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ABSTRACT Tidying up objects poses a complex challenge for service robots, particularly when it involves
scheduling operations that require real-time action for achieving optimal results. This paper presents
a decision system aimed at selecting priority locations to address the problem of robots searching for
miscellaneous items in indoor environments. Initially, three datasets with varying complexities are generated
using real environmental data, and the environmental information is integrated into feature matrices.
Subsequently, the rule base of the fuzzy inference system is trained and optimized using an equilibrium
optimizer, and its performance is compared with other commonly used algorithms. The feature matrices
and the optimized rule base are then incorporated into the fuzzy inference system, leveraging the traveling
salesman problem to determine the optimal sequence for visiting locations. The accuracy and efficiency
of the proposed method are validated through physical implementation tests using analog data. Finally, the
system is applied and evaluated in real-world scenarios to validate its effectiveness. The video of experiment
is available at https://youtu.be/rjMDgopM-9M.

INDEX TERMS Autonomous mobile robot, equilibrium optimizer, fuzzy inference system, tidying up object

problem, travelling salesman problem.

I. INTRODUCTION

Tidying up objects is a challenging task for robots as
it requires the integration of multiple technologies such
as environment recognition, object identification, SLAM,
kinematics, power distribution, and visual identification [1].
The task demands the efficiency of robots’ overall perfor-
mance. Recently, several studies have conducted research
on robotic tidy-up technology. For instance, the Human
Support Robot (HSR) has been proposed as a solution to
household problems. Literature [2] have demonstrated how
the HSR can accomplish tasks in various environments,
explained robot mechanisms, and described the results of
using HSR during the competition of RoboCup@Home,
highlighting the growing need for robots in social life.
Reference [3] used quantifiable hierarchical methods to
analyze man-defined actions and make simple and effective
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decisions for easy to complex sorting tasks. Similarly, another
literature [4] proposed a model general software structure
for Automatic Mobile Manipulator Robots. These robots can
smoothly navigate narrow indoor spaces, use complex human
voice commands to interact with humans, independently
detect objects, and accomplish various home tasks. In [5],
the use of HSR applications, through visual recognition,
object manipulation, and motion planning technology, was
described to achieve home sorting tasks.

In addition to the application of HSR in sorting sundries,
scholars also considered the geometric shape and color
information of objects together to split and align various
objects in the point cloud. The principal components analysis
(PCA) scheme [6], [7] was adopted to estimate the object
frame and its placement status so as to find the objects
that might need to be sorted by strategy. Literature [8] put
forward a robot system of automatic sorting of tableware for
tidying up tableware in cafeterias which have large amounts
of tableware. The focus of [8] is to classify and collect the
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tableware placed on the tray detected by an RGB-D camera.
The effectiveness of the prototype robot and the auxiliary
rotating machine was verified by experiments during which
two kinds of rotating machines grasped tableware, discarded
leftovers, and collected multiple tableware, while multiple
robots sorted overlapped tableware.

Numerous studies and applications have been carried out
on home organizing. However, if the number of objects to
be sorted is too high, robots may need to repeatedly retrieve
miscellaneous items and carry them to their designated
location, resulting in significant electricity consumption and
increased time. To address this issue, this study utilizes both
self-made and commercial robots equipped with baskets as
mobile carriers.

The fuzzy inference method, proposed by Professor Zadeh,
transforms human experience and cognition into fuzzy
judgment rules. This is done by quantifying membership
degrees with mathematical functions, which ultimately
deduce the size of the control quantity. Fuzzy set theory has
become increasingly popular in intelligent systems due to
its simplicity and resemblance to human reasoning. Recent
research has shown that technology integration proposed
by many scholars performs well. The rule base is defined
according to the relationship between the specification set
and language label, and a fuzzy knowledge map is generated.
Machine learning experiments using this approach show that
it effectively reduces operation time and improves accu-
racy [9]. In [10], membership function of fuzzy inference was
used as a feature and integrated with the analytic hierarchy
process to adopt the Takagi-Sugeno-Kang (TSK) inference
system to infer communication between vehicles. This was
used to summarize the application of the final forwarding
decision, and experiment results showed good scalability.
Another paper [11] applied fuzzy inference systems to
robots using the Evolving Fuzzy Logic System for Socially
Assistive Robots (EFS4SAR). This approach combined the
traditional rule-based fuzzy logic system with an evolutionary
algorithm for socially assistive robots. This method was
modeled through the evolutionary process of nature and
proven to be creative. Experimental results showed that
fuzzy rules evolving over time were personalized according
to individual preferences and treatment needs of patients
and were of higher originality. Finally, the Adaptive Neuro-
Fuzzy Inference System (ANFIS) integrated with Global
Positioning System (GPS) was used to develop an automated
guided vehicle (AGV) collision-free system. This was tested
in a noisy environment through simulation and showed good
performance in terms of both time and path [12], [13], [14].

Recent literature suggests that the integration of fuzzy
inference is highly compatible and provides reasonable
solutions to various problems. As such, this study takes the
fuzzy inference method as the theoretical basis and integrates
it with metaheuristic algorithms to explore how to prioritize
the location of robots when tidying up objects.

Many scholars have proposed the development of
metaheuristic algorithms, with popular ones including
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Particle Swarm Optimization (PSO) [15], Genetic Algorithm
(GA) [16], Artificial Bee Colony Algorithm (ABC) [17],
Grey Wolf Optimizer (GWO) [18], Sine Cosine Algorithm
(SCA) [19], Whale Optimization Algorithm (WOA) [20],
Harris Hawks’ Optimization (HHO) [21], Equilibrium Opti-
mizer (EO) [22], and Prairie Dog Optimization Algorithm
(PDOA) [23]. These algorithms are widely used in various
fields. In recent years, scholars have proposed several
metaheuristic algorithms to solve scheduling problems. For
instance, a hybrid particle swarm optimization (HPSO)
method was used to solve the problem of idleness
in the flexible assembly system (FAS), achieving the
minimum completion time [24]. An MVO-GA method
was proposed to improve the computing efficiency of
the cloud and accurately assign tasks based on different
characteristics [25]. The Discrete Artificial Bee Colony
(DABC) algorithm was used to minimize manufacturing
time for the Distributed Heterogeneous No Wait Flow-shop
Scheduling Problem (DHNWFSP) [26]. Similarly, GWO
was used to effectively deal with job shop scheduling
problems [27]. A multi-objective method based on the
Modified Sine-Cosine Algorithm (MSCA) was proposed to
optimize completion time and energy for task scheduling
problems of MPS [28]. An Improved Multi-Objective Whale
Optimization Algorithm (IMOWOA) was proposed to solve
the MOHFSP-DRP and obtain the optimal solution set
based on Pareto [29]. The integration of two metaheuristic
algorithms also showed promising results, as seen in the
improved Harris Hawks Optimization (HHO) algorithm
based on Simulated Annealing (SA) for scheduling jobs in
the cloud environment [30]. Scholars have also proposed
integrating the Equilibrium Optimizer (EO) and White
Shark Optimizer (WSO) to find better scheduling for
the Power Schedule Problem (PSP) and improve overall
optimization [31].

