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ABSTRACT Traditionally, the radar cross-section is used to characterize the target in a forward scatter
radar (FSR) system, the measurement of which requires the availability of the scattered signal. However,
the scattered signal is often hard to be extracted, particularly when the illumination signal is opportunistic.
In this paper, we introduce the concept of the forward scatter shadow ratio (FSSR) of a target as the ratio of
the total received power density to the incident power density for a receiver at a certain location in an FSR
system. It is argued that the FSSR can be a useful parameter in the studies of FSR systems as it is relevant to
target detection, size estimation, classification and shadow profile imaging. Particularly, using mathematical
analysis and numerical results, we demonstrate that the shadow profile of a target can be retrieved with the
FSSR. The three sources of error in shadow profile retrieval, i.e., uncentered line of observation, shadow
profile discretization and approximation of the imaginary error function are discussed.

INDEX TERMS Forward scattering, radar cross section, shadow profile, diffraction.

I. INTRODUCTION
Forward scatter radar (FSR) refers to the special kind of
bistatic radar where the transmitter, the target and the receiver
are almost on a straight line. It has a rich history in appli-
cation, dating back as early as 1930s, when French scientist
Pierre David’s system for aircraft detection was used in the
French Air Force [1]. The early FSR systems were often
called electromagnetic fence or barrier [2], as target detection
was achieved by exploiting the target’s Doppler signature
when it crosses the transmitter-receiver baseline. In the past
30 years FSR has gained much attention in research because
of its distinct advantage, i.e., the ability to detect stealth
targets. Unlike monostatic radar, FSR is not based on the
reflectivity of the target, thus it is suitable to detect targets
with specific shapes and/or coatings that suppress backscat-
tering. Moreover, the availability of illuminators of oppor-
tunity (IOs) has further boosted the research in this field.
Passive FSR systems exploit existing transmitters and only
require the design and implementation of the passive receiver,
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thus can potentially lead to a low-cost and low-complexity
solution.

There are many studies reported in the literature investi-
gating passive FSR systems with various IOs. For example,
some studies have used signals of Global Navigation Satellite
System (GNSS) for detection and classification of air tar-
gets [3], [4], [5], [6], marine targets [7] and ground targets [8].
It has also been reported that Digital Video Broadcasting
(DVB) signals can also serve as good IOs [9], [10], [11].
Moreover, Wi-Fi signals [12], [13], [14] and Global System
for Mobile Communications (GSM) signals [15] have been
investigated as the signal source in passive FSR to detect
and track ground-based targets, especially vehicles. FSR can
also be used as Shadow Inverse Synthetic Aperture Radar
(SISAR) for target imaging. Introduced by Chapurskiy in
1980s, the theory of SISAR indicates that the target’s shadow
profile can be extracted from the forward scatter signal in the
Fresnel zone [16]. It has been reported that GNSS and DVB
signals can be exploited as IOs for the purpose of SISAR
imaging [17], [18], [19].

The rapid development in Low Earth Orbit (LEO) satellites
has provided a new type of IOs for passive FSR appli-
cations. One example of such illuminator is the Starlink
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constellation, which uses microwave signals for global Inter-
net services [20]. The opportunistic use of signals form a
network of a large number of LEO satellites can poten-
tially serve monitoring purposes such as measuring rain
and cloud [21], [22], [23]. It has been proposed that these
signals can be used as IOs in an FSR setup for flying
object detection [24] and for space debris tracking and
imaging [24], [25], [26], [27], [28].
Existing studies of FSR mainly employ the concept of

radar cross-section (RCS) from mono and traditional bistatic
radar, which is named forward scatter cross-section (FSCS)
[29], [30], to characterize the target. However, there are
two problems associated with this paradigm. First, in FSR
the received signal is always an outcome of interference
between the forward scattering signal and the direct path
signal (DPS), thereby the relationship between the FSCS and
the received signal is not as straightforward as that for mono
and bistatic radar. Secondly, in order to utilize the FSCS,
one has to assume that the DPS can be removed. However,
in reality for opportunistic use of passive IOs such as GNSS
and the Starlink, traditional methods such as the square law
detector cannot remove the DPS from the total received
signal [31], [32].

