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ABSTRACT Solar energy is a promising source of renewable energy, but its low efficiency, instability,
and high manufacturing costs remain a big challenge. Recently, machine learning (ML) techniques have
gained attention in the photovoltaic (PV) sector because of advances in computer power, tools, and data
creation. The existing ML techniques used for fabrication and the different operational procedures of the
PV sector have shown very impressive results with a higher degree of accuracy and precision. While
previous studies have discussed ML techniques for PV fabrication or operational procedures, there is a
lack of end-to-end research that covers the entire process from fabrication to implementation. In this paper,
we present a comprehensive review of the application of ML in the field of solar energy, focusing on
the development of new materials, enhancement of solar cell efficiency, implementation, and integration
with the system, including fault detection, sizing, control, forecasting, management, and site adaptation.
We evaluated more than 100 research articles, a significant proportion of which were published in the past
three years. In our study investigating ML implementation in solar cell fabrication, we discovered that the
Random Forest (RF), Linear Regression (LR), XGBoost, and Artificial Neural Network (ANN) algorithms
are the most commonly employed techniques. Our findings demonstrate that XGBoost exhibits superior
performance in optoelectronic prediction, while RF, LR, and ANN algorithms are better suited for predicting
electrical parameters. Moreover, our analysis indicates recent ML research in this field explicitly emphasizes
perovskite solar cells (PSCs). This work also discusses the challenges, directions, insights, and potential
applications of ML for future PV system analysis.

INDEX TERMS Deep learning, machine learning, material discovery, fabrication of PV cells, perovskite
solar cell, photovoltaic systems.

NOMENCLATURE
ANN Artificial Neural Network.
ARC Anti Reflective Coating.
ARMA Auto Regressive Moving Average.
BORT Bayesian Optimization based Regression Tree.
CBM Conduction Band Minimum.
CNN Convolutional Neural Network.
DT Decision Tree.
EMS Energy Management Systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangxiu Han .

EWT Empirical Wavelet Transform.
FF Fill Factor.
GAMA General Automated Machine Learning

Assistant.
GBDT Gradient Boosted Decision Tree.
GPR Gaussian Process Regression.
ICMMD Intra Class Maximum Mean Discrepancy.
Jsc Short Circuit Current.
KNN K-Nearest Neighbors.
LR Linear Regression.
LSTM Long Short-term Memory.
LVRT Low Voltage Ride Through.
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MAPE Mean Absolute Percentage Error.
ML Machine Learning.
MLP Multilayer Perceptron.
MPPT Maximum Power Point Tracking.
PCE Power Conversion Efficiency.
PLSR Partial least squares regression.
PSC Perovskite Solar Cell.
PV Photovoltaic.
PVS Photovoltaic System.
RF Random Forest.
RMSE Root Mean Square Error.
SHAP Shapley Additive Explanation.
SVD Singular Value Decomposition.
SVM Support Vector Machine.
SVR Support Vector Regression.
TL Transfer Learning.
TWSVM Twin Support Vector Machine.
Voc Open Circuit Voltage.
VBM Valence Band Maximum.
VMD Variational Mode Decomposition.
XGB Extreme Gradient Boost.

I. INTRODUCTION
The annual increase in global energy demand, driven by a
growing population, necessitates a corresponding increase in
energy production [1]. Traditional power generation infras-
tructure based on fossil fuels leaves a harmful environmental
footprint. As a result, governments and decision-makers are
increasingly inclined to provide funds for the research and
development of renewable energy technologies [2]. Recently,
PV energy generation has become a popular and highly
regarded renewable energy source [3], [4]. Researchers have
taken a keen interest in PV solar cells because of their ability
to harness electrical energy directly from solar radiation [5].
A unit PV cell captures photons from the sunlight incident
upon it and produces electron-hole pairs (EHP), which gives
rise to photo-electric current as output. Individual PV cells
are connected together to make a solar panel, which can
either be used as a standalone unit or combined with other
panels to build a large power station. Finding proper PV
materials, optimizing the device structure, and developing the
fabrication techniques are the three main aspects of designing
a standard solar cell [6]. Figure 1 depicts various solar cells
divided into different generations based on their technology
and developmental stages [7].

In 1954, a team of researchers from US Bell Labs led
by Pearson developed the initial crystalline silicon solar
cell, which had a power conversion efficiency (PCE) of
4.5%. This incident marked a significant milestone in the
application of solar electricity [8]. The PCE of modern
mono-crystalline/poly-crystalline silicon solar cells in indus-
trial settings has exceeded 20% [9], [10]. However, such
silicon-based solar cells are relatively expensive to man-
ufacture, fragile, easily damaged, pollute the environment
significantly and have limited temperature tolerance. Hence,

while silicon-based solar cells have been widely used and
have proven to be effective, newer technologies such as per-
ovskite solar cells (PSCs) and thin-film solar cells are being
developed to address these disadvantages. Thin-film solar
cells such as Cadmium Telluride (CdTe), Copper Indium
Gallium Selenium (CIGS) have reached high PCE in the
laboratory, but the industrial applications are limited by high
production costs and environmental contamination [11], [12],
[13]. The issue of high manufacturing costs can be resolved
by third-generation PSCs without compromising efficiency.

FIGURE 1. Different type of solar cells.

The fabrication of efficient and stable solar cells is fraught
with various obstacles. A prevalent evaluation metric for
PV technology is the PCE, which measures the ratio of
solar energy input to electrical energy output. The quality of
materials used in the fabrication of solar cells significantly
impacts their efficiency. The performance of solar cells can
be affected by the purity, crystal structure, and defect den-
sity of the materials used. Obtaining high-quality materials
can be difficult and expensive, particularly for newer and
more exotic materials. Additionally, the degradation behavior
and environmental stability of solar cell materials are yet
to fully understand, making it challenging to predict their
performance under different environmental conditions, such
as temperature and moisture [14].

Trial and error are time-consuming, laborious, and expen-
sive, and it may not be feasible to test all materials and
fabrication conditions. Hence ML is an emerging technology
that has the potential to revolutionize the field of solar cell
research [15], [16]. By using ML algorithms, it is easy to
analyze large amounts of data and make predictions about the
properties of photovoltaic materials, which can help improve
the efficiency and stability of solar cells [17]. The application
ofML in solar cell research can speed up the discovery of new
suitable materials. ML can be used to analyze large amounts
of data from the fabrication process, such as temperature,
humidity, and pressure, and make predictions about how to
optimize the process [18]. This can help to improve the
efficiency and stability of solar cells by reducing defects
and upgrading the uniformity of materials. Moreover, ML
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algorithms can be utilized to predict the optical properties of
materials, such as bandgap, absorption coefficient, and carrier
mobility [19], [20]. This information can be used to optimize
the design of solar cells, which can help to improve their
efficiency and stability.

After the PV cells are fabricated, they are evaluated for
their effectiveness and power output. The cells are sorted and
assembled into modules if they meet the necessary require-
ments. Each module is composed of multiple PV cells that
absorb electromagnetic radiation. This radiation is derived
from the sun’s conversion of gravitational potential energy
into electromagnetic radiation as the sun acts as a gravita-
tional energy transducer rather than a direct energy generator
[21]. These modules can then be used to build solar arrays
for power generation. The arrays may be mounted atop struc-
tures, within utility-scale power facilities, on the rooftop of
a building, or in other suitable places where sunlight can
easily reach. The produced electricity is transferred to the
grid through an inverter for consumers. Inmany regions of the
world, numerous methods exist to increase the installed PV
capacity [22]. However, PV system installation still entails
high costs and problems with performance that must be
fixed quickly. There are still efforts being made to lower
the costs of installation while also improving the effective-
ness and connecting them to electrical grids. Maintenance
of the modules is essential to ensure optimal output and
enhance security and reliability [23]. PV systems require
constant supervision since solar radiation is susceptible to
unpredictable fluctuations and uncertainties [1]. Therefore,
it is very important to discuss the challenges related to the
operation of PV infrastructure. ML algorithms have emerged
as a replacement to the conventional approaches for the
solution of these challenges to enhance system efficiency,
reliability, and cost-effectiveness of PV systems, similar
to the fabrication process. Some of the widely researched
application areas of ML in both sides are illustrated in
Figure 2.

Numerous studies have been conducted to evaluate the
implementation of different ML techniques addressing a
range of issues related to photovoltaic system operation,
control, and diagnosis. In comparison, some papers reviewed
the use of ML in the fabrication stage. Hence, there is a
lack of comprehensive survey that provides an end-to-end
picture of the application ofML in photovoltaic research. Our
contributions are-

• To our knowledge, this is the first review paper that
depicts a complete picture of how ML can be utilized
across the entire PV infrastructure, starting from fabri-
cation to system operations.

• Our research considered every generation of PV tech-
nologies that, include PSCs, Silicon-based, and thin film
solar cells. In contrast, previous studies in the literature
mostly focused on either PSCs or Silicon-based solar
cells.

• This study reviews recent ML practices in four key areas
during PV cell fabrication-

- - Optimization of electrical parameters
- - Exploration of new materials for PV applications
- - Optimization of optoelectronic parameters
- - Stability analysis

• ML application in the six most critical matters relating
to the operation and maintenance of solar cells are pre-
sented in this study.
- - Fault detection in PV
- - Irradiance forecasting and PV output power estima-

tion
- - Control methodology of PV
- - PV sizing system
- - Management
- - Site selection for PV installation

The article is organized in the following manner. In
section II, we have provided brief descriptions of the most
commonly used ML in the field of photovoltaics. After that,
in section III, some recent developments of ML application
in PV fabrication are reviewed, followed by the literature
review of other conventional solar cell trends regarding AI
in recent years in section IV. A comprehensive discussion
regarding the recent trend of ML and DL algorithms in PV
operation and maintenance is provided in section V. Lastly,
in section VI based on the literature reviews in this study,
we have suggested some future research directions and scope
of utilizing ML models in this field before concluding in
section VII

II. MACHINE LEARNING MODELS
Both regression and classification tasks are achieved using
the most efficient ML algorithms in every aspect of the solar
cell. In the fabrication stages, the prediction of PCE, bandgap,
conduction band, valence band, doping concentration, and
selection of optimal materials are of significant importance.
ML approaches such as Random Forest(RF), Decision Tree
(DT), XGBoost (XGB), Gradient Boosted Decision Tree
(GBDT) are most commonly utilized for these tasks. The
use of deep learning is limited by the lack of a large dataset
compared to numerous features. On the other hand, in the PV
system implementation stage, Deep Learning based models
such as Convolutional Neural Network (CNN), Long Short
Term Memory (LSTM), and hybrid architectures are more
popular due to the availability of large training samples. This
section summarizes some of the most commonly used ML
techniques in literature for PV research.

A. DECISION TREE (DT)
DT is one of the most simple ML algorithms. Although it is
mostly popular for the classification task, it is widely applied
in regression as well [24]. A decision tree consists of roots,
branches, and leaves. Each branchmakes a decision regarding
whether a statement is true or not, and the final output is
taken from the leaves. The most important requirement for
DT is finding the optimum tree structure. This is achieved by
selecting a splitting criterion in root and branches that best
separates the input samples. This is also known as attribute
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FIGURE 2. ML Applications in PV fabrication and operation.

selectionmeasure (ASM). Themost commonly usedmethods
for ASM are information gain and gini index, which are
calculated as stated in equations (1) and (3) respectively. For
a node, the entropy before splitting is denoted as Entropy(S),
where S is the number of samples at the current node, and Sv
is the number of samples of class v. Entropy for N number
of features is determined by equation (2), where Pj refers to
the probability of randomly selecting an element of class j.
DT, based on information gain, tries to maximize this value;
in contrast, gini scores are minimized [25].