The literature reviewed above shows that the integration
of metaheuristic algorithms with technologies from different
fields has significantly improved job scheduling methods
proposed by scholars. Furthermore, numerous experiments
conducted in various fields have demonstrated the effective-
ness of metaheuristic algorithms in solving job scheduling
problems. Therefore, this study aims to conduct research
on optimization integration using metaheuristic algorithms
and fuzzy inference systems. Simulation tests will be
conducted in different dimensions and in a real environment.
Specifically, the study will focus on the task of two robots
tidying up objects and determining the best position for each
object to be tidied up.

The Traveling Salesman Problem (TSP) involves finding
the shortest route for a traveling salesman who must visit
a set of cities without repetition, starting from one city
and returning to the starting city. It is a graph heuristic
combinatorial optimization problem. Heuristic algorithms
used to solve TSP can be broadly classified into construction
heuristics algorithms and improvement heuristics algorithms.
Construction heuristics algorithms start from an empty
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solution and add solution components repeatedly until the
complete solution is constructed. Examples of construction
heuristics algorithms include the Greedy Algorithm [32]
and Dynamic Programming [33]. On the other hand,
improvement heuristics algorithms take a solution generated
by a construction heuristics algorithm as the starting point
and spend more time repeatedly refining it to improve
its quality. Examples of improvement heuristics algorithms
include the GA [34], ACO [35], and PSO [36], [37].
Some scholars have also applied various optimization
methods in machine learning to solve TSP and have made
progress [38], [39], [40]. Based on the literature mentioned
above, the proposed approach in this research aims to address
the problem of location priority in TSP by employing fuzzy
inference systems combined with metaheuristic algorithms
such as the Greedy Algorithm, Dynamic Programming, and
Genetic Algorithm. The theoretical analysis and experimental
results demonstrate that this method is highly efficient in
optimizing TSP.

Other sections in this paper are described as follows:
Section II provides a problem description, including the
robots used, the software structure, and the environment.
In Section III, we describe the method proposed in this
paper, explain the overall system structure, and present
the feasibility of experiments. Section IV presents the
experimental results, which include comparisons between the
proposed method and other methods in different dimensions.
Finally, Section V summarizes the findings and implications
of the research, shedding light on potential directions for
future studies.

Il. PROBLEM DESCRIPTION

This section describes how to set up an environment in a
space and considers how to effectively tidy up objects using
a robot after placing them randomly in this environment.
The problem description is mainly divided into three types,
namely, environment description, robot description, and
description of tidying up.

A. ENVIRONMENT DESCRIPTION
The reason for defining the environmental parameters at
the beginning of the research was to verify if the method
employed in this investigation could effectively collect the
path data of objects through simulation. Once the simulation
results confirmed the feasibility of the method, the data
would be further tested in an actual environment. For the
experimental setup, two shelves and a table were designated
as the areas where objects were randomly positioned. The
extent of the environmental field is illustrated in Figure 1.
As depicted in Fig. 1, the green dots indicate the areas
where objects can be randomly placed, which include a table
(1.5 m % 0.8 m) and two shelves (0.9 m % 0.5 m). The
environmental locations were measured in the real field. The
orange marks correspond to six positions that are considered
ideal for the robots to tidy up the objects. These positions are
denoted as Pos. 1, Pos. 2, Pos. 3, Pos. 4, Pos. 5, and Pos.
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FIGURE 1. Description of the field for tidying up.

TABLE 1. List of objects to be tidied up.

(a) crosshead screwdriver (b) slotted screwdriver

v

(d) object cardboard box (e) part box 1

(c) box cutter

(f) part box 2

6. The blue marks indicate the initial and final points of the
robots, which are also the starting and ending points of the
tidying up process. These points are denoted as Pos. 7, Pos. 8,
Pos. 9, and Pos. 10.

B. ROBOT APPLICATION PLATFORM DESCRIPTION

The first application platform used is a self-made Automatic
Mobile Manipulator Robot (AMMR) shown in Fig. 1(a). This
type of AMMR has AGV mobility, allowing it to move freely
to any point in space. The robot is equipped with a mechanical
arm to grasp objects, and there is enough space above it to
place objects to be tidied up, making it suitable for tidying up
tasks.

For the structural design of AMMR, the upper end was
designed with a 641 axis series mechanic arm, a depth
camera (the “eye” in hand), an end suction cup, and
embedded systems including NANO and NUC, as well as a
computer. Among the embedded systems, NANO was mainly
used for image recognition, NUC was used to control the
moving position of the chassis of AMMR, and the computer
was used to calculate the overall arm kinematics of AMMR.

The lower end of the robot was implemented by a
wheeled mobile chassis mechanism, which enables the
robot to successfully complete the instructions according
to the moving path. Since the robot in this experiment
was designed to optimize its path when moving, it was
capable of automatically moving to the location selected by
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the identification system [41]. The mobile chassis of the
robot is equipped with the simultaneous localization and
mapping (SLAM) system. The chassis sensing system is
based on a set of RGB-D cameras and dual 2D optical radars.
After comprehensively analyzing the sensed information,
this system uses ORB characteristic values to obtain the
current location of the robot and model the field. It also
extracts key frames to improve accuracy and reduce the
processing flow of multiple images. The SLAM technology
uses closed-loop detection to correct errors in map modeling.
The SLAM design algorithm used in the chassis integrates
data from the depth camera and optical radars simultaneously
and dynamically adjusts the weight according to the real
environment to improve the overall positioning accuracy of
the robot.

(a) AMMR.

(a) OMRA.

FIGURE 2. Robots application platform.