In this paper, we introduce a new parameter to charac-
terize the target specifically for FSR systems, namely the
forward scatter shadow ratio (FSSR). The FSSR of a target
is the ratio of the total received power density to the incident
power density for a receiver at a certain location in an FSR
system. It is a parameter to show specifically how far the
total received signal deviates from the DPS, which the FSCS
does not provide. The FSSR represents the target by using the
total received signal without the need to extract the scattered
field as the use of the FSCS. For instance, it can serve as a
direct indicator for target detection in passive FSR systems.
Furthermore, we will demonstrate that the FSSR is relevant
to the target size estimation, classification and shadow profile
imaging.

The Fresnel diffraction formula [33] is used in our analysis,
with all distances and dimensions normalized with respect to
the wavelength of the signal. Numerical results are used to
demonstrate how the FSSR is affected by the normalized size
and shape of the target, as well as the location of the receiver.
When measured on a straight line on the observation plane
that is perpendicular to the waveform propagation direction,
the FSSR oscillates around 1 and has a maximum value and
a minimum value. It is suggested that the maximum and
minimum values of the FSSR are affected by the normalized
distance between the target and the observation plane, as well
as the size of the target. Using a circular target, we demon-
strate that the minimum FSSR on the observation plane is a
monotonically decreasing function of the normalized diame-
ter, while the maximum FSSR is non-monotonic. When the
observation plane is moved farther away from the target,
both the minimum and the maximum FSSR will converge
asymptotically to one.

Furthermore, we will show that the shadow profile of
the target can be retrieved using discrete observations of
the FSSR and a retrieval algorithm is then proposed. The
target shadow profile is represented by a finite number of
rectangular strips, the heights of which are retrieved using a
number of discrete observations on a straight line. Retriev-
ing strip heights is formulated as a nonlinear least-square
problem, which is solved by a trust region method [34].
The retrieval method is dependent upon three approxima-
tions, namely, assuming that the observations are from a
centered line, approximating the shadow profile by rectan-
gular strips and employing the first term of the Maclaurin
series to approximate the imaginary error function. The three
approximations introduces three sources of errors. Firstly,
as the line of FSSR observation is far away from the center,
the error in the retrieved heights becomes more prominent.
The distance of the line of observation from the center can
provide a reference as to how large the error is. Secondly,
numerical results suggest that choosing a lower resolution
strips leads to a higher level of error. Thirdly, the far-field
parameter, a parameter that is proportional the square of the
target dimension divided by the distance between the target
and the receiver, determines the level of error induced by
the approximation of the imaginary error function. Numerical
results confirm that the error can be reduced by including the
cubic term of the Maclaurin series in the retrieval algorithm.

The proposed approach for target shadow profile retrieval
differs from SISAR in mainly two aspects. Firstly, SISAR
exploits the movement of the target with respect to the obser-
vation geometry and applies inverse Fresnel transform to the
forward scatter signal. By comparison, the proposed method
is an optimization method so it can accommodate discrete
FSSR samples from different receiver locations. Secondly,
SISAR estimates a continuous function of target height using
the approximation of the Sinc function while the proposed
method discretizes the target shadow profile into rectangular
strips and then computes the height of each strip, which can
use both the first and the cubic terms of the Maclaurin series.

Numerical results using a triangular target and a target
of irregular shape suggest that the retrieved shadow pro-
files represented by a finite number of rectangular strips
display agreement with the original target shapes. In practical
applications of shadow profile retrieval, the FSSR needs to
be estimated from the total received signal. It is suggested
that the average of samples of the total received power can
represent the power of the DPS. But for better estimations
these samples need to be taken where the magnitude of oscil-
lation in the total power is relatively small. Numerical results
using the estimated FSSR from the total received power also
suggest that the shadow profile can be retrieved for both the
triangular target and the target of irregular shape.