Information gain = Entropy(S) −

∑
(
|Sv|
|S|

Entropy(Sv))

(1)

where, Entropy(s) = −

N∑
j=1

−Pj × log2(Pj) (2)

gini = 1 −

N∑
j=1

p2j (3)

B. RANDOM FOREST (RF)
RF is a popular ML method that addresses the high variance
of DT. It is an ensemble of hundreds of unpruned indepen-
dent decision trees which are fitted on training data with the
bagging method in order to capture non-linear relationships
[26]. The learning process starts with creating a bootstrapped
dataset by sampling randomly from the original one. Each
observation can be selected multiple times. Usually, two-
thirds of the training data ends up in the bootstrapped dataset,
while the rest is called an ‘‘out-of-bag’’ (OOB) set and is used

for evaluation purposes. If the input has a total of m number
of features, then each decision tree is made by arbitrarily
selecting a subset of k from m features (k ϵm). Each tree is
made to grow to its full extent. For the regression analysis
task, the final output ŷ(x) is the average prediction of all
trees as shown in equation (4). Where the number of trees is
denoted by K and hi(x) is the output prediction if ith tree. In
the case of the classification task, RF uses the majority vote
of all trees as its final output.

ŷ(x) =
1
K

×

K∑
i=1

hi(x) (4)

C. GRADIENT BOOSTED DECISION TREE (GBDT)
GBDT is another tree-based ensemble ML algorithm where
hundreds of DTs are used as a base learner [27]. These
trees are built sequentially, and each tree emphasizes the
miss-classification of the previous tree. GBDT is a very popu-
lar method that is widely used in regression and classification
tasks. Given a set of n input observations, (xi, yi) where i
equals to (1, 2, . . . , n) and a differential loss function L,
GBDT first start with making an initial prediction as shown
in equation (5). This equation attempts to determine an initial
value γ that minimizes the sum of the loss function over all
observations before initiating the training iterations.

F0(x) = argmin
γ

N∑
i=1

L(yi, γi) (5)

rim = −[
∂L(yi,F(xi))

∂F(xi)
]f(x)=fm−1(x) (6)
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γjm = argmin
γ

∑
xiϵRij

L(yi,Fm−1(xi) + γ ) (7)

Fm(x) = Fm−1(x) + ν

J∑
j=1

rjmI (xϵRjm) (8)

M denotes the number of trees. Then, for any tree m in
the training sequence, pseudo residuals rim are calculated by
equation (6) over all input samples. Next, the tree is fitted
to predict the residuals. The tree structure might be limited
depending on the user-defined parameter called maximum
depth. The output of each leaf in the tree is determined by
equation (7). The prediction output of the current tree is
updated based on the output of previous tree and learning rate
ν multiplied by the leaf output as shown in equation (8). This
process is repeated until the convergence conditions are met.

D. XGboost (XGB)
XGBoost (XGB) [28] is a powerful ML model that consists
of an ensemble of decision trees. The structure of these trees
is selected using a quality score that is similar to the impurity
score used by other tree-based models according to greedy
algorithms. It is a type of boosting algorithm, meaning each
tree is developed based on the performance of the previ-
ous tree by minimizing the objective function described in
equation (9). Each new tree results in smaller residuals.

L(θ ) =

n∑
i=1

L(yi, ŷi) +

T∑
j=1

�(fj) (9)

�(f ) = γT +
1
2
λ

T∑
j=1

w2
j (10)

In equation (9), L is the loss function that measures the
difference between the predicted value ŷi and the actual label
yi where fj is the j-th tree in the ensemble. XGB differs from
the traditional gradient tree boosting techniques by utilizing
various regularization techniques, which are represented by�

term. The purpose of regularization is to reduce the variance
of the model by introducing a small bias. This decreases the
dependency on observations and helps to make accurate pre-
dictions in the long term. The number of leaf nodes is denoted
by T . In equation (10), γ encourages pruning and reduces
complexity in the ensemble trees, wj is the leaf weight, and λ
is another user-defined parameter that controls the magnitude
of the penalty introduced by the regularization. The final
output of the XGB model is determined by aggregating the
output of all trees. XGBoost has become popular due to its
fast performance and ability to handle a large number of
features, missing values, and noisy data. The authors [28]
also introduced features such as sparsity-aware split finding,
parallel learning, etc., for further optimization on a larger
dataset.

E. MULTILAYER PERCEPTRON NETWORK (MLP)
AnMLP is a feed-forward neural network consisting ofmulti-
ple layers of nodes, where the output of one layer serves as the

input to the next. The basic building block of an MLP is the
artificial neuron, also called perceptron [29]. Each perceptron
in a layer receives inputs from the previous layer, performs
a weighted sum of these inputs, and then applies an activa-
tion function to generate its output. The activation function
introduces non-linearity, allowing it to model complex rela-
tionships between inputs and outputs. The number of neurons
in each layer and the number of layers themselves are design
parameters that can be adjusted to control the capacity of the
network. The parameters of an MLP, including the weights
and biases of each neuron, are learned from the training data
using an optimization algorithm such as backpropagation.
This algorithm uses stochastic gradient descent to minimize
a loss function that measures the difference between the
network’s predicted outputs and the true outputs.

p = φ(
∑
j

wjxj + b) (11)

Equation (11) shows the mathematical representation of a
single perceptron unit p, where the inputs to the unit, weights,
and biases are denoted by xj, wj and b, respectively. φ is the
activation function. If we consider L hidden layers, then we
can write the MLP network as shown in equation (12). Where
x and y represent the input and output of the model. the output
of any layer l is denoted by h(l). W (l) is the weight matrix
of that particular layer. Different layers can have different
activation function, which is denoted by φ(l).

h(i) = φ(i)(W (i)x + b(i))

h(l) = φ(l)(W (l)h(l−1)
+ b(l))

y = φ(f )(W (f )h(l) + b(f )) (12)

F. LONG SHORT-TERM MEMORY (LSTM)
Long Short-Term Memory (LSTM) is a special type of
recurrent neural network (RNN) architecture designed to
address the problem of vanishing gradients [30], [31] in tra-
ditional RNNs, which can make it difficult to learn long-term
dependencies in sequential data. LSTMs introduce a memory
cell state that allows them to carry distant past informa-
tion across many timesteps. It operates utilizing three gating
mechanisms that allow the network to selectively forget,
remember or update information from previous time steps.
Equations (13)-(18) describe an LSTM unit for a single time
instance [32].

ft = σ (Wf [ht−1, xt ] + bf ) (13)

it = σ (Wi[ht−1, xt ] + bi) (14)

C̃ = tanh(Wc[ht−1, xt ] + bc) (15)

Ct = ft ∗ Ct−1 + it ∗ C̃ (16)

ot = σ (Wo[ht−1, xt ] + bo) (17)

ht = ot ∗ tanh(Ct ) (18)

where xt , ht−1 represents the input sequence component of
the current timestep and the hidden state from the previous
timestep, respectively. They forget input and output gates are
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denoted by ft ,it , and Ot , respectively. The output of these
gates is taken through the application of a sigmoid activa-
tion function that outputs between 0 and 1. The forget gate
ft controls how much of the previous cell state should be
forgotten. Then, the current cell stateCt is updated by it along
with C̃ , where C̃t is the candidate cell state. Wf ,Wi,Wc, and
Wo denote the weight matrices, which are used to optimize
gate behavior. These matrices are learned during the training
of LSTM on input samples. bf ,bi and bo are called biases.

G. CONVOLUTIONAL NEURAL NETWORK (CNN)
CNNs are one of the most popular and efficient classes of
DL algorithms, most commonly used for computer vision
tasks. Due to its ability to automatically learn hierarchical
representations and local patterns of the input data, it is also
applied in tasks such as fault detection, PV load, irradiance
forecasting, etc. CNN works by performing convolution and
pooling operations over the input sequence. Depending on the
type of input, CNN can be 1-D, 2-D, or 3-D. The convolu-
tion operation extracts local features from the input image,
while the pooling operation reduces the dimensionality of the
features and makes them more robust to small spatial vari-
ations. Pooling downsamples the feature map by taking the
maximum or average value within each local neighborhood
which is a user parameter. The learning ability of CNN can
be increased by stacking multiple CNN and pooling layers on
top of each other similar to MLP architecture. For instance,
if we have L convolutional layers, then the first convolution
operation of multivariate input sequence z can be written as
shown in equation (19) [32].

C1,j = ReLU (Z∗h1,j + b1,j) (19)

here, (*) represents the convolution operation. The output
feature map of the first convolutional layer is denoted by
C1,j, where h1,j is the J th convolution kernel and b1,j is the
bias term. The activation function shown in the equation is
a rectified linear unit (ReLU) to adopt non-linearity in the
input. The output feature map is then fed into a subsequent
convolutional layer, where it is further processed to extract
higher-level features. Thus, the I th convolutional layer CI
producing output feature space J th can be formulated as
equation (20).

CI ,j = ReLU (C∗

I−1,jhI ,j + bI ,j) (20)

III. ML IN PEROVSKITE SOLAR CELL FABRICATION
In recent years PSCs have attracted significant attention
because of their low cost [5], high absorption coefficient
[33], [34], tunable bandgap [35], long carrier lifetime and
diffusion length [36], [37], high defect tolerance, low exciton
energy, and high carrier mobility [38]. The configuration of
PSCs is illustrated in Figure 3, which consists of an absorber
layer, also referred to as the perovskite layer. This layer
is positioned between the hole transport layer (HTL) and
the electron transport layer (ETL). Researchers have made
significant strides in improving the PCE of PSCs, which

has increased from 3.8 % to 25.7 % because of extensive
research efforts and the superior properties of these cells [39],
[40]. This rapid advancement has made PSCs a practical and
attractive alternative to traditional solar technology [41], [42].

FIGURE 3. Structure of PSC.

FIGURE 4. Crystal structure of perovskite material.

While PSCs have become very efficient within a relatively
short period, they still face several obstacles before becoming
viable commercial technology. The perovskite material has
the general molecular structure ofABX3 whereA is an organic
or inorganic monovalent cation, B is a divalent metal ion,
and X is a halogen anion [43], [44]. The crystal structure
of perovskite material is depicted in Figure 4 Cesium (Cs+),
Rubidium (Rb+), Methylammonium (MA+/CH3NH+

3 ), For-
mamidinium (FA+/NH2CHNH

+

2 ) are commonly used at A
site; lead (Pb+), Tin (Sn+) are usually used at B site; and
Iodide (I−), Bromide (Br−), Chloride (Cl−)are normally
used at X site [39]. In essence, there are infinite combinations
and possibilities for perovskites in solar cell applications. One
of the most notable characteristics of perovskite materials
is their tunable bandgap, which allows them to absorb a
wide range of photons. By changing the composition of the
perovskite, it is possible to adjust its bandgap, which makes
it possible to tune the absorption properties of the material.
To achieve the highest efficiency in PSCs, it is crucial to
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find a perovskite material with an optimal band gap that
matches the solar spectrum. Perovskites have the ability to
adjust their bandgap within a range of 1.5 eV to 3.2 eV.
However, the most efficient band gap for a perovskite solar
cell is around 1.6 eV. This particular band gap allows for
efficient absorption of a wide range of photons present in
the solar spectrum [43]. Therefore, it is important to tune
the composition of perovskites to optimize their properties.
However, relying solely on trial and error for such a complex
scenario is neither realistic nor logical.

