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ABSTRACT Hyperspectral images (HSIs) have higher spectral resolution than RGB images and are used
in various tasks. However, HSIs are prone to degradation due to noise generated during imaging, making it
difficult to obtain non-degraded images. Additionally, supervised learning, which relies on pairs of degraded
and non-degraded images, is often challenging to apply to HSI restoration because of the high cost of
imaging and the need to prepare large amounts of data. To overcome these limitations, recent advances
in self-supervised learning have led to the development of learning-based image restoration methods that
do not require non-degraded images. However, these methods have limitations, including low accuracy
and the need to estimate the noise distribution. In this paper, we propose a zero-shot HSI deep denoising
method based on self-supervised image restoration. The proposed method achieves zero-shot recovery by
repeatedly predicting blind-spots in 3D blocks during the learning process. Notably, our method does not
require training or clean images, nor does it rely on noise distribution information. Numerical experiments
and ablation studies confirmed that the restoration accuracy of the proposed method is comparable to or
better than that of conventional zero-shot methods.

INDEX TERMS Hyperspectral image, denoising, zero-shot learning, self-supervised learning.

I. INTRODUCTION
Hyperspectral images (HSIs) are used for various tasks
including remote sensing [1], [2], [3], [4], computer vision
[5], [6], and medical diagnosis [7], [8]. However, noise degra-
dation often occurs during HSI capture, making denoising
essential for practical application in these tasks.

Image restoration methods can be broadly classified into
optimization-based and model-based approaches. Owing to
the challenges involved in obtaining non-degraded HSIs and
the high cost of imaging, it is often difficult to create training
datasets that include pairs of degraded and non-degraded
HSIs, which are required for general image restoration using
supervised learning. Therefore, model-based methods that
use prior information as a regularization term, or patch-based
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methods that use self-similarity, are often used instead of
learning-based methods [9], [10].
Recent advancements in self-supervised learning have led

to the development of several self-supervised RGB image
restoration methods [11], [12], [13]. These methods rely
solely on degraded training images and do not require non-
degraded RGB images, as they learn from the degraded
images during training. For example, Deep Image Prior [11]
restores images by learning a transformation from randomly
sampled noise to a single observed degraded image. This
method exploits the CNN’s bias to preferentially learn smooth
components to obtain a restored image by stopping the train-
ing early before restoring the noise. However, determining the
timing of the early stopping as a hyperparameter in advance
is not an easy task.

Noise2Void [12] addresses the limitation of Deep Image
Prior, which requires the early stopping timing to be deter-
mined in advance. This method uses a blind-spot strategy
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in which some pixel values are missing and the missing
pixel values are predicted from the surrounding pixel values.
This method employs a blind-spot strategy in which ran-
domly selected pixel values are replaced with the surrounding
pixel values, and the missing pixel values are predicted to
restore the original image. This approach learns from a large
dataset of degraded images to obtain an image restoration
model. The recently proposed RGB image restorationmethod
Blind2Unblind [13] is based on a blind-spot strategy. The
method learns from the output obtained by this strategy,
which causes the pixel values to be missing along specific
patterns, and the output is obtained by inputting the degraded
image into the model. Similar to Noise2Void, this method
learns from a large dataset of degraded images. Although
there are many conventional self-supervised learning meth-
ods for RGB images, these are difficult to be applied to HSIs.
This is because the spectral resolution of HSI cameras varies
based on sensor characteristics, and it is prohibitively costly
to prepare a substantial number of degraded HSIs withmatch-
ing spectral conditions. In addition, the direct extensions of
zero-shot or few-shot RGB image restoration methods do not
take into account spectral information specific to HSIs well,
resulting in poor performance.