The second application platform used in this research
is the Omnidirectional Mobile Robot Arm (OMRA) as
shown in Fig. 2(b). It was equipped with a TMS5-700m
six-axis cooperative robot arm on the top of the plat-
form, which had a TOYO’s parallel claw at the end.
An Intel® RealSense™ L515 depth-of-field camera was
installed onto the arm to detect and recognize an irregular
tool in an unknown state, allowing the robot to flexibly
grasp and release the tool through the point cloud and image
information. The chassis had omnidirectional mobility using
Mecanum wheels, allowing the robot to move laterally and
obliquely. Dual LiDARs were equipped on the left front
and right rear of the robot, which provided the robot with
information around itself with no blind spots when moving.
The SLAM Algorithm was utilized to construct the environ-
ment map, position and navigate the robot, which enabled
it to plan the route in the scene and reach the designated
location. Compared with the traditional differential wheel,
the designed robot had more diverse behaviors and ranges of
movement.

C. DESCRIPTION OF TIDYING UP OBJECTS

The objective is to efficiently tidy up objects that are
randomly placed in a workplace. The objects that need to
be tidied up are mainly tools that are frequently used by
workers, such as screwdrivers, utility knives, screws, nuts,
and boxes. The end-effector selected by the robot for grasping
and absorbing objects had a clamping force of no more than
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2 kg. The objects that can be clamped are listed in Table 1.
During the process of tidying up, the depth camera set up
in the environment initially recognizes the randomly placed
objects and then marks the position of each identified object.

The robots were used to tidy up randomly placed objects in
a workplace. The objects consisted mainly of tools frequently
used by workers, such as screwdrivers, utility knives, screws,
nuts, and boxes, and the maximum clamping force of the
robot’s end-effector was 2 kg. The depth camera set up in
the environment first identified the objects randomly placed
in the environment and marked the position of each identified
object. The robots then selected the most appropriate position
to move and tidy up the objects based on the method described
in Section III. The AMMR robot was used to absorb and
tidy up boxes, while the OMRA robot was used to grasp and
clamp objects. Once objects were collected at one location,
the robots would identify if there were any other objects left in
the environment. If the task of tidying up was accomplished,
the robots would return to their original starting positions.
The process of tidying up is shown in Fig. 3.

Thesis

The tidying up procedure > Object
method

begins recognition ’

A ¢

acquire
the objects

Complete the tidying
up of objects

Is the area done with
tidying up objects ?

FIGURE 3. Process of tidying up.

1Il. ADAPTIVE FUZZY INFERENCE DECISION STRATEGY
METHOD

This section discusses the research methodology, including
the research design, proposed methods, simulation environ-
ment, and physical environment strategy evaluation. The
research design aims to integrate the Fuzzy Inference System
(FIS) and Equilibrium Optimizer (EO) algorithm into the
Adaptive Fuzzy Inference Decision Strategy (AFIDS). The
resulting AFIDS combines TSP with GA to determine the
optimal location for the robot to identify and tidy up objects.
The research methodology encompasses a set of processes
and settings related to tidying up that must be completed
to achieve the research objectives. Based on the research
purpose, problems, and objectives, the integration is designed
to facilitate the research.

A. METHODOLOGY DESIGN

This section discusses the location scheduling of robots in
a messy environment. At first, literature on the advantages
of FIS and the characteristics of metaheuristic algorithms
were reviewed to determine their applicability to scheduling
or adjustment problems related to adaptive functions. The
most important attributes include the number of objects to
be tidied up, obstacle avoidance, path length, and speed of
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TABLE 2. The relationship between the fuzzy set input parameters and
the membership degree of the tidy up location for objects.

Feature, Feature, Relation  Fuzzy Set Relation
Level, [01/9]

Level, [1/9 2/9 3/9]
) Levels [2/9 3/9 4/9]
F,.;’”f F;”-‘ [01] Level, [3/9 4/9 5/9]
Levels [4/9 5/9 6/9]
Levels [6/9 7/9 8/9]

Level, [8/9 9/9]

TABLE 3. Incorporating the priority of location selection into the output
parameters and membership functions relationship.

Output Relation Fuzzy Set Relation
Best (Lv.1) [0 1/9]
The degree of Better (Lv.2) [1/92/9 3/9]
superiority or Good (Lv.3) [2/9 3/9 4/9]
inferiority of the [01] Normal (Lv.4) [3/9 4/9 5/9]
tidy up locations Bad (Lv.5) [4/9 5/9 6/9]
for objects Worse (Lv.6) [6/9 7/9 8/9]
Worst (Lv.7) [8/9 9/9]

tidying up. The efficiency of tidy up mainly depends on
the evaluation criteria for the best location according to the
task schedule to generate a high tidy up rate. Therefore, this
paper proposes a genetic scheduling method that integrates a
hybrid metaheuristic algorithm and fuzzy inference decision
strategy.

B. FUZZY INFERENCE SYSTEM

1) FUZZY SET

The process of selecting the optimal location requires critical
feature factors, which can only be accurately determined
through computation. To address this issue, scholars in
literature [42], [43], [44] proposed using fuzzy sets to
select features that can improve the identification results.
By employing fuzzy inference methods to recognize datasets,
satisfactory results can be achieved.

Membershi
Function

p*
Level, Level; Levels Level,
Level, Level, Levelg

Feature;

FIGURE 4. Fuzzy sets.

The method of selecting the optimal location using fuzzy
theory mainly consists of environmental characteristics that
constitute the entire set, as shown in Fig. 4. Then, membership
functions are used to quantify the fuzzy sets. For the
application of fuzzy theory, we use the fuzzy set with multiple
feature values to analyze and judge the priority level of each
location to obtain the most objects, as shown in Table 2.
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In Table 3, the context of determining the priority sequence
for organizing objects in the environment, we select two
features for evaluation. The F’ l.‘?"s’ between objects scattered
in different areas and the current position information of the
robot, as well as the number of obstacles information Fl.o.bs
between each location i in the environment and the robot’s
position j.

Initially, we prioritized the feature of distance between
locations, aiming to minimize the overall time required
for organizing the environment. However, since the robot’s
grasping motion is fixed, the time required for each object
retrieval remains constant. Therefore, our tests did not show
a significant reduction in the overall time required for
environmental organization.