The structural instability of PSCs is another major chal-
lenge that poses a significant obstacle to their commercializa-
tion, as it can cause degradation of the cells over time. This
instability can be caused by a variety of factors, including
temperature, humidity, and exposure to light. The efficiency
and lifespan of solar cells can be negatively impacted by
the deterioration of perovskite materials. Another issue that
contributes to the instability of PSCs is the use of Pb, which
is a toxic substance [45] and can potentially harm the envi-
ronment [46]. The use of Pb in PSCs is a concern because
it can leach out of the cells over time and contaminate the
surrounding environment [47]. To address these instability
issues, researchers have been working on developing new
perovskite materials that are more stable and less toxic [48],
[49]. This includes developing lead-free perovskite materials,
using other materials to stabilize the perovskite structure, and
using encapsulation methods to protect the solar cells from
the environment.

In recent years, ML techniques have been used to predict
the bandgap, PCE, and stability of PSCs with high accu-
racy, which can significantly accelerate the development and
optimization of PSCs. The implementation ofML in the fabri-
caontion process of PSCs has been demonstrated in Figure 5.
Numerous investigations have shown that the predictive abil-
ity of ML methods can be utilized to effectively estimate the
bandgap, PCE, and stability of PSCs. This section presents a
concise summary of the application of ML techniques in the
fabrication of PSCs.

A. ML IN THE PREDICTION OF ELECTRICAL AND
OPTOELECTRONICS PROPERTIES
Lu et al. [50] proposed that using a combination of ML,
experimental, and density functional theory (DFT) methods
in a pipeline can give reliable and accurate insights into
the physical laws that govern the preparation of perovskite
solar cells (PSCs). Their ML model and Shapley Additive
Explanations (SHAP) showed that A-site cations have the
most significant impact on the PCE, and regulating cation
components can enhance crystallization and reduce defects
in PSCs.

Y. Liu and colleagues [51] developed and evaluated a
total of 49 ML models using 814 real experimental data
from published literature. These models utilized 7 different
ML algorithms to predict the band gap, Conduction band
minimum (CBM), and valence band maximum (VBM) of

perovskites, as well as the electrical properties of PSCs.
XGBoost models were found to be the best for predicting
the bandgap, CBM, and VBM, while RF models were the
most effective for predicting the electrical properties. Eight
chemical compositions (MA, FA, CS, Pb, Sn, BR, Cl, I)
were used as features for the bandgap, CBM, and VBM
models, and a set of 13 features (MA, FA, Cs, Pb, Sn, Br, Cl,
I, Bandgap, energy level alignments, electron mobility, and
hole mobility) were used for the electrical parameter models.
Using the prediction models and SHAP theory, they found
that the perovskite material was the main factor affecting
the PCE of PSCs. It was suggested that increasing the FA
content in the perovskite material would increase the PCE
of PSCs.

Gok et al. [43] utilized an RF ML method to pre-
dict the bandgap and PCE of halide using eight dif-
ferent halide perovskite compositions. They obtained the
bandgap values by analyzing Tauc plots and predicted
the performance of the solar cells using J-V spectra.
RbCsFAMAPI, CsFAMAPI, CsFAPI, FAPI, MAPI, MAPI-
Cl, FAPI+MAPBr, and FAMAPI-Br were the eight different
perovskite compositions that were used as absorber layers
in this work. In their model, only the absorber layer was
taken into consideration, but the hole transport layers and the
electron transport layers were not taken into consideration.
According to their model, the FAPI-based PSCs had the
lowest PCE of 15%, while FAMAPI-Br had the highest value
of 19.3%.

PSCs typically exhibit optimal efficiency when their
bandgap falls within the range of 1.1 eV to 1.8 eV [52].
Yan et al. [40] represented XGBoost and RF algorithms
to predict some properties of five new compositions of
perovskites composed of (FAPbI3)x (MAPbBr2.8Cl0.2)1−x
with bandgaps below 1.60 eV for experimental guidance
to develop high-performance solar cells. Their model pre-
dicted the bandgap, JSC and VOC for the five perovskites.
The highest JSC and VOC values were found for the
(FAPbI3)0.99(MAPbBr2.8Cl0.2)0.01 composition. The authors
also analyzed XRD patterns and Time-measured Photo
Luminescence (TRPL) spectra for the five perovskites.
Based on the supporting information, they determined
that (FAPbI3)0.95(MAPbBr2.8Cl0.2)0.05 shows the longest
photo-generated carrier lifetime and has been selected as the
champion perovskite composition with a predicted bandgap
of 1.55 eV. Finally, they designed and simulated a PSC
with Glass /FTO/SnO2/(FAPbI3)0.95(MAPbBr2.8Cl0.2)0.05/
Spiro-OMeTAD/Au configuration and achieved 22.5 % of
PCE with 82.4 % FF, 24.6 mA/cm2 JSC and VOC .

In a recent study by Jiang et al. [53], a GPR ML tech-
nique was employed to optimize the doping concentration
of KI in MAPbI − 3 solar cells. Doping with alkali metals
is a well-established method for reducing defect density in
perovskite films, owing to their inherent stability against
oxidation and decomposition. The GPR model was trained
on KI doping concentration and voltage as input features to
predict the JSC and PCE at various KI doping concentrations.
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FIGURE 5. ML application in PV fabrication.

Following two rounds of prediction, the highest PCE of
20.91 % was achieved with a high FF of 80 % in MAPbI3
solar cells doped with three % KI.

Yilmaz et al. [54] used ML for the prediction of bandgap
and PCE utilizing three different algorithms. In their research
paper, the authors utilized a range of characteristics to
predict bandgap, including perovskite-type, structure, and
layer thickness, along with the optoelectronic, chemical, and
physical properties of both cations and anions to serve as
descriptors for predicting bandgap. The authors incorporated
bandgap, among other descriptors, to accurately predict the
properties of PCE, Electron Transport Material (ETM), and
Hole Transport Material (HTM), as well as their correspond-
ing HOMO-LUMO values. XGBoost was found to be the
best algorithm for predicting bandgap. According to their
work, the most influential descriptors for accurately predict-
ing bandgap were identified as the thickness of the inorganic
layer, the radius of the anion, and the 2D radius of the cation.
For PCE prediction, random forest models performed better
for both regular and inverted cell structures. The PCE predic-
tion analysis showed that for regular structures, the inorganic
layer thickness, 2D cation radius, and bandgap have the most
significant influence on PCE, while for inverted structures,
the most effective effects are caused by the inorganic layer
thickness, 2D cation radius, and conduction band energy of

HTLmartial. The bandgap predictive model shows an inverse
relationship between the bandgap and the inorganic layer
thickness and a nearly inverse linear relation between the PCE
and the bandgap of 2D cations.

Hybrid PSCs use an HTM To facilitate the extraction and
transportation of photogenerated holes from the perovskite
layer to the electrode. The use of an HTM reduces the
energy barrier between the perovskite and electrode, leading
to an increase in the efficiency of the charge separation
process. Additionally, the HTM also plays a crucial role in
suppressing charge recombination at the perovskite/electrode
interface, which is another important factor that affects the
overall performance of the PSCs [55], [56], [57]. In a recent
research article by Yildirim et al. [58], an ML was proposed
to predict the impact of HTMs with different substitution
groups on both the optical bandgap and the performance
of solar cells. The authors aimed to develop a predictive
tool that could be used to optimize the selection of HTMs
for photovoltaic applications using both the R.F. model and
Automatic machine learning (AutoML) framework, General
Automated Machine Learning Assistant (GAMA). AutoML
is a rapidly developing field within the realm of machine
learning. It aims to address the challenge of finding the most
optimal combination of data processing, learning algorithm,
and hyperparameters to achieve the highest performance on
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a given dataset within a specified computational budget.
AutoML represents a novel approach to streamlining the
machine learning process by automating the selection and
configuration of key components [59]. They discovered that
the model generated by GAMA was much more consistent
and responsive compared to R.F. It was determined that the
implementation of AutoMLwould provide greater benefit for
tasks and datasets of increased complexity. The prediction
methodology employed by the GAMA system was found to
be a pioneering, efficient, and rapid approach in the field of
HTM screening and was deemed an effective and reliable
method.

Photonic curing [60] is a process used in themanufacture of
photovoltaic devices. It is a method of applying light energy
to a material to initiate or accelerate a chemical reaction.
In the context of photovoltaic devices, photonic curing is
typically used to cure or harden photovoltaic materials, such
as photovoltaic polymers, which are the basis for some types
of flexible and lightweight solar panels. The photonic curing
process can be performed using U.V. light, visible light,
or laser light, and it allows for the efficient and precise
hardening of photovoltaic materials. This helps to ensure
that the photovoltaic device has the necessary physical and
electrical properties for optimal performance and durability
[61]. In a study conducted by Xu et al. [62], the application
of Bayesian Optimization (B.O.) was explored as a means of
optimizing the PCE of photonically cured MAPbI3PSCs on
ITO-coated willow glass (W.G.). The B.O. framework was
utilized with four input variables, namely the concentration
of MAPbI3, additive C .H .2I2 volume, pulse voltage, and
pulse length. The results of this optimization led to a PCE
of 11.42%, which was achieved using the device config-
uration of WG/ITO/NiO/MAPbI3/P.C .61BM/BCP/A. To
gain a deeper understanding of the factors affecting device
performance, the authors conducted a SHAP analysis. The
analysis revealed that higher levels of C .H .2I2 and lower
concentrations of MAPbI3 were associated with improved
device performance.

Cai et al. [63] proposed an ML approach based on a
forward-reverse framework to determine the relationship
between important parameters and photovoltaic performance
in high-profile organic metal halide perovskite (OMHP)
materials (MASnxPb1−xI3). The objective of the forward
analysis procedure aims to develop the bandgap and device
performancemodels usingML, whereas the reverse engineer-
ing approach is for predicting the optimization parameters
of mixed Sn-Pb perovskites and experimental realization.
According to their proposed Eg model, an asymmetrical bow-
ing relationship has been found between Eg and the Sn-Pb
composition ratio. Following that, they developed an NN-
based performance model that considered the energy level of
the OMHP and carrier transport layers. The highest PCE of
single-junction PSCs has been predicted at about 1.35 eV of
VOC . Finally, using reverse engineering, an optimum Sn-Pb
composition ratio of approximately 0.6 was obtained for

high-performance perovskite solar cells, which was further
verified by experiments.