To address this problem, several zero-shot HSI restoration
methods have been proposed that learn only from an observed
degraded HSI. Examples include Deep HS Prior [14], which
is an extension of Deep Image Prior that can be applied to
HSI, and a method proposed by Imamura [15] et al., which
takes as input a further degraded form of an original degraded
HSI and learns using the original degraded HSI as the target
data. However, thesemethods require early stopping and prior
information on the degradation process, respectively. Deep
HS Prior has a similar learning strategy to Deep Image Prior
and requires early stopping. The method of Imamura et al.
has a drawback in that the performance improvement of the
model is contingent upon the specific degradation process
employed during the learning phase. If the degradation pro-
cess applied to the non-degraded HSI differs significantly
from the degradation process used during the training phase,
it becomes hard to achieve satisfactory restoration perfor-
mance. In addition to these methods, several approaches
combining model-driven and data-driven methods have been
proposed for HSI restoration [16], [17], [18], [19].
This paper presents a deep-learning-based approach

for zero-shot HSI denoising, which is useful when few
well-conditioned degraded HSIs are available, and non-
degraded HSIs are unavailable. The conventional methods
have the limitations, such as the need for early stopping in
Deep HS Prior and the reliance on the specific degradation
process employed in Imamura et al.’s approach. The pro-
posed method overcomes these limitations by introducing a
blind-spot strategy using a 3D patterned mask with randomly
varying combinations of blind pixels. Our method has an
advantage in that it does not require any training or clean
images, nor does it require noise distribution information. The
blind-spot strategy bypasses learning identity mapping and

remains independent from information about the degradation
process. The use of 3D patterned masks enhances restoration
accuracy by incorporating information from both the spatial
and spectral directions. Randomizing blind pixel combina-
tions improves generalization performance by augmenting
the training data. We demonstrate that our method achieves
higher restoration accuracy than conventional methods for
certain noise types and effectively suppresses the overfitting
during zero-shot training.

II. SELF-SUPERVISED IMAGE RESTORATION
A. PROBLEM SETTING
The image degradation process due to noise is generally
expressed as follows:

y = x + n. (1)

Here, x is a non-degraded image, n is the noise, and y is an
observed degraded image. The objective of image restoration
is to obtain an estimated image x̂ that closely resembles the
non-degraded image x from the observed degraded image y.
In image restoration using supervised learning, the weights
2 of the deep learning model f2(·) are adjusted so that
xn = f2(yn), using a large training dataset xn, yn(n =

1 . . .N ) consisting of pairs of non-degraded and degraded
images. Conventional self-supervised learning methods [12],
[13] learn from a large number of degraded images yn(n =

1, . . . ,N ) and then perform inference on another test image
to be denoised. In contrast, the zero-shot learning approach
described in this paper relies on a single input image for both
training and testing, without the need for additional training
data. Thus, the same input image y is used throughout the
denoising process.

B. CONVENTIONAL SELF-SUPERVISED LEARNING
METHODS
Recently, several self-supervised and zero-shot RGB image
restoration methods have been proposed [11], [12], [13]. In
Deep Image Prior [11], the input image is a randomly sampled
noisy image nin, and the model used for image restoration is
obtained by minimizing the following loss function:

L(y,nin) =
1
2
∥y − f2(nin)∥22. (2)

TheCNNhas an inherent bias towards learning low-frequency
components first. As noise primarily consists of high-
frequency components, early stopping halts learning before
these high-frequency components are restored, meaning that
they cannot be recovered through the denoising process,
thus obtaining a denoised image. However, the timing of
early stopping must be predetermined to prevent the deep
learning model f2(·) from simply learning to map the input
nin to y as the training progresses, without considering the
characteristics of the observed degraded image y.
Self-supervised image restoration methods that use blind-

spot strategies, such as Noise2Void [12], have been suc-
cessful. Blind-spot strategies are methods of obtaining a
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FIGURE 1. The model architecture of proposed method. The model structure is based on U-Net, and the number of parameters is reduced by using
the separable convolution without compromising restoration accuracy.

denoising model by predicting some intentionally hidden
‘‘blind pixels’’ from surrounding unblinded pixels in the
learning process. This strategy overcomes the limitation of
outputting the observed degraded image y as is, which is a
drawback of Deep Image Prior, and enables learning from
a large number of degraded images. Noise2Void learns to
replace randomly selected pixels in a degraded image with
pixel values from the surrounding area and estimates the
original pixel values from the replaced pixels.

Blind2Unblind [13], a recent self-supervised denoising
method, also employs a blind-spot strategy. In this method,
blind-spots are regularly placed in a 2×2 region, andmultiple
inputs with different blind-spots are provided to the model to
obtain the restored images corresponding to each input. The
output can then be obtained by extracting and combining only
the pixels corresponding to the respective blinded pixels from
the obtained restored images. During the training process,
the loss function is the weighted sum of the output obtained
by stitching the pixel values corresponding to the blind-spots
and the output obtained from the degraded image, where the
weight of the output obtained from the observed degraded
image gradually increases. After training, restoration is per-
formed by directly inputting the observed degraded image
into the model.