As a result, we considered the feature of obstacle quantity
between locations. We assumed these obstacles could be
other robots or randomly generated obstacles. The presence
of obstacles would lead to waiting time for the robot to have
them removed or to navigate around them. Our main focus
was to minimize the waiting time during the object retrieval
process. Therefore, by minimizing the number of obstacles,
we aimed to minimize the time spent waiting for their removal
or navigating around them.

Combining the information, we can conclude that the
feature of relative distance and the feature of obstacle quantity
between locations have a significant predictive capability for
determining the priority order of robot’s location organization
in the environment. However, it should be noted that the fixed
grasping motion limits the effectiveness of solely considering
the distance feature. By incorporating the obstacle quantity
feature, we can achieve a more efficient organization
process.

To simplify the feature information complexity, the
membership degree of the two feature sets is normalized
to [1, O]. ng“t has seven levels, ranging from Level; to
Level7, where a higher level indicates a greater distance and
an unfavorable relative position decision. Similarly, F 5’” is
also divided into seven levels, ranging from Level; to Levely,
where a higher level represents more obstacles in the interval,
resulting in a more complex position decision. Table 2 shows
the selection order of location priorities, with the output
membership degree ranging from 0 to 1. The fuzzy subset
definitions for the output are as follows: Best, Better, Good,
Normal, Bad, Worse, and Worst.

2) MEMBERSHIP FUNCTION

The membership function is characterized by quantifying
the properties of a fuzzy set through mathematical formulas
after the fuzzy set has been quantified. The membership
function describes the continuous properties of an infinite
fuzzy set, typically using triangular, trapezoidal, Gaussian,
Bell-shaped, S-shaped, and Z-shaped membership functions.
In this article, real-time performance is achieved, so the tri-
angular membership function, which provides faster results,
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TABLE 4. Initial fuzzy rule base for a decision system of tidy up locations
for objects.

Level; | Level | Levels | Levels | Levels | Levels | Levels

Level Lv.1 Lv.1 Lv.1 Lv.2 Lv.3 Lv.3 Lv.4
Level Lv.1 Lv.2 Lv.2 Lv.2 Lv.3 Lv.4 Lv.5
Levels Lv.1 Lv.2 Lv.3 Lv.3 Lv.4 Lv.5 Lv.6
Levels Lv.1 Lv.2 Lv3 Lv.4 Lv.5 Lv.6 Lv.7
Levels Lv.2 Lv.3 Lv4 Lv.5 Lv.5 Lv.6 Lv.7
Levels Lv.3 Lv4 Lv.5 Lv.6 Lv.6 Lv.6 Lv.7
Levely Lv.4 Lv.5 Lv.5 Lv.6 Lv.7 Lv.7 Lv.7

is used as follows,

0, if x<a
2 xela Bl
neo=15-¢% (1)
. i xelBy]
Yy —B
0, if x>y

where variables satisfy the inequality 0 < o < 8 < y.

3) DECISION MAKING LOGIC

By converting environmental characteristics from a dataset
into a fuzzy set, designing membership distributions, and
performing mathematical operations using membership func-
tions, the current characteristic value can be obtained. After
obtaining the current characteristic value, the membership
degrees are generated by mapping it to the graph of its
corresponding membership function. This process is known
as fuzzification. Finally, to obtain the output result, a fuzzy
inference process is necessary to determine the relationship
between each characteristic.

The Fuzzy Inference Engine is composed of many logical
rules and is based on the Takagi-Sugeno fuzzy model [45]
The rule base can systematically generate the required IF-
THEN rules from input feature information to the required
priority output results. Additionally, it can adjust the front-
end structure and parameter values and the back-end structure
and parameter values based on the data. Therefore, this model
is often used in control systems and other related inference
fields. The inference formula is shown as,

If ng“ isAy AND F;;’” is By

o 2
THEN Outpttyesus = [ (FE, Fgbe) )

where Fgm and ngs represent the environmental char-
acteristics of the input feature, Ay and By represent the
degree of membership of each characteristic, and Output,egy,is
represents the output, which is the position evaluation
level. The initial rule base for this design, based on the
characteristics of the sliding mode [46], [47], [48], [49], [50],

is shown in Table 4.
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4) DEFUZZIFICATION PROCESS

The final step of fuzzy inference is defuzzification, which
converts the fuzzy output into a crisp value. There are various
methods for defuzzification, but in this case, we will use
the centroid method for its fast computation. The centroid
method calculates the center point of the output by computing
the weighted average of the membership function values as
bellow,

m
Z Output’?’sulrM(Output’?’suh
Outputi™ (x) = =L — 3)

Z M(Outputl;esult)
k=1

where, p is the membership degree of the k-th rule’s output
set, 0utput,f”‘” is the k-th rule’s output value, and m is the
total number of rules.

C. EQUILIBRIUM OPTIMIZER

The Equilibrium Optimizer (EO) [22] is a metaheuristic
algorithm that is based on physical laws, specifically using
volume-controlled dynamic mass balance technology. This
algorithm is inspired by the concept of balance in physics
and aims to find the optimal solution in the search space
while maintaining a balanced system state. The optimization
process of EO can be divided into two stages: exploration and
exploitation.

During the exploration stage, EO uses a random walk
strategy to explore the search space. Each individual conducts
a random walk and calculates its fitness value. These fitness
values are then utilized to update the concentration of
elements in the control capacity matrix to achieve dynamic
mass balance with volume control. In the exploitation stage,
EO employs a particle swarm optimization algorithm to
optimize the objective function. The algorithm uses the
optimal position of each individual and the global optimal
position to update the position and velocity of everyone for
a better search of the optimal solution.

Overall, EO exhibits the following characteristics: it is
based on physical laws, uses a metaheuristic algorithm,
employs dynamic mass balance and volume control, and
combines both exploration and exploitation stages. The
mass balance allows for the establishment of a dynamic
environment by accounting for the physical processes of
mass entering, leaving, and generating within the controlled
volume. Generally, a first-order differential equation is used
to describe this process,

dac

dt
where the parameter C represents the concentration inside the
control volume (V), G is the rate of mass generation inside the
control volume, Q denotes the volumetric flow rate entering
and leaving the control volume, C,, gives the concentration
at an equilibrium state, and V % is the rate of change of mass
in the control volume. G is used to improve the convergence
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during the equilibrium development phase and is selected
using GP.