Toxicity is a barrier to large-scale commercial produc-
tion and the photovoltaic field use of Pb-based halide
perovskites [64], [65]. Tin (Sn) PSCs are the most promis-
ing Pb-free alternatives [66]. Sn-based PSCs are still in
the early phases of research and will require a significant
amount of time and effort to achieve an optimal structure.
T. Bak et al. [67] proposed an ML model to speed up the
discovery of Pb-free Sn PSCs with optimal structure and
PCE. They used DNN for predicting and recommending the
optimal Sn-perovskite composition. FTO/PEDOT : PSS/

EDA0.01PEA0.07Cs0.03FA0.51MA0.38SnI3/ICBA/BCP/Ag is
their recommended configuration for the Pb-free Sn-based
PSCs. They also analyzed that when they fabricated Sn PSCs
in alternative combinations from the recommendation, the
device performance dropped significantly, indicating that
their proposed DNN model was successful in determining
the optimal device configuration.

Table 1 presents a concise overview of the survey on
research papers published in the last two years that have
utilized ML approaches for accurately predicting the elec-
trical and optoelectronic properties of PSCs. These research
papers signify the growing interest in applying cutting-edge
ML techniques to address key challenges in the field of PV
devices and offer important insights into the potential of
ML-based methods for advancing the development of effi-
cient and cost-effective solar cell architecture.

B. ML IN THE PREDICTION OF STABILITY
Çagla et al. investigated the impact of storage conditions,
cell manufacturing materials, and deposition techniques on
both the stability [49] and efficiency [68] of the devices.
Their results have been summarized in Table 2. They also
analyzed the ambient conditions on stability and summarized
that high humidity, high temperature, and high illumination
have negative effects on solar cell stability.

Yilmaz et al. [54] employed an ARM-based ML technique
to identify the key descriptor that influences the stability
of 2D/3D PSCs. The findings indicate that layered per-
ovskites are more stable than those with passivated and
mixed structures. Among the commonly used 2D cations, BA
demonstrated greater stability compared to PEA, although
PEA had a higher average power conversion efficiency.
Mixed 3D cation perovskites, particularly those containing
FA, showed higher stability in 2D/3D structures compared to
those composed of MA only.

Mammeri et al. [5] used an extremely randomized trees
technique for stability prediction of perovskite solar cells.
They found out the impact of each PSC layer on the stability.
They trained 1050 samples of perovskite devices with differ-
ent materials, deposition techniques, and storage conditions
using the extremely randomized trees method. The results
indicated that using hydrophobic materials in PSC layers
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TABLE 1. Recent research review on the prediction of electrical & optical properties during fabrication using ML.

enhances the stability of the device. Additionally, perovskite
layers with multi-cation and 2D/3D crystal structures provide
long-term stability. The study found that for regular cells,
using TiO2/m− TiO2 as ETL, 2D/3D perovskite as absorber
layer, P3HT as HTL, and LiTFSi + TBP as HTL second layer
and Carbon as back contact improved the device stability
with DMF +DMSO as precursor solution and Chlorobenzene
as an anti-solvent solution. For inverted cells, stability was

improved by using BCP a PCBM, MAPBI3−xClx, NiO and
DEA, and Aluminum back contact.

Hu et al. [6] used ML to design a regular high-
performance PSC (with the structure of glass/TiO2/FA0.85
MA0.1Cs0.05Pb(I0.97Br0.03)3/spiro−OMeTAD/Au) with 23.4
% PCE and the best long-term ambient stability. Here ML
was employed to create models that relate stability and effi-
ciency (including VOC , JSC , and FF) to five different factors,
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i.e., bandgap, defect density, grain size, fluorescence lifetime
and surface roughness. FourML algorithms, including PLSR,
ridge regression, SVR, andGPR, were used to predict the best
map between the features and the target properties. Among
all the four algorithms, SVR performed the best. According
to their findings, the bandgap has the greatest impact on
PCE and JSC, while the surface roughness and grain size
have the greatest impact on device stability. They designed
several annealing temperatures (60,90,110,120◦C) to change
the grain size in perovskite thin films and various organic
compounds (ortho-, meta-, para-methoxy phenylethylamine
iodized salts) to vary the surface roughness. The best device
stability was achieved by the largest grain size and the least
surface roughness.

Low-dimensional (LD) perovskite, also known as the cap-
ping layer, which is deposited on top of the perovskite
absorber, is used to increase the environmental stability of
perovskite solar cells. Hartono et al. [69] presented an ML
approach to optimize the capping layer for MAPbI3. They
took into consideration 21 organic salts as capping-layer
materials, including salts based on iodine and bromine, with
various sizes, branches, and chemical properties. Accord-
ing to the RF model and SHAP values, the low number of
hydrogen-bond donors and small topological polar surface
area (TPSA) of the organic capping layer are the topmost fac-
tors for determining device stability. According to this study,
the most stable capping layer is Phenyltriethylammonium
iodide (PTEAI), which does indeed have a low number of
hydrogen-bond donors and a small TPSA). PTEAI success-
fully extends the MAPbI3 stability lifetime by 4 ± 2 times
over bare MAPbI3 and 1.3 ± 0.3 times over state-of-the-art
octylammonium bromide (OABr).

Table 2 outlines a brief summary of our survey on research
papers published in the past three years, which utilize ML
techniques to analyze various factors that can impact the
stability of PSCs.

IV. ML IN THE FABRICATION OF OTHER CONVENTIONAL
SOLAR CELLS
Abadi et al. [71] presented a novel method for predicting
device performance and identifying the structure-property
correlations in organic photovoltaics (OPVs) through a com-
bination of ML and Taguchi Design Experiments (TODE)
[72]. They created a database of 240 small-molecule organic
solar cells with 220 different donor materials blended with
two fullerene-based acceptors (PC61BM and PC71BM ). The
model used ten quantum chemical features related to energy
conversion as descriptors. The TODE and ANN algorithms
were combined to obtain useful and constructive design
guidelines. The model predicts that reducing the optical band
gap increases the performance of the organic solar cell by
increasing the number of photons absorbed by the device. The
model also identifies the optimal values of or 1L (Energetic
difference of LUMO and LUMO+1) and 1H (Energetic dif-
ference of HOMO and HOMO-1) for each optical band gap.

It has been observed that with low optical band gap organic
solar cell materials, lower values of 1L and 1H result in
higher PCE. The prediction model states that having 1L and
1H nearly equal to 0 leads to good PCE values.

Zhu et al. [73] employed ML techniques to investigate the
paramount variables that affect the device performance of the
Cu(In1−xGax)Se2(CIGS) solar cells as well as the underly-
ing correlations. From previous research and experiments,
they selected 15 input features, including CGI, GGI ratio,
thickness of the CIGS layer, highest substrate temperature
during fabrication, fabrication method, alkali treatment, sub-
strate type, and others for the ML algorithms. RF performed
best at predicting the efficiency of CIGS solar cells, among
other algorithms. Based on the results of the RF algorithm,
it has been evaluated that alkali post-deposition treatment
(PDT), CIGS thickness, buffer layer thickness, CGI, and
GGI gradient are the most significant features that have the
greatest impact on device performance. In conclusion, they
recommended a co-evaporation fabrication method for CIGS
with CdS as the buffer layer. Also suggested that the ideal
CIGS thickness is 2-2.3 micrometers, and the ideal substrate
temperature is 540-600◦C for highly efficient CIGS solar
cells with CGI ratio adjusted from 0.87-0.95 and GGI ratio
from 0.37-0.40.

Salman et al. [74] developed and implemented an ANN-
based ML model to extract the actual Cu doping profiles that
result from the process of diffusion annealing and cool-down
in the fabrication sequence of CdTe solar cells. They used
PVRD-FASP [75] solver to generate a big dataset. The goal
of this work is tomimic the Cu diffusion process implemented
in the PVRD-FASP solver with the ANN ML model. The
main purpose of this study was to replicate the Cu diffusion
process carried out by the PVRD-FASP solver using the ANN
MLmodel. The results obtained from the PVRD-FASP solver
simulation are in good agreement with the values predicted by
the ANN algorithm. It was also found that creating Cu doping
profiles using the PVRD-FASP solver is a lengthy process,
whereas using the ANN algorithm is almost instantaneous.
This makes the ANN algorithm a useful tool in the develop-
ment of optimal doping profiles for CdTe solar cells.

W.B Xiao and colleagues [76] utilized ANN-based ML
models to predict the PCE of three types of silicon solar
cells: mono-crystalline, multicrystalline, and amorphous
crystalline. The training data was obtained by characterizing
experimental solar cell samples under various conditions of
incident light intensity and ambient temperature. The predic-
tion results were evaluated in terms of correlation coefficient
and mean of square error (MSE). The prediction results were
found to be consistent with traditional physics-based studies
of solar cells. The authors also suggested the optimal number
of hidden layers in the ANN architecture for each of the
three solar cell technologies and discussed the significance
of the number of hidden layers in determining the quality
of predictions. From their analysis, in the case of multi- and
amorphous crystalline cells utilizing 3 or 4 hidden layer units
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TABLE 2. Recent research review on PV stability using ML.

led to a high correlation coefficient and low MSE. Regarding
single crystalline cells, the best results were obtained using
eight hidden layer units.

Anti-reflection coatings (ARC) are used on the surface of
solar cells to reduce the amount of light reflected back into
the atmosphere, increasing the amount of light absorbed by
the cell. This results in higher efficiency and power output
from the solar cell [77]. In a recent study, Shivam et al. [78]
proposed using ANN to predict the optimal thickness of the
ARC coating based on the voltage and current generated by
the solar cell. The authors utilized PC1D, a 1-D numerical
simulation tool, to create the training database for their ANN
model. The results showed that increasing the thickness of
the ARC coating can lead to the greater power output from
the solar cell.

Kaya and Hajimirza [79] developed a Neural Network
(NN) surrogate model to predict the optical performance of
thin film multi-layered amorphous-silicon-based solar cells
using Neural Network (NN) technique. The training dataset
was created using finite-difference time-domain (FDTD)
simulation methods. The authors found that the NN-based
methodology was accurate and much faster than FDTD
simulations in predicting optical absorption as a function
of incident light wavelength and cell geometry. This work

explores the fundamental reasons behind the ability of anML-
based surrogate model to approximate the results of a device
physics-based simulation model. The resulting optimiza-
tion solution suggests a significant improvement in external
quantum efficiency compared to bare silicon and a random
design.

Wasmer et al. [80] proposed an ensemble of decision trees
with feature sub-sampling as the MLmodel to understand the
PCE of mass-produced Q. ANTUM solar cells [81] based on
p-type Czochralski Silicon (Cz-Si) wafer. The main goals of
their work were to understand the global hourly time trends
of solar cell efficiency observed in a 1-week dataset and
to understand the impact of different features of solar cell
production on the temporal evolution of produced solar cell
performance. The training data was collected from 500,000
solar cells using inline measurements over one week. The
total number of features was 329, which we clustered into
groups using hierarchical clustering based on their similarity
with respect to their impact on a cell performance metric. The
ML model that was developed in this work was utilized to
make predictions of solar cell efficiency with respect to time,
using time as one of the features. The authors proposed that
this approach could be applied to real production lines since
the prediction accuracy was extremely high.
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V. ML IN PVS OPERATION AND MAINTENANCE
This section evaluates the application of various ML tech-
niques to address various issues related to the PV system’s
post-fabrication phases in order to integrate it with the system
successfully.

A. FAULT DETECTION IN PVS
Photovoltaic system (PVS) is operated in an outdoor envi-
ronment since it is required to be exposed to solar radiation
to generate electrical energy. However, like many electrical
systems, PVS is also subjected to numerous faults due to
external outdoor conditions and aging during its life cycle
[82]. This section provides a brief overview of various faults
that can take place in PVS and their detection trend in recent
years.