These methods, with the exception of Deep Image Prior,
rely on large numbers of degraded images, making it chal-
lenging to apply them directly to HSIs, where the cost
of preparing large amounts of data under the same condi-
tions (e.g., number of bands and objects to be imaged) is
prohibitively high. To address this problem, several zero-
shot HSI restoration methods based on self-supervised RGB
image restoration methods that only learn from an observed
degraded HSI have been proposed. Deep HS Prior [14] is an
extension of Deep Image Prior, as described above, that can
be applied to the observed degraded HSI and is trained by the
loss function in (2). Because it uses the architecture of Deep
Image Prior, it still suffers from the drawback of outputting
an observed degraded HSI as is if the learning process is
too advanced. Imamura et al.’s method [15] addresses this
problem by using information on the degradation process.

The model is trained through supervised learning, using
the observed degraded HSI as the target data and further
degraded HSIs along the degradation process of the observed
degraded HSI as input data. Because a large number of dou-
bly degraded HSIs can be generated for a single observed
degraded HSI, a large training dataset can be created and
trained during the zero-shot learning process. However, the
denoising performance deteriorates when information on the
degradation process concerning the observed degraded HSI,
such as the noise distribution, cannot be accurately estimated.

Our proposed method addresses the aforementioned issues
through the utilization of a blind-spot strategy tailored
for zero-shot HSI restoration, as well as a deep-learning
model employing separable convolution. By employing the
blind-spot strategy during training, we effectively suppress
identitymapping and eliminate the necessity tomake assump-
tions about the degradation process. Furthermore, the incor-
poration of random blind-spot changes and a deep learning
model with separable convolution helps mitigate overfit-
ting caused by limited data availability. These enhancements
enable us to achieve highly accurate restoration not only for
synthetic noise, such as Gaussian noise, but also for data con-
taining unknown information about the degradation process,
such as HSI affected by real noise.

III. PROPOSED METHOD
A. MODEL ARCHITECTURE
In this section, we present the model structure, learning
method, and loss function used in the proposed method.
The proposed model architecture, as shown in FIGURE 1,
is based onU-Net [20] and employs the separable convolution
[21] method. The separable convolution method decomposes
the conventional 2D convolution into depth-wise (channel-
wise) convolution and 1× 1 (point-wise) convolution, which
reduces the number of required parameters while minimizing
the reduction in the expressive capability of the convolution
layer. When the kernel size for 2D convolution is q × q and
the number of input and output channels is the same, the
separable convolution reduces the number of parameters to
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FIGURE 2. The diagram illustrates the model for image restoration using 3D random patterned masks. At each step, black pixels are randomly selected as
blind-spots, and the element-wise product of these multiple masks and the input is taken to obtain multiple masked inputs. The output is obtained by
combining the restored blind pixels.

approximately 1/q2. Because HSI provides dense informa-
tion in the band direction, building a deep learning model
requires a vast number of parameters, and overfitting is a
common issue. HSIs tend to have a lower diagonal correlation
between bands than other 3D data types such as video or
MRI (Magnetic Resonance Imaging). This is due to the nature
of HSI being composed of a continuous sequence of 2D
images with similar spatial structures. Previous work has
shown that separable convolutionworkswell in zero-shot HSI
restoration, although it loses the ability to exploit diagonal
correlation across the bands [22]. We adopt this technique in
our approach to improve the accuracy of HSI restoration. For
more information on the effectiveness of separable convolu-
tion for HSI, see the paper [22]. We discuss the validity of
model architecture later in Section IV-C1.

In FIGURE 1,H ,W , and C represent the sizes of the input
x ∈ RH×W×C , and Cm is the number of channels of the
intermediate features in the hidden layer of the model. The
subscript next to each box in FIGURE 1 indicates the change
in the size of the intermediate features of the model. Each
process in the model is described in the center of FIGURE 1:
2 × 2 max pooling or 2 × 2 upsampling changes the spatial
size of the intermediate outputs, and the first point-wise
convolution in the conv block changes the number of channels
in the intermediate features from the input channels Cin to the
output channels Cout.

