, respectively. Readability features were extracted for
FBM.

1) TF-IDF
It is a widely used measure to create document vectors. This
vector converts words into numbers based on the importance
of a term within and across documents with respect to the
available corpus [35].

2) WORD EMBEDDING
The valid tokens obtained after preprocessing must be
converted into number vectors using word embedding.Words
that have the same context and meaning will be close to
each other, as word embedding takes into consideration
the semantic and syntactic information of the word [36].
In this study, GloVe (Global Vectors), a very popular
pre-trained word embedding technique, was used to obtain
the matrix [37]. It was trained using a dataset of six billion
words with a vocabulary of 400 thousand words.
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FIGURE 1. Proposed methodology.

3) READABILITY FEATURES
Fake news in healthcare can be particularly dangerous as it
can mislead people to make decisions that can have negative
consequences on their health. By using readability metrics,
such as Simple Measure of Gobbledygook (SMOG) score
and Type-Token Ratio (TTR), we can assess the readability of
healthcare-related content and identify potentially fake news
articles that are difficult to comprehend or contain a high
proportion of rare or unique words [38].

SMOG and TTR are particularly important in the
healthcare domain because of the specialized language
and terminology used in the medical literature. Medical

terminology can be complex and difficult for common man
to understand, making it easier for fake news to spread
and mislead people. Hence, these features can help identify
articles that are intentionally obfuscating information or
using jargon to appear authoritative while making it difficult
for readers to understand the information, primarily during
patient care.

a: SMOG SCORE
SMOG is a readability index that measures the complexity of
a piece of text by analyzing the number of polysyllabic words.
A polysyllabic word contains two or more syllables.
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Algorithm to calculate SMOG Score:
Step 1: From the news, three samples of ten-word sentences

were chosen.
Step 2: Count the number of polysyllables in the sentences

(words with three or more syllables).
Step 3: Determine the grade using the formula -

grade

=1.0430

√
number of polysyllabels x

30
Number of sentences

+ 3.1291 (1)

where: polysyllable count = The number of words of more
than two syllables in a sample of 30 sentences.

b: TYPE TOKEN RATIO
The Type-Token Ratio (TTR) is a valuable metric used
to determine the level of complexity of a document by
assessing its lexical diversity. It calculates the ratio of the
number of unique words (types) to the total number of words
(tokens) in a particular language segment. TTR ratio closer
to 1 indicates that the segment has a higher degree of lexical
richness.

TTR =
numberoftypes
numberoftokens

× 100 (2)

Both SMOG and TTR scores are provided along with both
the Tf-idf vector and the vector obtained after applying GloVe
to build the FBM.

IV. MODEL BUILDING
This section proposes building classifier models under
two categories: Content Based Models and Feature Based
Models, as depicted in Fig 1. For both categories, the
performance of traditional machine learning algorithms is
compared with the proposed Deep Learning Algorithms to
identify the best classifier for fake news identification.

A. TRADITIONAL MACHINE LEARNING MODELS
Decision Tree, Random Forest, Support Vector Machine,
AdaBoost Decision tree, and AdaBoost Random Forest
models were built to analyze the performance of both the
CBM and FBM categories.

1) DECISION TREE
A decision tree is a modelling technique that employs a
hierarchical tree structure to develop regression or clas-
sification models. It recursively partitions a dataset into
progressively smaller subsets while constructing a decision
tree. The final tree includes the decision and leaf nodes,
where each leaf node corresponds to a classification or
decision. The root node sits at the top of the decision
tree, and represents the best predictor. When dividing data
using entropy, the process is known as ‘‘Information Gain.’’
Decision trees can process both numerical and categorical
data and are non-parametric, enabling them to handle

large and complex datasets effectively without imposing a
complicated parametric framework.

Gain(T,X) = Entropy (T) − Entropy (T,X) (3)

where, T = target variable
X = Feature to be split on
Entropy (T, X) = Entropy calculated after the data is split

on feature X.

2) RANDOM FOREST
Random Forest is a supervised learning technique that
constructs an ensemble of decision trees using the ‘‘bagging’’
approach. This method combines multiple learning models
to improve the overall output. Using replacement when
sampling the data, approximately one-third of the samples
are used to test the model, known as out-of-bag samples.
The impurity of the dataset can be assessed using the Gini
index, with the root node selected as the feature. Scikit-learn
computes the Gini Importance of each node for each decision
tree, assuming that the tree is binary, with only two child
nodes.