FIGURE 6. Different type of fault in PV array.

1) TYPES OF FAULTS
1) Line-to-Line Fault: This fault arises from accidentally

shorting two points of different potentials in a PV array
[83]. It could occur in a single string or between two
lines, as shown by f1 and f2 in Figure 6. This faulty
condition might be attributed to mechanical damage,
degradation in insulation, cable aging, other external
factors, etc. Detection of this fault in low irradiance
is challenging, and failure to detect might cause fire
hazards in large PV stations.

2) Arc Fault: Arc fault in photovoltaics is caused by the
junction and conductor discontinuity due to damaged
insulation. Arc faults could be series or parallel. It can
also be either DC or AC depending on the location of
the fault with respect to the inverter. Parallel arc fault
current is higher than the series, thus can easily trigger
circuit breakers. The difficulty in detection comes from
the low-energy dc series arc fault. Early detection of arc
faults is extremely vital as this can lead to a hazardous
situation.

3) Hot spot fault: This is a type of mismatch fault arises
from the imbalance of power distribution in a PV
module that creates a localized overheated region. The

cells within this high-temperature region are forced into
reverse bias and act as a load and consume the energy of
other cells [84]. This fault is caused by shading over a
group of cells due to plants, vegetation, material defect
in PV cells or mechanical damage.

4) Mismatch Fault: A Mismatch fault takes place when
one cell or a group of cells has different electrical
properties in a PV module. This fault may be short
lasting due to conditions such as partial shading since
solar modules are susceptible to shading. Permanent
mismatch faults can be attributed to defects in PV cells,
degradation etc. [85]

5) Open and Short Circuit Fault: Open circuits in PV
modules can be attributed to factors such as old power
cables, overheating, poor connections, loose junction
box connectors, etc. This faulty condition can be linked
to other operational safety concerns like arcing, hot
spots, etc. Short circuits, on the contrary, are caused
by bad connections between modules, manufacturing
defects, contamination of cell surface, etc. Open circuit
(f3, f5) and short circuit (f4, f6) condition is shown in
Figure 6.

6) Other Faults: Several other faults can disrupt regu-
lar operation and prevent photovoltaics from obtain-
ing optimal performances. An accidental connection
between internal wiring with ground wire can cause a
line to ground fault. A bypass diode is a safety device
that has several functions in PVS. It reduces the shading
effect and prevents reverse current during hot spot fault.
Faults in bypass diode can be caused by a short-circuit
or open-circuit of the diode. Cracks in protective glass,
degradation in cells and defects in anti-reflective coat-
ing happen over the long-running operation of solar
modules

2) RECENT FAULT DETECTION TREND IN PVS
1) Machine Learning Models: Hussain et al. [86] stud-

ied open circuit faults using solar irradiance and total
power as features. Open circuit fault is categorized into
low fault with less than 30% PVmodules disconnected,
high fault with disconnectedmodules greater than 30%,
and string fault when an entire string is disconnected.
The input labelling is done using agglomerative hier-
archical clustering algorithm before feeding to the
supervisedML approaches, thus utilizing the advantage
of unsupervised model. The authors have employed
several ml models, including KNN, DT, SVM and RF.
The models achieved 100% accuracy on their dataset
when it did not have any noise or missing value. How-
ever, it reduced to 94% for Gaussian Naïve Bayes (NB)
with noisy and missing data in a 15-year-old PVS. To
detect series arc fault (SAF), the authors in this article
[87] proposed twin support vector machine (TWSVM).
SAF introduces fluctuations in the dc bus current. The
authors argued that traditional time domain analysis
is insufficient to differentiate the stable arc state from
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regular operation. Hence denoising is first performed
through hankel singular value decomposition (SVD) to
eliminate switching frequency and background noise.
Then, empirical wavelet transform (EWT) is applied
to obtain the modal component in both the time and
frequency domains. To achieve effective segmentation
in frequency spectrum, mathematical morphology is
applied to improve the EWT. Based on the compos-
ite multiscale permutation entropy (CMPE) of each
modal component of EWT, another study proposes
TWSVM [88] classifier and the hyperparameters are
optimized using the salp swarm optimization algorithm
[89]. The arc fault data was taken considering several
working conditions, such as dynamic shading, MPPT
adjustment, wind blowing and inverter startup. The pro-
posed model achieved 98.10% accuracy. However, the
applying EWT results in a slower speed, specifically
246ms. Cai andWai [90] combined an optimized varia-
tional mode decomposition (VMD) with support vector
machine (SVM) to detect dc arc fault. This method
decomposes the input currents in the time domain into
multiple sub-signals known as intrinsic mode functions
(IMFs) of different frequency components [91]. To
reduce the number of iterations for VMD to converge,
the parameters of VMD are optimized considering the
categorical correlation of features of each input sam-
ple. The extracted IMFs are input to the SVM. The
training of SVM is performed to search for nonlinear
hyperplanes. The parameters of SVM are optimized by
the particle swarm optimization algorithm [92] due to
its shortest search time. Additional comparison with
grid search and genetic algorithm is also carried out.
The proposed scheme can detect arc fault in different
scenarios such as inverter startup, wind blowing and
shadow occlusions achieving an accuracy of 98.21%.
Themethod can detect parallel arc faults as well. Adhya
et al. [93] employed light gradient boosting (LGBM),
categorical boosting (CatBoost) and extreme gradient
boosting (XGBoost) algorithms to detect line-to-line,
open circuit, partial shading, and degradation fault in
PV arrays. They used six features for the task. The
features include the ratio of current, voltage and power
at faulty condition to the normal operation at the max-
imum power point, hourly yield and efficiency of PV
array and the ratio of array capture loss at normal to
faulty condition. The Grid search algorithm is utilized
to find the optimal hyperparameters. The ML models
are compared with the random forest classifier, and
the LGBM model is shown to achieve 99.996% fault
detection and 99.745% fault classification accuracy. Xu
et al. [94] proposed fuzzy c-mean clustering (FCM)
algorithm based on the current-voltage (j-v) charac-
teristic curve and fill factor. The faults considered in
the study are short-circuit, open circuit, degradation
and partial shading. The model is further validated by

the intra-class maximum mean discrepancy (ICMMD)
method. Based on the value of ICMMD, reclassifica-
tion is performed to enhance the accuracy of FCM.
The proposed model obtained 100% accuracy on a
smaller dataset in a simulated environment. However,
dependency on the I-V curve makes the framework
offline.

2) Deep Learning Models: ML algorithms heavily rely
on manual feature engineering, which can be time
consuming and requires domain expertise [95]. As
the input dimensionality increase, ML models strug-
gle to capture complex patterns. On the contrary,
DL models with their hierarchical architecture learns
intricate patterns and generally more scalable and
capable of handling large feature space. Most com-
monly used DL models in fault detection are MLP
and variants of CNN. They are mostly modeled as
classification task. In [96], the authors argued that
using a single channel 1-D CNN tends to misclassify
PV system faults due to environmental interference
and inverter regulation. They proposed using both
time and frequency domains to enhance feature extrac-
tion ability. Hankel SVD is used on input currents to
eliminate the interference of inverter switching fre-
quency. Then FFT decomposition is applied to the
filtered data to obtain frequency domain signal. Both
time and frequency domain signals are processed in
parallel by 2 CNN models. Their output is concate-
nated and used for binary classification. The proposed
scheme can precisely detect low-energy arc faults with
96.67% accuracy. Hong and Pula [97] proposed a
three-dimensional CNN for fault detection from AC
and DC power data. The faults considered in this
study are line-to-line, open-circuit, and short-circuit
faults. The input measurements are first transformed
into a 2-D image using gramian angular summation
fields (GASF) [98] and a stack of 20 such images
is chosen to be the input of the CNN module. The
measurements were taken at the rate of 1536 Hz. The
proposed method is compared with machine learning
algorithms such as decision tree, random forest, k near-
est neighbor and support vector machines. 3-D CNN
outperforms these machine learning algorithms along
with 2D CNN, achieving 96.43% accuracy. Mustafa
et al. [99] proposed a multioutput classification scheme
using Bi-LSTM for fault identification and location
detection. Using line voltages, system voltage, current,
irradiance, and temperature as features for each time
step, three faults namely line-to-line, line-to-ground
and open-circuit faults are considered for the classifica-
tion task. Ten strings with ten modules per string PVS
is designed using PSCAD software to generate a large
amount of training and validation data for the proposed
algorithm under various temperatures and solar irradi-
ance. They showed BiLSTM to be superior compared
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to RF, 1D CNN, and LSTM with 99.94% fault classi-
fication and 99.54% location detection accuracy. The
article in [100] presents an interesting approach where
the average output power reduction in other words,
severity in case a fault occurs along with its type
is determined. The authors proposed a stacked gated
recurrent unit (GRU) network in a multi-output man-
ner. One output head is a classifier trained with a
cross-entropy loss function that predicts fault type.
The types of faults considered are open circuit, short-
circuit, aging, partial shading, dust accumulation, and
potential induced degradation (PID). PID refers to the
large voltage difference between PV cells and array
frames. In contrast to this research, this fault is not
typically studied in the literature. The other output
head predicts the severity of the fault trained using the
mean absolute error loss function. The hourly input
features namely, irradiance, temperature, zenith angle,
current and voltage are structured so that the model
using the past 24 hours’ data, can predict the fault
type and it’s severity every hour. The trained model is
evaluated using 5-fold cross-validation and compared
to CatBoost algorithm. The trained model outperforms
the CatBoost method obtaining 96.9% accuracy in fault
type prediction and 0.67 MAE when tested with ded-
icated sensor readings of irradiance and temperature.
However, the accuracy drops to 86.4% and 2.09 MAE
when tested with readings provided by satellite. This
outcome is natural since dedicated sensors can provide
precise readings compared to a satellite for a particular
area. The proposed approach is also tested with climate
data that is different from the climate the model is
trained with. Also, the capability to predict unknown
fault types is also tested. In both cases, the model
is able to provide satisfactory results. The model can
predict unknown faults for which the model is not
trained with, by selecting a threshold in the severity
estimation and considering it as a binary classifica-
tion problem. Voutsinas et al. [101] employed MLP to
detect short-circuit, open-circuit, and mismatch faults.
The proposed model structure consists of a regression
and a classification output head. The regression head
also predicts the fault type by outputting a number
between 0 and 4. The proposed algorithm obtained a
classification accuracy of 93.4% and mean absolute
error of 0.305. Monitoring large-scale PV plants using
UAVs increases efficiency, reduces time consumption
and human error. The authors in this article [102] pro-
posed a CNN model based on RGB images of PV
modules that are taken through UAVs. They tested their
algorithm on visual faults included burn marks, delam-
ination, snail trail, glass breakage and discoloration.
Due to the limited availability of training images, the
authors applied augmentation techniques to increase
training samples such as rotating, adding noise,

flipping, warping and blurring. The proposed model
is able to obtain classification accuracy from 91% to
100% on the tested fault conditions. The authors also
showed that the framework outperforms pre-trained
models such as VGG-16 and ResNet-50. Lu et al.
[103] developed a dual channel CNN (dcCNN), which
can automatically extract critical features and classify
them into different fault categories. The type of faults
considered in this study is line-to-line, partial shading,
and open circuit. The sequential current and voltage
data from PVS are first normalized and transformed
into an electrical time series graph (ETSG) and taken as
input to the dcCNN model. Discrete wavelet transform
(DWT) is applied to detect fault features that are not
obvious in time domain measurements, such as line-
to-line fault at low irradiance. The model architecture
consists of two stages; feature extractor and classifier.
In the first stage, two ETSG input for current and volt-
age are fed to two separate CNNmodules for extracting
relevant features. Inspired by the attention mechanism
in the classifier stage, the authors proposed using train-
able weights to train the model to automatically select
necessary features for the classification task. The pro-
posed algorithm was able to achieve 99.6% accuracy
outperforming convolutional autoencoder (1D-CAE),
deep residual network (1D-ResNet), and CNN without
the trainable feature selector. They have also con-
ducted case studies to detect faults under complex
conditions such as low irradiance and fault impedance.
However, the accuracy the proposed model is reduced
to 82.52% still outperforming other models. Uneven
dust accumulation cause thermal imbalance in different
regions in PV panels leading to lower power effi-
ciency and reduced lifetime. Fan et al. [104] proposed
a deep residual neural network-based (DRNN) method
to detect uneven dust concentration in PV panels. Raw
training images were subjected to processing such as
perspective transformation, silver grid lines removal,
and equivalent segmentation. Finally, the dust distri-
bution of the segments is clustered using the k means
algorithm. The proposed DRNN technique achieved
78.7% R2 score, outperforming the MLP model.