B. BLIND-SPOT STRATEGY
FIGURE 2 illustrates the proposedmethod’s blind-spot selec-
tion process. The proposed method for selecting blind-spots

uses 3D patterned masks with K 2 variations, where K blind-
spots are randomly selected from each K × K × K region
in the input image. For example, when K = 2, four 3D
patterned masks are used in one training step, and each mask
contains two blind-spots. When selecting the positions of
the blind-spots of the 3D patterned masks, it is necessary to
ensure that they do not overlap with other masks. Each result-
ing 3D patterned mask is then replicated to match the size
of the input and multiplied element-wise with the observed
degraded HSI to create the masked inputs 9. Moreover, the
3D patterned masks are updated at each training step, ran-
domly altering the combination of blind-spot pixels. To obtain
the output, each masked input is fed into the deep-learning
model f2(·), and the masked pixels are extracted and com-
bined. By making the mask 3D, it becomes possible to
perform restoration that considers the spatial and spectral
directional information possessed by the HSI. In addition,
by randomly selecting blind-spots, the amount of training
data is augmented to suppress overfitting. Increasing the
value of K improves the restoration accuracy, but increases
the computational cost owing to an increase in the number of
masked inputs to be restored. We discuss the validity of mask
modification later in Section IV-C2.
This method aims to minimize the following loss function

that uses masked and unmasked inputs as in [13]:

L(y) = ∥g{f2(9)} + αf̂2(y)-(α + 1)y∥22
+ β∥g{f2(9)} − y∥22. (3)

Here, g(·) is a function for extracting and combining
blind-spot pixels from the model output, f̂2(·) is a function
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for obtaining the model output without backpropagation, and
α and β are hyperparameters. The right term β∥g{f2(9)} −

y∥22 in (3) is a regularization term to stabilize learning, and β

determines the strength of this regularization. In this paper,
we opt not to tune α and β but instead employ the default
values of α = β = 1. The restored image is obtained
from the weighted sum of the masked inputs and the restored
output from the degraded image, as described in [13]. Unlike
Blind2Unblind, the proposed method does not change the
hyperparameter α during training.

In Equation (3), the model is trained such that the output
obtained from the masked image and that obtained from the
observed degraded image are close to the observed degraded
image y. When the level of image degradation is severe,
there is an increased likelihood of overfitting in the model.
To address this issue, the ℓ2 weight decay is applied to the
model parameters to prevent overfitting.

IV. EXPERIMENTS
A. EXPERIMENTAL CONDITIONS
In this section, we demonstrate the effectiveness of the
proposed method through several denoising experiments.
Furthermore, we conducted ablation studies to verify the
effectiveness of the proposed model architecture and blind-
spot strategy. Themodel architecture ablation study examined
the difference in restoration accuracy between the standard
and separable convolutions. In the blind-spot strategy abla-
tion study, we compared the effectiveness of the blind-spot
strategy for each channel of the conventional method
Blind2Unblind [13], the blind-spot strategy that extends it
to 3D, and the blind-spot strategy of our proposed method.
We describe the denoising experiments and ablation studies
in Sections IV-B and IV-C, respectively.

As test images, we used Frisco, Stanford, Pavia-C, and
Pavia-U, which are commonly used in noise removal experi-
ments, and normalized them to the range [0, 1]. Owing to the
large size of the Pavia-C image, we cropped a portion of each
image for use in the experiment. The sizes of each HSI used
in the experiments are shown in TABLE 1.

TABLE 1. The size of the test data.

When training the proposedmodel, a 40×40×C patch was
repeatedly extracted from the observed degraded hyperspec-
tral image y ∈ RH×W×C and used for training. In addition,
we applied random left-right flipping and rotation by 0, 90,
180, and 270 degrees for data augmentation during training.
Nearest neighbor upsampling was used in the process shown
in FIGURE 1. The batch size during training was set to 24.
The number of intermediate channels Cm in the proposed
model was set to 200. As in the conventional methods, Adam

was used as the optimizer. The initial learning rate was set to
0.001 and the number of epochs to 200. The learning rate was
halved every 40 epochs. We set both K = 3 and K = 2, the
latter of which was used in the proposed blind-spot strategy.
Additionally, we set both α and β of the hyperparameter
to 1. We use four NVIDIA RTX A4000 GPUs for distributed
parallel learning.