When V ffi—f reaches zero, the system reaches a stable equi-
librium state. The differential equation can be transformed to
the following equation,

G
C= W(l _F)+(C0 - Ceq)F+Ceq ()

where F is the convergence factor of the algorithm, X is the
flow rate, and Cy represents the initial concentration in the
control volume. The steps of the Equilibrium Optimizer are
organized as following steps:

—First, the particle’s concentration is initialized as

Cinitial = Crin + mndq (Cmax — Cmin)g=1,2,--- ,n (6)

where Cp,,y and Gy, denote the upper and lower boundary,
respectively, and rand,, represents a random number between
0 and 1 for individual q.

—Second, construct an equilibrium state pool to enhance
global search ability and avoid being trapped in local optimal
solutions. Consisting of the four current best candidate
solutions, the equilibrium state pool is designed as,

Ceq,pnol = {Ceqlv Ceq27 Ceq37 Ceq47 Ceq,avg} 7N
—Third, calculate the convergence factor F as bellow,

F = aysign(r — 0.5) [e ™ — 1] (8)

Iter
(i Iter (“2m)
o Max_Iter

where F' is the convergent factor obtained after the overall
operation, aj represents the weight of the exploration search,
and ¢ presents the time of the iteration function as shown
in (9), and where [fer represents the current iteration number,
Max_Iter represents the overall maximum iteration number.
ay represents the weight of the exploitation search.

—Fourth, calculate the mass generation rate G to enhance
the overall local search capability of the algorithm,

€))

G = GyF (10)
Go = GP(C,y — AO)C (11)
GP — 0.5rand, rand, > GP (12)

0 randy < GP

where GP represents the mass generation rate control
parameter vector, while rand; and rand, are both random
variables between 0 and 1.

—Fifth, update the best solution by iteratively applying (5)
for a certain number of iterations and optimizing the best
solution until the end of the iteration.

The equilibrium algorithm utilizes fitness functions to
achieve the required convergent solution for the problem.
In the case of prioritizing the selection of robot storage
locations, a fitness function is defined to find the optimal
solution of the fuzzy rule base, which can be applied in
various hierarchical environments. The pseudo-code for the
overall equilibrium is listed in Algorithm 1.
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Algorithm 1 The Pseudo-Code of EO Optimizer

Input: (Particlesyqy, Itermax, Dims., LoWpound , UPbound» Fit.)
Output: (Fit.pes, Particlepest)

1: Intitialize: a1=2, ap=1, GP=0.5
2: while Iter <= Iter,

3: for ¢ = 1: Particles,

4:  particles < LoWpouna

5:  particles > Uppound
6
7
8

Randomly generate n particles by (6).
Caculate the fitness function of each particle=Ceq(q)y;;
The four particles with the best local solutions identified
through all particles comparison= Ceq! parsicle
Ceq2particle’ Ceqj)particle’ Ceq4particle

9: The four fitness value with the best local solutions
identified through all fitness value comparison =
Ceqlyy, Ceq2py, Ceq3py, Ceqdypy

10: end for

11: Save best particle to totalbest solution.

12: Caculate ¢ by (9).

13: for i=1:Particles,qy

14:  Caculate C by (5).

15:  Contruct the equilibrium pool by (7).

16:  Caculate F by (8).

17: end for

18:  Iter= Iter+1

19: end while

D. TRAVELLING SALESMAN PROBLEM (TSP)- GENETIC
ALGORITHM (GA)
TSP is a well-known combinatorial optimization problem that
involves finding the shortest circular route through a

given set of cities for a salesman to visit. Due to its
complexity, traditional solving methods are often impractical,
and researchers have developed various heuristic algorithms
to address this problem. One such algorithm is GA, which
simulates evolutionary mechanisms such as natural selection,
mating, and genetic mutation to optimize the combination
of individual genes and ultimately find the optimal solution.
To apply GA to the TSP, the following steps are generally
taken:

1) Initialize a population, where every chromosome
(individual) represents a possible route.

2) Evaluate the individual fitness, which is calculated as
the total length of the route.

3) Select individuals with higher fitness as parents and
produce the next generation through crossover and
genetic mutation. In the TSP problem, crossover can
be achieved by selecting a crossover point in two
routes, splitting and exchanging them, to create two
new individuals. Genetic mutation can be achieved by
randomly swapping the positions of two cities in a
route.

4) Repeat steps 2) and 3) until a stopping condition is met,
such as reaching a certain fitness level or exceeding a
certain runtime.
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TABLE 5. Data distribution for three dimensions of environments.

The level of spatial environment Low  Medium  High
Area 1~3 4~6 7~9
Number of positions 6~18 24~36 42~54
Maximum numl?e'r of objects per 10 10 10
position
Number of obstacles between positions 0~7 0~14 0~21
Unit for generating the dataset 30 30 30

5) Select the individual with the highest fitness as the
optimal solution, which represents the shortest route.

While genetic algorithms are effective at solving complex
optimization problems like the TSP, it’s important to note that
they cannot guarantee finding the global optimal solution.
However, they can usually find a solution that is very close
to optimal. This is especially relevant for the TSP problem,
which is classified as an NP-hard problem and cannot be
solved in polynomial time. Therefore, heuristic algorithms
like genetic algorithms are often the most practical and
effective solutions for solving the TSP problem.

E. ADAPTIVE FUZZY INFERENCE DECISION STRATEGY

FIS is well-suited for solving multi-factor problems, as it
can use system architecture to find reasonable decisions.
On the other hand, the EO algorithm has shown excellent
performance in terms of fast convergence and finding the
best solution, as demonstrated by verification and comparison
with other algorithms. The rule base in FIS is usually
designed based on system or expert experience and can be
adjusted based on one-time or system feedback. In contrast,
the EO algorithm can optimize the data in the database,
adjust and develop features through algorithmic exploration,
and ultimately obtain the global optimal solution. Therefore,
this paper proposes using the EO algorithm to adjust the
initial rule base and improve the overall intelligence of the
positioning system.

1) DATA GENERATION

First, we generate a database using a simulation system,
where the robot’s current location, the feature F' gm of each
tidy-up object, and the feature F gbx of obstacles to avoid
during the tidy-up route are randomly generated based on the
map presented in Fig.1. Next, we use the EO algorithm to
train this data, setting three different dimensions of data based
on Table 5. In Table 5, the number of positions represents the
number of locations in the spatial environment. Regarding the
number of objects, we focus on objects that the robot can pick
up, as described in Section II, with a maximum of 10 objects
that can be placed at each position as the benchmark. This
parameter is fixed because the time required for the gripping
process depends on the movement of the mobile robotic arm.
Finally, the number of obstacles represents the number of
obstacles encountered by the robot during the movement
process from one position to the next, defined based on
different dimensions of the dataset.