3) SUPPORT VECTOR MACHINE
A Support Vector Machine (SVM) is a classification tech-
nique that seeks to identify a hyperplane in an N-dimensional
space that separates the data points into distinct categories.
The size is determined by the number of features, and
the objective is to establish an optimal decision boundary
or line for accurate classification of new data points. The
optimal decision boundary is referred to as the ‘‘hyperplane.’’
In situations where there are numerous features, such as in
text classification tasks, the linear kernel is highly effective.
The linear kernel functions are faster than most of the other
kernel functions. This equation defines the decision boundary
of the SVM.

f (x) = wTX + b (4)

where, w is the weight vector that must be, X is the data that
must be classified and b is the linear coefficient estimated
from the training data.

4) ADABOOST ALGORITHM
AdaBoost is an ensemble learning technique that enhances
the accuracy of classifiers by combining multiple classifiers.
AdaBoost classifier constructs a strong and robust classifier
by amalgamating several weak classifiers, resulting in a
highly accurate and reliable classifier. The primary principle
of AdaBoost is to set classifier weights and train the data
samples in each iteration to enable accurate predictions for
uncommon observations. Any machine learning approach
that accepts training set weights can serve as a fundamental
classifier in AdaBoost.

H (x) = sign
(∑T

t=1
atht (x)

)
(5)
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FIGURE 2. CNN-LSTM model.

FIGURE 3. Hybrid CNN-BiLSTM model.

AdaBoost is subject to two essential requirements. First,
the classifier must be trained interactively on various
weighted training instances. Second, it aims to achieve
an excellent fit for these instances in each iteration by
minimizing training errors. It can be used either withDecision
Tree or Random Forest. Both are ensemble learning models.

B. DEEP LEARNING MODELS
In this category, two deep learning-based models, Hybrid
CNN-LSTM and Hybrid CNN-BiLSTM, are proposed to
build a fake news classifier.

1) CNN-LSTM MODEL
Ahybridmodel comprising both CNN and LSTM is proposed
in this study, as depicted in Fig 2. The first layer is the
embedding layer, followed by a one-dimensional CNN layer
(Conv1D). This layer is used to extract local features using
64 filters with a kernel size of 5 using the ReLU activation
function. This results in large feature vectors, which become
the input to the MaxPooling 1D layer with a window size
of four. This enables the dimension reduction of the feature
vectors. The pooled feature maps are input into two LSTM
layers that output long-term dependent features of the input
feature maps while preserving the memory. Each LSTM
layer comprises 20 neurons with an output dimension of
20, utilizing a linear activation function. The trained feature
vectors are eventually classified using a dense layer that
maps the output space dimension to one, indicating the
classification label (fake or not fake) using the sigmoid
activation function. The model is trained using the Adam
optimizer with a learning rate of 0.01 and cross entropy as
the loss function.

2) HYBRID CNN-BILSTM MODEL
The architecture of the model is the same as that of the hybrid
CNN-LSTM model. The only change incorporated is the
usage of the Bi-directional LSTM layer instead of the LSTM
layers, as depicted in Fig 3. It has several layers, starting
from the word-embedding layer to the CNN layer, followed
by the max pooling layer, the Bi-directional LSTM layer, and
the dense layer to obtain the classification. In bi-directional
LSTM, the input flows in both directions, having information
about both the past and present. Therefore, it can produce a
more meaningful output.

V. MODEL EVALUATION METRICS
The model performance was evaluated using four met-
rics, namely: Accuracy, Precision, Recall and F1 Score,
as shown in Table 1. To evaluate the model, four estimation
parameters-True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) were used. A true
positive outcome occurs when the model correctly predicts
the positive class, whereas a true negative result occurs when
the model accurately describes the negative class. On the
other hand, a false positive result occurs when the model
inaccurately estimates the positive class, whereas a false
negative outcome occurs when the model incorrectly predicts
the negative class.