The following four methods were utilized for comparison
in our experiments. We employed BM4D [10], a Gaussian
denoising method for general 3D data, and FastHyDe
[9], a highly accurate HSI Gaussian denoising method,
as optimization-based methods. As for deep-learning-based
methods, we employed Deep HS Prior [14], which is a DIP-
based HSI denoising method, and Imamura et al.’s method
[15], which uses y as target data and degraded images with
noise added to y as input data. For BM4D, FastHyDe, and
Deep HS Prior, we modified some of the code provided by
the authors and tuned the hyperparameters.

As evaluation metrics, PSNR and ERGAS [23] were used
to evaluate the overall image error, SSIM [24] was used to
evaluate the similarity of the spatial structure of the images,
and SAM [25] was used to evaluate the similarity in the
spectral direction.

B. DENOISING
This section presents the results of denoising experiments
conducted using various noise types. We used Gaussian
noise with mean 0 and standard deviation σ , Laplacian noise
with mean 0 and standard deviation σ , and Poisson noise
dependent on the pixel values for each denoising experiment.
We set the standard deviation σ to 0.1 and 0.15. The up (or
down) arrows next to the evaluation metrics in TABLE 2, 3,
and 4 indicate whether higher or lower values in the metrics,
respectively, represent higher accuracy. The bold values in
the tables represent the best restoration accuracies for that
experimental setup, whereas the underlined values represent
the second-best restoration accuracies.

1) GAUSSIAN NOISE REMOVAL
In this experiment, observed images degraded by Gaussian
noise with standard deviations of 0.1 and 0.15 were cre-
ated, and the noise removal accuracy was compared. The
experimental results are shown in TABLE 2. The results
in TABLE 2 show that the proposed method has compara-
ble or better restoration accuracy than the other zero-shot
methods. With a standard deviation of 0.1, the proposed
method outperformed the conventional method in all met-
rics for Frisco, three metrics for Pavia-C and Pavia-U, and
two metrics for Stanford. In the Stanford data, the proposed
method had the second-best restoration accuracy in SSIM,
one of the evaluation metrics for which it did not have the
best restoration accuracy. With a standard deviation of 0.15,
the proposed method showed better restoration accuracy than
the conventional method, except for the Stanford data. The
proposed method outperformed the conventional method in
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TABLE 2. Denoising result in Gaussian noise. The bold values represent the best restoration accuracies, whereas the underlined values represent the
second-best restoration accuracies.

TABLE 3. Denoising result in Laplacian noise. The bold values represent the best restoration accuracies, whereas the underlined values represent the
second-best restoration accuracies.

three metrics for Frisco and Pavia-C, two metrics for Pavia-
U, and one metric for Stanford. The proposed method for
Frisco and Pavia-U had the second-highest restoration accu-
racy in terms of SSIM. Although the restoration accuracy
was slightly higher in terms of SAM, the excellent restoration
accuracy in both the SSIM and SAM measures suggests that
the proposed method achieved balanced denoising results
without learning to excessively reduce errors in the spatial
or spectral directions.

2) LAPLACIAN NOISE REMOVAL
In this experiment, the accuracy of noise removal in the
observed images degraded by Laplacian noise with stan-
dard deviations of 0.1 and 0.15 was compared, and the

experimental results are presented in TABLE 3. The results
in the table demonstrate that the proposed method out-
performed the conventional methods. Specifically, using a
standard deviation of 0.1, the proposed method outperformed
the conventional method in three evaluation metrics for
all data, and Frisco’s restoration results for the proposed
method had the second-best restoration accuracy in terms of
SSIM. Using a standard deviation of 0.15, the results showed
superior restoration accuracy for Pavia-C and Pavia-U in
three metrics and for Frisco and Stanford in two metrics.
Additionally, the results for Frisco showed the second-best
restoration accuracy in terms of PSNR and SSIM, and those
for Stanford showed the second-best results in terms of
SSIM.
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TABLE 4. Denoising result in Poisson noise. The bold values represent the best restoration accuracies, whereas the underlined values represent the
second-best restoration accuracies.