VOLUME 11, 2023

2) TRAINING THE MODEL TO OPTIMIZE THE

FUZZY RULE BASE

After generating the data, we use F' g’” and F i‘;‘” to create
feature matrices, namely distance matrix (Dist,,) and
obstacle matrix (Obs;,y;). The Disty,,, is composed of F g"‘” s
which is represented by the following equation,

F gm = Distance;jym, + Graspime (13)

where the Distance;;,,. consists of the distance between the
robot’s current position and the next position as well as
the time required for grasping an object at each position
(Graspiime). These two time-based measurements are inte-
grated into Dist,,,, given in Eqn. (15) to calculate the total
time.
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FIGURE 5. The relationship curve between the number of obstacles and
the time spent by the robot for obstacle avoidance.

As for the Obs;,; is composed of F l.”.bs , we assume that
each obstacle incurs a unit of time. We define the distance
for the robot to navigate around obstacles as exhibiting
exponential growth. The robot’s movement speed remains
constant. Consequently, as the number of obstacles increases,
the robot will require more time, and the feasible distance
will exhibit exponential growth. The relationship between
obstacle avoidance time and the number of obstacles is shown
as follows,

ngs = Obstaclegme = o x P> OPsnum (14)

where o = 46.425, B = 0.2536, and 0bs,,,;, represents the
number of obstacles. The relationship curve between the
number of obstacles and the time spent by the robot for
obstacle avoidance is shown in Fig.5. These two matrices are
then integrated to form the following cost matrix,

Costiyar = Distyar + Obspyar
Fldi'sf Fﬁ."s’ Ff'{fs Fi'jbs
=| o s
Fiaiist . Fl_(;ist Fi(ibs . Fi(;bs
The TSP-GA algorithm is applied to find the optimal cost
variables (Cost,,) and the priority order from the starting

position to each position for each generated dataset, based
on Cost,,, . After simulating the generated data and inputting
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them into the fitness function, we adopt the balancing
algorithm to obtain an optimized solution, which is then used
to adjust the fuzzy rule base. Finally, we obtain the optimized
fuzzy rule base.

In this study, a customized fitness function was utilized as
the standard for training the rule base in (16). The objective
was to minimize the fitness value, indicating a better rule base
for practical implementation.

max
Fitness(n) = Z Time(n) — ReferenceTime (16)
n=0
where the variable “Time” represents the time required for
the robot to travel the distance information between its current
position and the target object, as well as the time required to
avoid obstacles. The ““Reference Time’ is obtained globally
through dynamic programming. We used the equilibrium
algorithm to optimize the fuzzy rule base initially by using
this fitness function. The “max” represents the maximum
number of objects or items that can be accommodated in the
tidy up space or environment during a single computation or
operation. The overall design process of AFIDS is illustrated
in Fig. 6.
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v
Fuzzy Inference Fuzzy
[ System [ Cost Matrix TSP_GA

" Rule Table
Optimization

- \
| |
i
1 Rule Table }
] Base(Sliding :
i I
i
1 :
Optimal Rule Table ) i
i
41[ Rule Table H@M‘ﬂ mﬂ:
|
i
|
i
|
i
|
i
|

[[ Solution update of Equilibrium ]

optimizer

o grn = )

FIGURE 6. AFIDS flow chart.

IV. EXPERIMENTAL RESULTS

In this section, we conduct tests on the proposed method
and analyze the experimental results. The experimental
data was generated using Matlab 2023a software and
run on a computer equipped with an Intel(R) Core(TM)
i7-8700K 3.70 GHz CPU and 32GB RAM. The research
process involves transforming the actual environment into
simulated environment information and deriving three levels
of information. In order to present different situations with
varying conditions in the experiment, we randomly generated
datasets based on the environment information of each
dimension to verify the method proposed in this paper.
We also analyzed the degree of discrimination of features,
trained the rule base, and established the priority order of tidy
up positions.
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TABLE 6. Execution results of different feature matrices in low-level
environment space.

Low-Level Distya Costyar F-Costa

BSET (sec) 682 370 370
WORST (sec) 3866 2640 2696

AVG (sec) 2142.133 1465.733 1457.233

TABLE 7. Execution results of different feature matrices in medium-level
environmental space.

Medium-Level Dist Costya F-Cost,pa
BSET (sec) 2174 2174 2174

WORST (sec) 8520 4834 4738
AVG (sec) 5415.133 3483 3443.133

TABLE 8. Execution results of different feature matrices in high-level
environmental space.

High-Level Dist Costpas F-Cost

BSET (sec) 5102 4546 4532
WORST (sec) 16406 6764 6704

AVG (sec) 9771.867 5652.067 5605.4

TABLE 9. Statistical analysis of the correlation between input features
and output result.

Dataset p-value- Pearson

Low-Level 5.478e-07 0.646

Dist,; -F-CoStma Medium-Level 1.336e-18 0.513
High-Level 5.390e-73 0.639

Low-Level 6.180e-17 0.882

ODbS pas - F-COStia Medium-Level 2.045e-80 0.871
High-Level 1.026e-132 0.787

A. CORRELATION ANALYSIS BETWEEN INPUT FEATURE
MATRIX AND OUTPUT RESULTS

To analyze the correlation between the input features and the
output results, we conducted an experiment using statistical
measures such as the p-value and Pearson correlation coef-
ficient. A p-value smaller than 0.05 indicates a statistically
significant difference in organization time among different
obstacle quantities [51], [52], [53]. The Pearson correlation
coefficient measures the linear correlation between two
variables, ranging from —1 to 1, where 1 represents a
perfect positive correlation, —1 represents a perfect negative
correlation, and O indicates no linear correlation.

After performing p-value and Pearson correlation coeffi-
cient tests on the input environmental features at three levels
and the corresponding output results, as shown in Table 9,
we can draw the following conclusions. The low-level input
feature, the distance matrix, exhibits a higher correlation with
the output quality matrix (Pearson coefficient of 0.6456),
and it has a very small p-value (5.4778e-07), indicating a
significant linear relationship between these two features.
The low-level input feature, the obstacle matrix, demonstrates
an even higher correlation with the output quality matrix
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TABLE 10. Experimental results of optimizing fuzzy rule base with various algorithms.