3) Transfer learning Based Models: DL models need to
be retrained before applying to a new dataset. Addition-
ally, DLmethods require a large amount of labeled data
for better generalization capability. However, in the
real world, quality samples on abnormal conditions
are challenging to obtain [105]. Thus TL approach
is recommended. TL refers to the process where DL
algorithms are pre-trained on a large dataset and later
fine-tuned on a limited number of observations. By
leveraging the learned representations of pre-trained
models, TL often leads to improved model perfor-
mance compared to training from scratch. For instance,
Shihavuddin et al. [106] used pre-trained EfficientDet
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and YOLOv5 models to detect surface damage in solar
panels and wind turbines. The dataset consists of opti-
cal and infrared images, which are fined tuned to detect
damaged areas in bounding boxes. While intersection
over union (IoU) is used to determine the overlap
between ground truth and predicted bounding boxes,
mean average precision (MAP) is used as the final
evaluation matrix. The proposed framework detected
surface damage in solar panels with 86.7% MAP.
Sung et al. [95] introduced a transfer learning-based
approach for detecting low-energy dc series arc faults.
The algorithm consists of two stages. A 1-d CNN
module is pre-trained to predict the presence of arc
faults from input currents. The knowledge storedwithin
the CNNmodule is transferred to an LSTMnetwork for
multi-class classification. Their proposed method can
detect no arc fault, low energy arc fault, and stable arc
fault condition. The algorithm shows 95.8% accuracy
outperforming other machine learning models, namely
SVM, RF, Light GBM, XGBoost and deep learning
model namely 2D CNN and 1D CNN. It is able to
detect arc fault within 63 milliseconds. The authors in
[105] discussed the correlation between the availability
of large datasets and model performance on automatic
fault detection. AI models generally perform better
with sufficiently high-quality training data. Even then,
training models in a lab environment might cause
inconsistent accuracy in real scenarios. Hence, the
authors proposed lightweight transfer learning, where
CNN is trained on the source dataset and later can be
fine-tuned on the target datasets. The source dataset
is created using photovoltaic power profile evaluation
software and an arc generator according to UL-1699B-
2018 standard. The target domain dataset is created
using four to twelve mono-crystalline solar cells. The
authors presented a mechanism for fault data augmen-
tation, where the wasserstein generative adversarial
network with gradient penalty (WGAN-GP) is trained
to generate fault samples from a latent vector. The pro-
posed algorithm achieved 96.4% arc detection accuracy
trained only on 20 arcing samples on the target domain,
where an increase in accuracy (98.7%) is observed
when the arcing samples are 300. The proposed tech-
nique outperforms other transfer learning approaches,
such as deep adaptation - deep convolutional GAN
[107], transfer RNN, and deep transfer learning with
VGG16 [108]. Guo et al. [109] employed transfer
learning-based LSTM for detecting different fault sce-
narios, namely shading, hot-spot and short-circuit. The
process relies on the difference between the anticipated
power of defective conditions and the actual power of
normal states. The factors affecting power generation
for photovoltaics, such as solar irradiance, temperature,
and humidity are first classified using adaptive k means
clustering algorithm. These predictions alongwith time

series data of normal operating conditions are used to
pre-train LSTM neural network. Finally, the LSTM
model is fine-tuned considering different fault scenar-
ios separately. Ahmed et al. [110] utilized seven layered
convolutional neural network models based on infrared
images to classify into three PV health categories:
healthy, hotspot and faulty. The trained model was able
to obtain 96% accuracy. Transfer learning is applied
by utilizing the trained model by fine-tuning to predict
five class categories. The extended categories include
bird drop, single cell defect, patchwork, string defect,
and shading and is shown to achieve 97.63% accuracy.
The framework is compared with pre-trained net-
works such as SqueezeNet, ShuffleNet and GoogleNet.
GoogleNet. While the proposed algorithm out-
performs them and requires less execution time,
GoogleNet achieves almost similar 97.62% validation
accuracy.

B. ML FOR IRRADIANCE FORECASTING AND PV OUTPUT
POWER ESTIMATION
Designing a solar PV system requires precise measurements
of diffuse horizontal irradiance. Weather conditions like solar
irradiance and temperature greatly influence the energy pro-
duction from PV systems. This causes production levels
of this energy source to vary, which poses a challenge for
power companies in balancing electricity production and
consumptionwhile using PV systems. To address this, numer-
ous machine learning (ML) algorithms have been employed
to predict solar irradiation and the output power from PV
systems.

Miranda et al. [111] developed a regression model where
the input features were the measure of global horizontal irra-
diance and a geographic coordinate. The dataset was prepared
from six locations for 11 years at half-hourly intervals. In
the cleaning process of the dataset, rejection of data in the
range 0.015 < clearness index < 1 was considered, whereas
for sunset and sunrise, it was 10. In the pre-processing
stage, seven variables were calculated by conducting feature
engineering. The ANN model showed better performance
compared to other models. However, the proposed methodol-
ogy used separate models for different locations. It is required
to have a single model with a combination of different zones
and horizons. Asghar et al. [112] proposed regularization-
based LSTM architecture to predict irradiance. The feature
engineering of the proposed network is a combination of
Pearson correlation, feature normalization, and 1-day lag
irradiance. The Pearson auto correlation determines the link
between input and output. The authors found that air temper-
ature and one-day lag are strongly associated with the output
variable, so these were used as input features. Next, a one-
day delay is applied to the normalized irradiance. To avoid
overfitting, dropout regularization was adopted in the LSTM.
By reducing data dimensionality, the Pearson correlation
resolves memory issues and limits computational complexity.
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TABLE 3. Recent research review on fault detection in photovoltaic system.

The result of the proposed method was measured against
the ANN method, and the developed method showed the
better accuracy. Abdel-Nasser et al. [113] combined LSTM
and Choquet integral to forecast solar irradiance. The LSTM
serves the purpose of achieving accuracy and the Choquet
integral does the aggregation of the input parameters. Cho-
quet integral will integrate the predictions of n number of
LSTM models. After aggregating, the Choquet integral will
provide the final forecast. The methodology was tested using
six different real-time datasets. As the proposed methodology

did not consider any data type, the process can be used for
different kinds of forecasting.

Kartini et al. [114] developed a novel hybrid method,
combining modified decomposition and a feed-forward NN
model. The method was used to predict an hour ahead global
horizontal irradiance. Depending on the weather data, the
value ofmodified decomposition varied. The input and output
of the model was group and used for the feed-forward NN.
When the neural network is optimized, a sigmoid activa-
tion function is employed to link each of the several layers
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TABLE 4. Recent research review on irradiance forecasting of PV using ML.

together. To predict solar power, Pavithra et al. [118] pro-
posed a method where average temperature, surface pressure,
wind speed, and humidity were used to prepare the dataset.
Levenberg-Marquardt algorithm was used for solar power
forecasting due to its high speed of operation with respect
to other algorithms. In the irradiance, it was found that
6.5-7.5 kW − hr/m2 occurred most of the time. They used
ANN to train the model. To get maximum power point irre-
spective of loads, the data of the model was used in the PV
array. While applying the data in the PV panels, the J-V
characteristic curve shows themaximum power at a particular
voltage. After that, LSTM was utilized to analyze the time
series data and predict future input parameters. Suresh et al.
used different CNN architectures (conventional CNN, multi-
CNN, CNN-LSTM) to provide better forecasts [115]. The
training time of CNN-LSTM is more than twice of other
CNN models. They collected solar data from a PV panel
of the Wroclaw University of Science and Technology. The
input parameters were irradiation, wind speed, and temper-
ature. At each 15-minute interval, the data was collected.
The CNN used 175,200*4 matrix (1)-D structure) where
the time step count is 175,200 and four columns are input

features (irradiation, wind speed, ambient temperature, and
PV module temperature). The efficiency of the CNN mod-
els was validated using the Autoregressive Moving Average
(ARMA) model. The advantage of the ARMA model is that
it has less computation cost and it can forecast faster than
CNN once it best fits. They implemented one-hour, day, and
week-ahead forecasting. In the case of an hour-ahead predic-
tion, all models performed similarly, and for the day ahead,
CNN-simple and CNN-LSTM performed similarly. CNN-
LSTM performed comparatively better than other models
when tested for the week-ahead forecasting. Jiao et al. [116]
used a Graph Neural Network (GNN) and LSTM to forecast
irradiance. The convolution GNN identifies the required fea-
tures and LSTM gathers the temporal correlations. The graph
matrix will be the input of the GNN layers and the recur-
rent LSTM layers will be cascaded to produce output. The
computation cost of the proposed method is O(max(E,W )),
where E is the edge number of the graph and W is the
edge number in the LSTM network. On the other hand, Ahn
et al. [117] aimed to forecast short-term power output based
on weather data. As weather can impact power fluctuations
for a short interval. They have proposed a deep RNN-based
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model. In this study, weather data, for instance, solar radia-
tion, temperature, humidity, wind speed, and PV power are
collected in real-time and used as input features. The data
were normalized using min-max scaling. Instead of batch
normalization, layer normalization was applied, improving
the training and test computation time. Their proposed model
showed better results for fiveminutes ahead power generation
forecast. However, the prediction capability is lower for an
hour and three hours ahead forecasting. The authors empha-
sized on using more weather features like cloud images, dust
sensors, etc. for better accuracy. It is evident that DL models
such as CNN, LSTM ANN, and ML models, for instance,
RF, ARMA, are the most commonly used techniques for this
purpose. This is due to their better handling capability of
sequential or time series data. Thesemodels typically perform
well for short-term forecasts. However, as the forecasting
horizon increases, the accuracy of the predictions may deteri-
orate. Additionally, these models are sensitive toward outliers
and missing values, which is very common when dealing
with real-world PV station data. Table 4 presents a brief
overview of the articles and proposed algorithms reviewed in
this section.