3) POISSON NOISE REMOVAL
The experiment utilized the following equation to obtain the
observed degraded image:

y = P(s · x)/s. (4)

Here, P(s · x) is a function that applies noise based on the
Poisson distribution of the mean s · x, and s is a constant
that determines the strength of the noise. As indicated in (4),
the noise varies depending on the image. The noise strength
constants used in this experiment were s = 15 and 6, and the
results are presented in TABLE 4. In this table, BM4D, which
was used as a conventional method in other experiments,
was excluded because of its significantly lower restoration
accuracy compared to the other methods. The table shows
that the proposed method has excellent restoration accuracy
for all test data and experimental conditions. For s = 15, our
method outperformed the conventional methods in all eval-
uation metrics, except for Frisco in SSIM, and Pavia-C and
Pavia-U in ERGAS. For s = 6, our method outperformed the
conventional method in all evaluation metrics. Notably, our
method significantly outperformed the conventional method
in terms of PSNR and SAM, indicating that the restoration
accuracy of the spectral information was superior to that
of the conventional method. These results demonstrate the
effectiveness of the proposed method for restoring images
with additive noise or noise that depends on pixel values.

4) REAL-WORLD NOISE REMOVAL
In this experiment, we compared the performance of the
proposed method and the conventional methods by applying
them to real-world noise. Since non-degraded HSI data is not
available, objective evaluation is not used. For this exper-
iment, we used four HSI data (Urban, Botswana, Loukia,
Nefeli) with real-world noise. Due to the difficulty of deter-
mining the optimal timing for early stopping in advance with
Deep HS Prior, we used the default setting of 1800 epochs
for our experiment. To estimate the standard deviation of

the assumed Gaussian noise distribution in Imamura et al.’s
method, we followed the approach described in [26]. BM4D
and FastHyDe were excluded from the experimental results
as they did not yield better restoration results compared to
the other methods.

The results of real-world noise removal are presented in
FIGURE 3. To enhance visualization, we extracted a single
channel from the denoised HSI, cropped it, normalized it,
and displayed it. The enlarged images framed by the red
frame in the lower right corner of the first and second lines
in FIGURE 3 provide a closer view of the respective areas.
The denoised images demonstrate that Deep HS Prior tends
to produce blurry results, while Imamura et al.’s and the
proposed method generate sharper images. Examining the
images individually, we observe that in the first row, Deep
HS Prior and Imamura et al.’s method fails to restore the
black hole-like object in the upper left of the enlarged image,
which is replaced by the surrounding pattern. In the second
row, the road appears blurred in the Deep HS Prior restoration
result, although the horizontal stripe noise in the input was
successfully removed by all methods. Comparing Imamura
et al.’s method and the proposed method in the third and
fourth lines, we notice that Imamura et al.’s method exhibits
a collapsed texture compared to the proposed method. These
results indicate that the proposed method effectively removes
noise while preserving the texture of the HSI, outperforming
conventional methods.

C. ABLATION STUDIES
In this section, we describe the ablation studies per-
formed to verify the efficacy of the model architecture
and the blind-spot strategy in the proposed method. The
ablation study of the model architecture explains the dif-
ference between the standard convolution (convolution with
dense kernels) and separable convolution. The study of
the blind-spot strategy compared three blind-spot strate-
gies: Blind2Unblind, a 3D extension of Blind2Unblind’s
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FIGURE 3. Results for Real-world noise: where one channel is extracted from HSI, crop, normalized, and displayed.

blind-spot strategy, and the proposed method. The abla-
tion study uses the experimental setup for Gaussian noise
removal described in Section IV-B1, and the four data (Frisco,
Pavia-C, Pavia-U, Stanford). The values in TABLE 5 to 7,
which show the experimental results, represent the averages
of the results for the respective test data used in Section IV-B.

TABLE 5. Comparison of convolution at K = 2.

1) ABLATION STUDY OF MODEL ARCHITECTURE
In this section, we examine the effectiveness of the separa-
ble convolution. The results of the Gaussian noise removal

TABLE 6. Comparison of convolution at K = 3.

experiments at K = 2 and K = 3 are shown in TABLE 5
and TABLE 6, and the PSNR plots at a standard deviation of
0.15 are shown in FIGURE 4.