VI. RESULTS AND DISCUSSIONS
CBM and FBM utilizes Machine Learning and Deep
Learning approaches are executed in the Google Colab
environment owing to the availability of GPU for heavy
computation. The code was written in Python using
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TABLE 1. Model evaluation metrics.

FIGURE 4. Comparing the performance of traditional machine learning models under content based models.

Keras, pandas, Numpy, Scikit-learn, and Matplotlib pack-
ages. For the Deep learning models, GloVe word embed-
ding with 100 dimensions was utilized. A sequential
model consisting of several layers of neurons available
in Keras was used to build the Deep Learning based
models.

A. MACHINE LEARNING MODELS
The results of five machine learning algorithms, Decision
Tree, Random Forest, Support Vector Machine, AdaBoost-
Decision Tree (DT), and AdaBoost- Random Forest (RF)
under CBM were implemented to check their performance
in classifying fake news. The results are shown in Fig 4. The
performances of all five machine learning algorithms were
compared under FBM. Here, the readability features are also

taken as input along with the content, and the results are
presented in Fig 5.

B. DEEP LEARNING MODELS
The performances of CNN-LSTM and CNN-BiLSTM were
analyzed for both the CBM and proposed FBM. For the
FBM,the GloVe Embedding technique is applied to the
contents along with SMOG score and TTR to generate the
input vectors.

Hyperparameter tuning was performed for both cate-
gories of the models by evaluating the performance of
CNN-LSTM and CNN-BiLSTM algorithms for different
activation functions including ReLU, tanh, Sigmoid, and
Softmax for various training-test splits (80:20, 90:10, 70:30).
To determine the most relevant activation function, the data
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FIGURE 5. Comparing the performance of traditional machine learning models under feature based category.

TABLE 2. Hyper-parameter tuning: Results of different activation functions for different models.

TABLE 3. Hyper parameter tuning: results of various train-test split ratio with ReLU as activation function.

was split in 80-20% (training-test ratio), and the results are
presented in Table 2. It is evident that for the four models in
both the Content Based and Feature Based categories, the F1-
score with ReLU as an activation function was better than the
other activation functions.

Therefore, ReLU was selected as the activation function
for further experiments. Considering ReLU as the activation
function, the performances of all the models were tested
with different training-test split ratios (80-20, 90-10, 70-30).
As observed, in Table 3, the 80-20 split gave the highest
F1-score for all models under both categories. Finally, CBM
and FBM were built with ReLU as an activation function
with an 80-20% training-test split with a batch size of 200.
The models were trained using the Adam optimizer with a
learning rate of 0.01 using cross entropy as the loss function.

The performance of CNN-LSTM and CNN-BiLSTM for
both CBM and FBM are compared and presented in Fig 6
and Fig 7, respectively.

VII. ANALYSIS OF THE MODELS BUILT
The F1 score is a useful metric that considers both Precision
and Recall, providing an overall measure of the model’s
performance. It considers model’s accuracy in predicting true
positives and its ability to identify actual positives, which are
both critical factors in detecting fake news. Thus, for each
category, the model with the highest F1 score was considered
the best. In each category, the best-performing model was
identified, and its performance is depicted in the graph
presented in Fig 8. The experimental results demonstrate that
Feature BasedModels perform better than traditional models.
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FIGURE 6. Comparing the performance of proposed deep learning models under content based category.

FIGURE 7. Comparing the performance of proposed deep learning models under feature based category.

FIGURE 8. Comparing the best performing models of each category.
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As observed, AdaBoost-RF outperformed all other Content
and Feature Based Models. AdaBoost-RF had the highest
F1 score when considering both categories. AdaBoost-RF
has a F1 score of 98.5% in CBM, whereas Feature Based
AdaBoost-RF has F1 score of 98.9%. Therefore, the proposed
AdaBoost -Random Forest in the FBM category is the
preferred model for classifying fake news.

VIII. CONCLUSION
Fake news is becoming a common phenomenon, and it
is crucial to identify it, to curb the spread. The research
proposed comparing various models under Content Based
and Feature Based Model categories to identify the best
performingmodel. The results reveal that Adaboost-RF under
FBM is the best performing model even in comparison with
Deep Learning Models. This is in line with Occam’s Razor,
where simple models are considered better than complex
models because of the trade-offs among model simplicity,
resource usage, and execution time [39].
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