C. ML IN THE CONTROL METHODOLOGY OF PV
Proper integration of PV systems with the electricity grid
requires sophisticated control methods. This section exam-
ines various control techniques that utilize machine learning
(ML) to address the issues of maximum power point tracking
(MPPT) in electric PV systems.

Agrawal et al. [119] used a transformer-based model
for predicting the maximum power point. The model was
trained using multidimensional time series input features.
The dataset contains weather data from 50 locations. The
proposed method shows better accuracy (more than 99.5%
for both average and peak power). In the future, authors
will consider multiple data sources with more comprehensive
weather features and conditions to enhance the robustness
of the proposed model. Cao et al. [120] offered a reinforce-
ment learning-based PV voltage control for a distribution
system. Centralized offline training and decentralized online
execution are the two stages of the proposed method. From
historical data, the actor and the critic in the training stage
learned the optimal control strategy. In the next step, the
actor will take actions based on the parameters. In the pro-
posed method, no additional information can be used after
training as it is done and agents will make decisions based
on local information. The study in [121], proposed another
reinforcement learning-based voltage control system of PV.
The proposed method involved PV inverter’s reactive con-
trol without any data between PV inverters. The proposed
mechanism used reward state considering connecting point
voltage, action state considering reactive power output, and
reward state considering functional control of the network. By
observing the voltage, the actor calculates the reactive power.
Using the output, Critic updates the value function. The
updated value function works as an evaluation point to update

the probability policy by the actor. The proposed method
was validated using simulation. However, the scalability and
robustness need to be evaluated further as the method was
tested for a low number of clients.

Zaidan et al. [122] proposed a three-phase multilevel PV-
grid neural point clamp inverter that operates in the current
control mode. ANN-based MPPT controls the current ref-
erence of the controller. There are three layers in the ANN
MPPT. The temperature and the irradiance are the input
features of the ANN model and the maximum power point
voltage is the model’s output. The PV module of MATLAB
was used to generate the dataset. The proposed method’s sim-
ulation result showed unity power factor. This study in [123]
suggested a machine learning-based PV system’s maximum
power prediction method. PV Voltage, output voltage, PV
current, irradiance, and temperature were used as the input
features and the proportional integration value for MPPT
was the output feature of the supervised machine learning
classification model. The data was collected using MATLAB
Simulink and was processed into time-series form. To avoid
overfitting, the load current was discarded in the processing
stage. The model is dependent on generated data. The model
needs to test using real PV data. Mahesh et al. [124] devel-
oped a regression (linear and nonlinear) machine learning
algorithm to control MPPT. Likewise, [123] data was col-
lected using a MATLAB Simulink MPPT model. The model
predicts maximum power and corresponding voltage where
irradiation and temperature were input features of the model.
The output of the model will help to determine the duty cycle
of the boost converter. For both linear and nonlinear regres-
sion models, the accuracy was just over 95% which needs
to be increased. In the future, the authors will consider dif-
ferent partial shading patterns to check the robustness of the
proposed method. The research in [125] presented a machine
learning-based MPPT identification with a pre-existing per-
turb and observer method. To locate MPPT, the multivariate
regression model used irradiation, temperature, and humid-
ity as input features. The model produced accurate results
for high power range (900 to 1000) compared low power
range (0 to 100). The training time of the model was
high.

Mushen et al.’s proposed method for MPPT is based on the
gradient ascent method that considers first-order derivative to
update parameters [126]. Temperature and irradiance will act
on the PV module, which will produce voltage and current.
The gradient ascent method will use these to calculate the
parameters of PV models and the duty cycle correlated with
MPPT. The duty cycle is fed to the converter to identify the
MPP. The method considers that temperature is constant. The
method showed 68% power improvement compared to the
system without gradient ascent. To obtain the MPPT, a deep
learning-based method was developed by Rafeeq Ahmed
et al. [127]. Weather conditions such as light intensity and
temperature were considered the determining factors. The
technique involved two-stage tracking to find out the MPPT.
Initial data will be provided to the control and measurement
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unit, which will share the data with the MPP point search
unit. The search unit will return its findings and share the
inputs with the ANN module. ANN module will calculate
and share its result with the control and result unit. As the
ANN module is interfering with the result of the search
unit, it is not clear the purpose of the search unit. However,
the result of the MPPT is 98%. In another research [128],
the authors proposed an ANN-based method combining the
BP neural network and ELMAN neural network to produce
better results in different weather conditions. The data was
collected from National Renewable Energy Laboratory, and
the min-max method was applied to normalize the data to
keep the data in the range of 0 to 1. There were two types
of data. ELMAN neural network performed better for data of
small fluctuations, and BP neural network performed better
for large fluctuations. They combined both neural networks
to have a better result for every situation. Kofinas et al. [129]
proposed a reinforcement learning-based approach for MPPT
control of PV. The method allowed tracking and adjusting
a PV’s maximum power even without previous knowledge.
Despite having the PV source dynamics or having the char-
acteristics of the PV source predefined, the proposed method
solved the MPPT control problem. The algorithm’s goal is
to learn the system’s optimum configuration depending on
PV source performance. It is necessary to define a Markov
Decision Process (MDP) model of the source behavior to
apply a reinforcement learning strategy.MDP is a set of tuples
of a finite set of states of operating point, a finite set of
actions to change the state, transition function, and reward
function for correlating actions. AnMDP creates a sequential
model considering a series of state changes based on exe-
cuted actions to find the optimal policy for maximum payoff.
The best state action integration is used to export a policy.
The model needs to be optimized and state space can be
reduced. Mahesh et al. [130] also proposed an MPPT control
mechanism. They offered a decision-tree machine learning
algorithm to develop the model. The dataset was prepared
using the PV panel technical parameters. Themodel used irra-
diance and temperature as input features to predict maximum
power and voltage. The model’s predicted value determines
the duty cycle to produce maximum power by driving the PV
panel. The tracking efficiency of the work is around 94%.
The authors considered more partial shading effects as future
scope. Table 5 lists the cases in which ML has been used
in the control system of PV. In the case of grid-tied PVS,
abnormalities such as transient grid sags and solar irradiation
flickering can cause the system to go offline. A simultaneous
shutdown of PVS may result in unstable situations or out-
ages in the grid. So, adopting a fault ride-through scheme
is suggested to remain connected and assist in the voltage
recovery [131]. khan et al. [132] proposed an LVRT scheme
using neural network and Finite Control Set Model Predictive
Control (FCS-MPC). The NN acts as a fault detector during
voltage sags and signals the FCS-MPC controller to work to
stabilize the system. The proposed mechanism successfully

restored voltage within the time limit requirements indicated
in the grid codes [133].

D. ML IN PV SIZING SYSTEM
Appropriate sizing of a solar PV system is essential to ensure
the quality and consistency of a power supply and optimize
the financial life-cycle savings. Different ML approaches
have been used to determine the appropriate amount of pan-
els, battery storage capacity, tilt, and azimuth angles. The
work in [134] has developed the SolarMapper tool for map-
ping small-scale solar arrays at a large scale. It was made
utilizing CNN, which offers pixel-by-pixel labeling for input
data. Two significant experiments are run in this study. The
Duke California Solar Array dataset was used in the train-
ing part, which comprises 16000 manually identified solar
arrays and 400 km2) images. The performance metric showed
that the model was precise, with a precision of 0.76. The
researchers assessed the PV array’s installed surface area
based on the segmentation procedure before calculating the
solar capacity. The existing PV array capacity was then pre-
dicted using a simplified linear regression. By calculating the
parameters for each array using color imagery, the model was
able to attain a correlation coefficient of 0.91. The authors of
[135] proposed a topology reconfiguration method to opti-
mize PV arrays using ANNs. Numerous topologies were
considered in the study, including series-parallel topology,
parallel topology, bridge link topology, honeycomb topology,
and total cross tied. The simulation results demonstrate that
the proposed technique finds the best topologies to deploy the
PV panels with better accuracy (98%) than previous methods.
He has demonstrated the comparison with other Ml tech-
niques like support vector machine(SVM), Naive Bayes(NB),
and k-nearest neighbor(KNN).

In [136], a deep neural network (DNN)method is presented
for calculating PV size, tilt, and azimuth solely from meter
data. This method can predict PV size with an error of 2.09%
in a data set with fixed tilt and azimuth values and 3.98% in
a data set with variable tilt and azimuths. The mean absolute
percentage errors of PV tilt and azimuth are 10.1% and 2.8%,
respectively. This proposed strategy is more effective than
the benchmark linear regression approach. However, in sim-
ulations, the same irradiance measurement data were used to
generate several of the PV profiles, and they used synthetic
PV generated data for the evaluation, whereas the results in
the literature to which they are being compared are based on
actual PV generation profiles. In order to meet a home load
in a region without electricity, Vijay and Saravanan [137]
presented a new approach using a Bayesian optimization-
based regression tree (BORT) technique for calculating the
ideal size of a PV system. The proposed research assesses
the forecasted global horizontal irradiance (GHI) values and
the effectiveness of the Bayesian optimization was evaluated
in comparison to other existing approaches. According to the
results of the analysis, the BORT algorithm calculates GHI
with a lower mean square error than the current machine
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TABLE 5. Recent research review on control methodology of PV using ML.

learning techniques. The optimal design of a PV system
was effectively carried out using the predicted GHI. Table 6
contains a summary of the models that have been studied in
this section.

E. PV MANAGEMENT
Consumers are finding Energy Management Systems (EMS)
increasingly valuable for lowering their electricity costs and
improving efficiency, thanks to the integration of smart grid
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TABLE 6. Recent research review on sizing, management and site selection of PV using ML System.

technologies, including smart meters and demand-response
algorithms. The primary aim of an Energy Management
System is to arrange the energy flowwithin the system in real-
time, by reducing a pre-determined objective function, while
preserving a secure, dependable, and safe system operation. It
is possible to increase the effectiveness, stability, and perfor-
mance of solar systems and lower maintenance and operation
costs by utilizingmachine learning algorithms in photovoltaic
EMS. This section will review some of the ML methods used
in PV management.

The authors of [78] proposed a multi-objective predictive
EMS management plan for (HES) grid-connected PV-battery
hybrid energy systems (HES). As one of the three levels of
the control approach, they primarily used CNNs to estimate
energy production and electric load. Using hourly data on
energy and load, the suggested technique was evaluated for
both fixed and variable power costs. In simulations, high
coefficient of determination was found in the simulation
result for the predictions of energy output and electric load,
which were 93.08 %, and 97.25%, respectively. This new
model considerably reduced carbon dioxide emissions and
power costs compared to homes without hybrid energy sys-
tems and homes with hybrid energy systems but no energy

management plan. Regarding trade-offs between financial
profitability, computational burden, and privacy, Müller et al.
[140] comprehensively analyzed forecasting-based optimiza-
tion for residential EMSs. The study’s base consists of two
PV battery systems owned by actual prosumers, each with an
EMS, a stationary storage system, and rooftop solar power.
They also investigated the sensitivity analyses for seasonal-
ity and forecasting horizon. Gradient-boosted decision trees
were used for forecasting purposes. rRMSEavg of PV for
Prosumer 1 and 2 were 0.36 and 0.411, respectively, whereas
the rRMSEavg of loads were 0.604 and 0.701, accordingly.
The results indicated that, compared to a situation without
a battery, the maximum potential profit in the two prosumer
scenarios over 14 months was 466 and 555 euros. This model
can be applied to new systems without an extensive data
record, over 90 % of the potential financial gain was attained
at a significantly lower computational complexity than in
previous cases with comparable savings. This scenario was
resistant to changes in weather model inputs and did not have
a dependency on complex pricing forecasts.