Algorithm PSO GA ABC GWO SCA WOA HHO EO PDO FCSO
Best -61664 -61648 61664 -61664 -61660 -61660 -61660 -61664 -61656 -61664
Average -61587.7 -61386.5 -61644.4 -61631.1 -61582.8 -61543.1 -61386.8 -61650.1 -61550.7 -61569.5
Worst -61228 -61056  -61584 -61532 -61504 -61256 -60888 -61540 -61360 -61292
STD 86.495 171.768 22.143 41.299 40.167 89.441 188.3537 26.71398 64.03735 83.05533
Average Time 1913.423 1906.42 3755.653 1841.196 1853.473 1840.863 4318.408 1848.605 1913.83 1902.016
Rank of Fitness 4 10 2 3 5 8 9 1 7 6
Rank of Time 7 6 9 2 4 1 10 3 8 5
Total Rank 6 9 6 2 3.5 3.5 10 1 8 6

TABLE 11. Low-level site dimension expanded tidying up time.

Expansion of site dimensions=1

Expansion of site dimensions=2

Expansion of site dimensions=3

F-Costmat
GM DP GA ACO PSO GM DP GA ACO PSO GM DP GA ACO  PSO
1* Run 370 370 208 264 312 1948 1896 1704 1792 1776 2366 2290 2290 2304 2264
2™ Run 696 696 414 504 342 1790 1454 1264 1264 1718 2346 2170 2064 2064 3516
3" Run 1128 904 554 764 1022 1434 1334 940 1020 1274 2360 2172 2172 2124 2790
4" Run 1116 800 342 676 342 1484 1468 1328 1364 1364 2796 2696 2696 2684 2720
5" Run 1048 1048 612 652 698 1456 1396 1254 1366 1212 2288 2204 2204 2052 3066
6" Run 786 698 342 414 516 1934 1882 1622 1702 1726 3018 2062 2062 2994 2870
7" Run 1250 858 458 770 458 1168 1164 1066 1070 1500 2174 2138 2034 2096 3214
8" Run 912 912 616 626 614 1854 1322 1190 1288 2290 2086 1898 1810 1820 1940
9" Run 926 758 396 568 566 1310 1310 1232 1232 1504 2720 1972 1972 2346 4054
10" Run 1018 1018 612 726 802 1438 1422 1386 1320 1454 2242 2174 2086 2124 2878
Average 925 806.2 4554 596.4 567.2 1581.6 1464.8 1298.6 1341.8 1581.8 2439.6 2177.6 2139  2260.8 2931.2
Rank 5 4 1 2 3 4 3 1 2 5 4 2 1 3 5

(Pearson coefficient of 0.8816), and it has an exceedingly
small p-value (6.1797e-17), suggesting a more significant
linear relationship between these two features. The medium-
level and high-level input matrices also exhibit higher
correlations with the output quality matrix, and they have
small p-values, indicating significant linear relationships in
predicting the output quality. This implies that the distance
matrix and obstacle matrix, as input features, have a higher
predictive capability for determining the quality of the
robot’s organization time, with the obstacle matrix showing
stronger predictive power. Additionally, the medium-level
and high-level features also demonstrate higher correlations
and significance, indicating their greater contribution in
predicting the results.

Overall, these findings suggest that the input features,
specifically the distance matrix and obstacle matrix, have a
significant predictive capability for determining the quality
of the robot’s organization time. Furthermore, the medium-
level and high-level features also exhibit high correlations
and significance, indicating their substantial contribution to
predicting the results.

B. SELECTION AND COMPARISON OF

FEATURE PROPERTIES

The selection of advantageous features is crucial for the
robot’s decision-making in determining the tidying up
position. We aim to demonstrate whether feature selection
can significantly reduce the overall time required for tidying
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up objects using fuzzy inference. We use three different
feature matrices: Dist,,q:, Costya: (Which includes distance
and obstacle information), and the fuzzy cost matrix obtained
from fuzzy inference (F- Costy,,s). We input these matrices
into GA to obtain the best path for the robot to tidy up the
objects. As shown in Tables 6-8, using the fuzzy inference
matrix can effectively improve the quality of the tidying up
path, especially in cases where the data dimensionality is
high, the area of the messy environment is large, and there
are many obstacles.

C. RULE TABLE COMPARISON WITH OTHER
METAHEURISTIC ALGORITHMS

The F-Costy, has shown good performance in validating
the tidying up objects time, but the rule base in fuzzy
inference plays a critical role as the knowledge core of the
overall recognition system. Therefore, we integrate the fuzzy
rule base using the equilibrium optimizer algorithm as a
benchmark for optimizing data, which enables more efficient
tidying up of objects.

In situations where environmental information has a high
degree of complexity, finding a global solution can be
challenging and prone to getting stuck in local solutions.
In this experiment, we used the equilibrium optimizer
algorithm to test high-dimensional environmental data, and
the results were recorded in Table 10. This table lists the best,
average, worst, and standard deviation of the results obtained
by each algorithm after running 30 times. Smaller values of
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TABLE 12. Medium -level site dimension expanded tidying up time.

Expansion of site dimensions=4

Expansion of site dimensions=5

Expansion of site dimensions=6

F-Costy,
r GM DP GA ACO PSO GM DP GA ACO PSO GM DP GA ACO PSO
1* Run 3274 3034 2984 3024 3800 3864 3408 3408 3826 3876 4398 3926 3926 5656 4706
2" Run 3174 2818 2818 2894 5102 3728 3528 3528 3648 4246 3896 3800 3800 5900 8314
3" Run 3318 3054 3054 3180 5278 3324 3276 3276 3344 5900 4890 4738 4802 4894 6834
4™ Run 3172 2928 2928 3022 4340 3698 3602 3602 3798 4840 4412 4008 4008 4282 6512
5" Run 3740 2728 2728 2840 2856 4724 3608 3608 3998 5288 4076 3432 3432 3882 6054
6" Run 3232 3164 3024 3152 3448 4552 4420 4420 4836 5474 4172 3972 3884 5880 8324
7" Run 2230 2174 2174 2230 2732 3606 3206 3206 4492 5974 4554 4254 4254 4684 5388
8" Run 3200 2956 2956 2996 4316 2692 2640 2640 2878 3202 4618 4158 4162 4506 4638
9" Run 3162 2942 2942 2956 3060 3600 3176 3176 3318 3726 4404 3960 3960 4442 4702
10" Run 2630 2402 2402 2422 3822 3532 3532 3532 3746 3856 5004 4684 4748 5016 5244
Average  3113.2 2820 2801  2871.6 38754 3732  3439.6 3439.6 3788.4 4638.2 4442.4 4093.2 4097.6 4914.2 6071.6
Rank 4 2 1 3 5 3 1.5 1.5 4 5 3 1 2 4 5

TABLE 13. High-level site dimension expanded tidying up time.