The results in TABLE 5 and TABLE 6 show that the
standard convolution achieved comparable or slightly better
accuracy than the separable convolution when the standard
deviation was 0.1. However, the model with separable con-
volution outperformed the model with standard convolution
when the standard deviation was 0.15. Notably, the standard
convolution exhibited a significant decrease in accuracy for
the standard deviation of 0.15.
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The results in FIGURE 4 demonstrate that the model using
standard convolution tended to overfit when the standard
deviation was 0.15. One possible reason for this is that
the standard convolution model has a significantly higher
number of parameters, approximately 160M at Cm = 200,
compared to the separable convolution model, which only
has approximately 18M parameters. Although standard con-
volution shows high restoration accuracy at low standard
deviations, the proposed method uses separable convolution
due to robustness to severely degraded HSI. The effectiveness
of the separable convolution is confirmed by the fact that the
standard convolution only slightly improves at low standard
deviations, while the separable convolution achieves consid-
erably better accuracy at high standard deviations.

FIGURE 4. PSNR plots for each convolution with Gaussian noise removal
with the standard deviation of 0.15.

2) ABLATION STUDY OF BLIND-SPOT STRATEGY
In this section, we evaluate the effectiveness of the proposed
blind-spot strategy by comparing it to Blind2Unblind and a
strategy that extends Blind2Unblind’s strategy to 3D data.
Blind2Unblind masks each pixel in a 2 × 2 region of each
channel of the observed degraded HSI, reconstructs the value
of each pixel, and combines them.We apply the same process
as in Blind2Unblind to each pixel in the 2×2×2 regions using
the 3D extended blind-spot strategy.

TABLE 7. Comparison of blind-spot strategies.

The experimental results are presented in TABLE 7 and
FIGURE 5. In TABLE 7, B2U represents Blind2Unblind,
whereas the ‘‘Pixel-wise’’ method is Blind2Unblind’s blind-
spot strategy extended to 3D, and Ours (K = 2) and Ours

FIGURE 5. PSNR plots for each blind-spot strategy in Gaussian noise
removal with a standard deviation of 0.1.

(K = 3) denote our cases with K = 2 and K = 3,
respectively, as shown in FIGURE 2. The results in TABLE 7
indicate that ourmethod achieved the best scores. The restora-
tion accuracy of the Pixel-wise method was higher than
that of B2U, indicating that the use of a 3D mask and the
incorporation of HSI spectral information contributed to the
improvement of restoration accuracy.Moreover, the proposed
method is superior in terms of computational cost because
the Pixel-wise method uses K 3 masks (8 masks for K = 2),
whereas the proposed method utilizes K 2 masks (4 masks for
K = 2 and 9 masks for K = 3).
In addition, as shown in FIGURE 5, the PSNR of the

Blind2Unblind and Pixel-wise methods gradually decreased
after approximately 120 epochs, indicating that they were
overfitting. However, the PSNR of the proposed method
converged, suggesting that the generalization performance
was improved by incorporating randomness. These results
demonstrate the effectiveness of the proposed blind-spot
strategy.

Compared to conventional methods, the proposed method
requires approximately two to three times the computation
time. However, our method still has room for improve-
ment in terms of optimal model selection and the choice of
hyperparameters during training. We did not perform these
hyperparameter optimization tasks at this time because they
need huge computational costs.

V. CONCLUSION
In this paper, we proposed a deep-learning-based method
for zero-shot HSI denoising. The model architecture is
based on U-Net and incorporates the separable convolutions.
In addition to spatial directional information, we intro-
duced a novel blind-spot strategy that utilizes 3D randomly
patterned masks for spectral directional information restora-
tion. By randomly missing K pixels in each K × K × K
region using K 2 3D patterned masks without overlap, our
method achieves high restoration accuracy and generalization
performance. We conducted several experiments to demon-
strate the superiority of the proposed method over other
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optimization- and deep-learning-based zero-shot HSI restora-
tion methods. We also performed an ablation study of the
model structure and blind-spot strategy of the proposed
method. The proposed model incorporates separable convo-
lutions to suppress overfitting in cases of severe degradation
during zero-shot HSI restoration. Our study demonstrates that
3D masks are effective in zero-shot HSI restoration and that
random blind-spot selection contributes to improved general-
ization performance.
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