In [138], a centralized EMS was used in combination with
diesel generators sets (DGs), battery storage systems (BSS)
and PV systems to reduce the grid power consumption and
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also to make the most of the use of hybrid power sources in
the building. They compared different modules, like linear
regression (LR), regression trees (RT), and artificial neu-
ral networks (ANN) to predict the most accurate outcomes.
Compared to the other algorithms, LR reduced the total
grid power by up to 7346.103 KWh, and coarse tree by up
to 7414.583 KWh. Regarding reliably forecasting standard
grid power in a distribution network, it was apparent that
Linear Regression (LR) and Regression Coarse Tree (RCT)
performed better than other methods. The outcomes were
validated using Matlab simulation software. The technique
presented in [139] proposed a novel demand response pro-
gram (DRP) for renewable-based microgrids (MGs), which
considers tidal units and solar energy in the power sys-
tems. They developed a predictive scheduling structure that
was optimal for renewable MGs. The system modeled and
predicted different renewable energy sources (RESs) of PV
and tidal units. Grey wolf optimization algorithm (GWOA)
and generative adversarial network (GAN) were combined
in a novel optimization method that successfully solved the
issue. The IEEE experimental grid simulation results showed
that the suggested GAN layout outperformed the SVR, AR,
and ANN in predicting the output power of the tidal and
PV agents by providing lower RMSE and AAPE quanti-
ties. Table 6 provides information on the papers that have
reported on estimating PV output power and forecasting
irradiance.

F. SITE SELECTION FOR PV INSTALLATION
Recently, the concept of ‘‘site adaptation’’ has emerged in
respect to solar energy installations. The reliability and over-
all quality of the solar radiation data collected during the
solar resource evaluation process determine the profitability
of any proposed solar power facility at that location. The
most frequent solutions to this issue involve statistical tech-
niques that adapt satellite estimations to in-situ data [142].
Only a few works have used ML techniques to tackle this
issue.

To create a model that could precisely depict the point-
to-point connection between meteorological station obser-
vations and satellite data, Narvaez et al. [141] evaluated
different ML regression techniques. The input variables were
the satellite-based data, while the estimated in-situ global hor-
izontal irradiance measurements were the output. The author
used ANN, RF, AdaBoost, and LR models for the evaluation.
Quantile mapping, a traditional site adaption technique was
used to analyze the outcomes of the various methods. It was
evident that almost every ML model beat quantile mapping
when comparing the RMSE, R2, and MAE measures of the
models. The random forest model performed the best across
all benchmarks. The daily and weekly forecasts produced by
the random forest model haveminimumR2 values of 0.89 and
0.83, accordingly. According to the results, site adaptation
using machine learning models outperformed conventional
methods by up to 38%.

VI. DISCUSSION AND RECOMMENDATION
The previous sections explore numerous ML strategies used
for the fabrication phase and across different areas of PV
systems. This part provides an overview of the current
research directions and highlights some innovative meth-
ods that should be considered when evaluating the latest
developments.

Our survey of ML applications in solar cell fabrication
revealed that the RF, LR, XGBoost, and ANN algorithms are
the most widely utilized techniques. These findings are visu-
ally presented in Figure 7, which provides a clear overview of
the percentage distribution of each algorithm’s usage. These
results serve as valuable guidance for researchers and practi-
tioners seeking to optimize the implementation ofML in solar
cell fabrication. We also found that XGBoost outperforms
other algorithms in optoelectronic prediction, while RF, LR,
and ANN algorithms are better suited for predicting electrical
parameters.

FIGURE 7. Statistical analysis for different algorithm used in the
fabrication of PV cells.

Based on the results obtained from our survey, we have
compiled the findings for solar cell fabrication in the follow-
ing summary:

• In recent years, there has been a notable shift in research
emphasis within the field of solar cell fabrication, with
increasing attention directed toward PSCs in conjunc-
tion with the implementation of ML techniques.

• For ABX3 perovskite A site cations have the most signif-
icant impacts on PSCs performance.

• FA+ from the A site cation plays a substantial role
in PSCs performance. We have observed from our
reviews that combining FA+ with other cations from
the A site results in improved device performance.
However, to achieve the best results, the percent-
age of FA+ cations should be higher than the other
cations.

• introduction of mixed cations (multi cation and 2D/3D
crystal structure) as absorber layer in PSCs has emerged
as a promising strategy for enhancing their performance.

• Bandgap around 1.55eV - 1.60eV would have been the
best suited range for perovskite materials.
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• Hole Transport Material should also been taken into
consideration as it plays a crucial role in suppressing
charge recombination at the perovskite interface.

While straightforward conventional methods still hold
significance, many researchers are using NN to track the
maximum power point of a PV system. Although NN
exhibits superior performance compared to traditional meth-
ods, they still have limitations like complex optimization of
hyper-parameters and need for large amount of data. Most
papers that worked with MPPT utilized Matlab as their
programming environment. However, there is a requirement
to create additional standard scenarios using open-source
programming languages like Python. In fault detection, our
attention is drawn toward the lack of solid experimental
results from testbeds and the evaluation of advanced ML
techniques, such as vision transformers. These cutting-edge
models have the potential to outperform other conventional
methods like CNNs.

A critical challenge with PV systems is forecasting future
energy generation. Currently, most forecasting algorithms
rely on recurrent units. However, it is essential to assess
more recent approaches to time-series prediction, such as
transformer topologies, which focus entirely on attention
mechanisms. For PV power forecasting, it is recommended to
use ensemble algorithms, when working with little data and
algorithms like SVR, LSTM and ELM (Extreme Learning
Machine) are recommended for researchers with an ample
amount of data. In our opinion, more work has to be done to
create new platforms for EMS in which academics can evalu-
ate their algorithms like OpenAI Gym. Investigating a wider
range of data processing approaches is advisable because
ML strategies for site adaptation are currently under devel-
opment. Depending on the local environment, dust, snow
accumulation, bird droppings, and atmospheric pollution can
significantly reduce efficiency and power output. Therefore,
routine cleaning can provide optimal working conditions.
Some automated cleaning techniques include brush cleaning,
Heliotex cleaning, electrostatic cleaning, robotic cleaning,
etc [143]. However, the absence of research on ML applica-
tions in PV panel cleaning is particularly noteworthy. Future
researchers may address this. The interconnection between
several subsystems is a crucial aspect of using ML prediction
tools. Additionally, the use of wireless networks that connect
to robots cleaning the surfaces of the modules is growing in
popularity.

While ML holds great promise for enhancing solar cell
fabrication processes, several challenges must be overcome:

• Solar cell fabrication research heavily relies on experi-
mental data, often scattered across various publications
and not readily accessible in a structured format.
Researchers face difficulties in obtaining datasets that
accurately capture the complex interplay of process
parameters, material properties, and cell performance
metrics under specific lab conditions. This lack of
data availability hampers developing and deploying ML
models tailored for solar cell fabrication.

• In addition to integrating existing data, researchers need
to focus on collecting lab-specific datasets that capture
the nuances of their experimental setups and conditions.
Collaborations between research institutions, industry
partners, and data scientists can help to establish data
collection protocols, encourage data sharing, and fos-
ter a culture of open science. Such efforts can provide
researchers with valuable datasets that accurately repre-
sent real-world fabrication processes.

• According to the discussion, different models used in
this field are not interpretable, require a large amount
of training data, and are computationally inefficient to
implement in real life. Most of the research considers
a fixed environment, as there is no certainty that those
models could quickly adapt to new solar systems with
different characteristics and climatic conditions. There-
fore, further study is needed to confirm that an algorithm
trained on one PV system can successfully execute in
another method to ensure the technology’s widespread
use.

Overcoming these challenges will pave the way for more
efficient, reliable, and sustainable solar energy solutions.

VII. CONCLUSION
This study provides an in-depth survey of the recent ML
application in photovoltaic research. We have reviewed over
100 articles dating from 2020 to 2022. The review discussed
critical areas for ML application in both PV cell fabrica-
tion and PV system optimization in an end-to-end manner.
Numerous difficulties relating to the fabrication,installation
and analysis of PV systems could be solved using ML.
Additionally, we have identified a number of scopes that
are possible areas of exploration for future work in this
area -

• DL is not normally used in the fabrication process. We
have identified that the need for a large and quality
dataset is the main limiting factor against utilizing deep
learning architecture in the fabrication processes.

• RL-based approach is the most effective in MPPT tasks.
Studies at this stage mainly utilize the dataset available
through simulations and often lack sufficient generaliza-
tion to apply to real-world scenarios. Further study is
needed to confirm that an algorithm trained on one PV
system can successfully track MPP in another method
to ensure the technology’s widespread use. Enhancing
the speed and accuracy of MPP recognition, creating
control schemes that maximize power generation in PV
systems, and looking at the potential to increase PV
inverter efficiency should be the main priorities.

• The study explores prevalent faults that significantly
hamper the performance, durability, and safety of PVS.
Moreover, various ML methodologies employed by
researchers to mitigate these faults are examined. It is
evident that, different studies mostly focused on differ-
ent set of faults, rather than adopting a more unified
approach.
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• ML agents that are trained on a particular system con-
figuration often necessitate retraining when applied to
a different PVS. Nonetheless, the availability of ade-
quate abnormal condition data for proper training may
be limited, leading to potential performance issues.
Additionally, since the models only rely on historical
data with known fault type, they may not recognize
new or unknown faults. To address this challenge, the
establishment of a large benchmark dataset compris-
ing diverse fault scenarios is essential. Consequently,
we suggest knowledge transfer approach, utilizing this
extensive dataset, would prove to be effective in enhanc-
ing fault detection performance across various system
configurations.

• Although ML has proved effectiveness in optimizing
system performances, certain aspects, including PV
panel recycling, reuse after decommissioning, and fault
ride-through schemes, are crucial factors. Regrettably,
the available literature on ML approaches related to
these specific topics is lacking. Consequently, further
research is necessary to explore and develop ML-based
methodologies to address these important areas.

• While existing literature presents models with remark-
able accuracies in personal computing workspaces, the
practical deployment of ML agents in real-world PVS
(Physical Visual Systems) is often neglected, indicat-
ing a significant research gap. Addressing this aspect
deserves increased attention and investigation. Pipelines
like TinyML or EdgeAI can be explored, which hold
potential for facilitating the integration of ML agents
into PVS applications.

The data in the industry at the moment seem to be incon-
sistent. However, it is anticipated that the issue of insufficient
data will be solved by the introduction of internet of things
solutions, the use of multiple sensors, the integration of
drone-provided video streams for maintenance, and the use
of natural language processing techniques. The article can be
used as a reference for further research into PV technologies
to design and manufacture efficient PV cell structure as well
as to guarantee safe and reliable operation. In summary, this
workwill be beneficial for readers, researchers, and engineers
working in the field of PV systems, providing a complete
insight starting from fabrication to operation.
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