Expansion of site dimensions=7

Expansion of site dimensions=8

Expansion of site dimensions=9

F-Cost,,
r GM DP GA ACO PSO GM DP GA ACO PSO GM DP GA ACO PSO
1 Run 4986 4758 4854 5110 5408 6170 5646 5646 5960 10064 6688 6068 6100 6484 8680
2™ Run 5452 4996 5144 5700 8946 6010 5554 5504 6038 9012 6570 6206 6270 7794 9140
3" Run 4654 4638 4638 5198 9828 6040 5416 5464 6468 12078 6892 6400 6444 7128 13528
4% Run 5614 5102 5114 5622 8514 6258 5794 5886 6282 7906 7348 6688 6616 8254 9572
5% Run 4854 4546 4558 5650 7330 6968 5800 5796 6658 8136 6626 6422 6422 6588 13908
6" Run 4732 4568 4568 4892 6110 5492 5392 5392 5746 6402 9774 6068 6078 6646 13552
7% Run 5220 5088 5088 8646 7806 6758 6078 6138 7046 11786 6494 6068 5834 6370 10396
8" Run 5604 5412 5412 6838 9734 5192 4972 4976 5324 6446 6744 6148 6216 6702 8152
9% Run 5400 4876 4892 5486 5662 6008 5888 5888 7582 8578 7326 6510 6426 7586 10442
10" Run 5402 5370 5430 5540 6010 6302 5962 5962 6334 7038 5722 6422 5550 6168 8612
Average  5191.8 49354 4969.8 5868.2 7534.8 6119.8 5650.2 5665.2 6343.8 8744.6 70184 6300 6195.6 6972 10598
Rank 3 1 2 4 5 3 1 2 4 5 4 2 1 3 5

STD indicate higher stability of the algorithm’s performance
in solving the problem. The experimental results show that the
EO algorithm is effective in solving the efficiency problem
related to tidying up objects.

D. COMPARISON RESULTS OF AFID INTEGRATED WITH
TSP METHODS

Finally, in this study, we integrated five TSP methods
using a F-Costmat and an optimized fuzzy rule base.
For the TSP methods, we assessed the greedy (GM),
dynamic programming (DP), genetic algorithm (GA), Ant
Colony Optimization (ACO), and Particle Swarm Opti-
mization (PSO) on low, medium, and high-level environ-
mental data problems. The experimental results are listed
in Tables 11-13.

The tables, 11 to 13, present the time results for the robot’s
object tidying task in three different environmental levels.
Table 11 demonstrates that the GA algorithm achieves the
shortest tidying time in the TSP problem. Based on the
experimental results in Table 12, it is evident that DP shows
the potential to outperform GA in certain cases. Furthermore,
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TABLE 14. Computational time for tidying up optimization results with
different levels of site expansion.

Expansion of = 5\, DP  GA ACO
site dimensions

0.000254 0.000448 0.035 0.550
0.000175 0.004344 0.037 1.427
0.000113 0.066649 1.717 2.448
0.000219 0.939458 1.781 4.477
0.000313 12.09854 1.802 6.6778 1.955
0.000218 145.3862 1.886 9.211 2.181
0.000208 1594.747 1.904 11.809 3.150
0.000913 12973.62 1.963 15.296 4.015
0.000137 167577.1 2.096 19.686 5.913

PSO

0.601

0.564
0.761

1.167

Level

Low

Medium

High

O |0 (RN |n ||| |—

Table 13 highlights that DP can efficiently tidy objects in a
brief time, especially in higher-level environmental settings.

In summary, the findings from Tables 11 to 13 lead
to the following conclusions. The GA algorithm per-
forms well in terms of data testing results, while GM
and ACO exhibit relatively moderate performance with-
out any notable outcomes. Conversely, PSO demonstrates
relatively poorer performance in the TSP test for this
dataset.
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The effectiveness of decision-making depends not only on
finding the optimal solution but also on the computational
time required for the process. Nowadays, decision-making
must be feasible in real-time. The computation time for
optimizing the tidying up of objects is presented in Table 14
for different field dimensions. It can be observed that the
GM algorithm achieves fast computation time when dealing
with low-level environmental information. However, as the
environmental information becomes more complex, dynamic
programming requires a significant amount of computation
time, which is less ideal for decision-making. On the
other hand, the GA algorithm exhibits reliable performance
in terms of computation time across all three levels of
environmental information. Therefore, based on the findings
of this study on object tidying tasks, considering its efficient
results and computational speed, the GA is a favorable
choice. The corresponding video of experiment is available
at https://youtu.be/rjMDgopM-9M.

V. CONCLUSION AND FUTURE WORK

This paper focuses on the conversion of real data into
simulated data and the compilation of data from low-level
to high-level environmental information for research and
analysis purposes, utilizing large databases. The analytical
findings can be summarized into three key points.

Firstly, the effectiveness of feature data selection was
validated by employing the fuzzy inference method to obtain
the most relevant input feature information.

Secondly, by integrating the rule base in fuzzy inference
with the balancing algorithm, improved fitness values were
achieved. This integration involved replacing the original rule
base and combining it with the TSP method.

Lastly, we successfully integrated the Fuzzy Cost Matrix
with GA to optimize the selection and order of robot tidying
up positions for objects. Throughout our research, we con-
ducted experiments on feature selection, the integration of
the EO algorithm, and the utilization of GA for finding the
optimal selection and order of tidying up positions for the
robot. These results have undergone rigorous testing in real-
world environments. During the testing process, we have
achieved successful completion of the task for tidying up
objects using two robots.

For future work, researchers can explore dimensionality
reduction techniques on the developed AFIDS feature matrix
method to investigate its potential for reducing computation
time in high-level environments. In addressing the path
scheduling problem, machine learning methods can be
employed to adjust the parameters of GA mating and
mutation functions. The objective is to further enhance the
accuracy and efficiency of the AFIDS developed in this
research.
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