The rest of this paper is organized as follows. The defi-
nition of the FSSR is in Section II. The proposed method of
using the FSSR for target shadow profile retrieval is presented
in Section III. Section IV discusses several issues that arise
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from the approximation in the retrieval method. Numerical
results in regard to the features of the FSSR, the target shadow
profile retrieval and the sources of error in the retrieval pro-
cess are given in Section V. Finally, Section VI concludes this
paper.

II. DEFINITION OF FSSR
We define the FSSR (ε) of a target as the ratio of the total
received power density (Ptot ) to the incident power density
(Pinc) for the receiver at a certain location, as follows:

ε=
Ptot
Pinc

=
|Etot |2

|Einc|2
. (1)

In (1), Etot and Einc are the complex amplitudes of the total
electric field and the incident electric field, respectively. Note
that the total electric field is the outcome of the interference
between the incident electric field and the forward scatter
field caused by the target. An illustration of the FSSR can
be found in Fig. 1. Similar to the FSCS (and to RCS), the
FSSR also utilize a ratio of power density. However, the FSCS
is a description of the target based on the forward scatter
field regardless of the range of the observation point. It is
a function of the azimuth and elevation angles and it is in
the unit of area. On the other hand, the FSSR uses the total
electric field rather than the forward scatter radiation. It is
a dimensionless parameter and dependent on the location of
the observation point. The FSSR observed on two planes with
different distances from the target is shown in Fig. 1.

FIGURE 1. An illustration of FSCS and FSSR in an FSR system.

Note that similarly the total received signals have
been used in the literature [35], [36], [37] to obtain the

time-domain signature,1 but not explicitly used in a parameter
to describe the target in the FSR systems, However, besides
FSCS, no new target parameter has been defined in [35],
[36], and [37]. The time-domain signature is dependent on the
movement of the target with respect to the FS geometry. In the
case where there is no or very little target movement, the
time-domain signature cannot be used as it is totally removed
by the DC remover.

Without loss of generality, consider a plane wave propa-
gating in the y direction of a Cartesian system, illuminating
a target (Fig. 2). The geometric center of the target is located
at the origin. The receiver is located on an observation plane
perpendicular to the -axis and its projection on the y axis is
R from the origin. Using Babinet’s principle and the Fresnel
diffraction formula, we can replace the target with a com-
plementary aperture that has the shape of the target shadow
silhouette on the x ′

−z′ plane and obtain the complex ampli-
tude of the diffraction field ED [33]:

ED (x, z,R) =
e2πRi

iR

∫∫
F
(
x ′, z′

)
e

π i
R [(x−x ′)

2
+(z−z′)

2]dx ′dz′

(2)

where the imaginary unit is denoted by i, and R, x, z, x ′ and
z′ are all normalized with respect to the wavelength of the
signal, so they are dimensionless. For instance,R denotes how
manywavelengths there are from the origin to the observation
plane. Some examples of the normalized value for different
wavelengths can be found in Table 1. The aperture function
F
(
x ′, z′

)
is given by

F
(
x ′, z′

)
=

{
1, {x ′, z′} ∈ 6

0, otherwise
(3)

where 6 is the target shadow silhouette on the x ′
− z′ plane.

FIGURE 2. An illustration of an idealized forward scatter radar system.

It is worth noting that the Fresnel diffraction formula is
an approximation of the Rayleigh-Sommerfeld diffraction
formula when the range of observation is large comparing to
the target size. The Fresnel diffraction formula has been used
extensively in the studies of FSR systems [16], [28]. On the

1The extraction of the time-domain signature involves a self-mixing het-
erodyne [9], [32], a low-pass filter and a remover for the DC component [37]
Essentially, it is a function of the DPS, the FSCS, the motion parameters and
the distance between the transmitter and the receiver.
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TABLE 1. Normalized values of distances and dimensions.

other hand, the Helmholtz-Kirchhoff formula, which is equiv-
alent to the Rayleigh-Sommerfeld formula at moderate angles
of diffraction when the wavelength is small with respect to
the target size [38], has also been widely used [36], [39].
Generally, the Fresnel formula has a simpler form than the
Helmholtz-Kirchhoff formula, and the approximation only
induces marginal errors in the FSR setup.

The complex amplitude of the total electric field is

Etot = Einc − ED=e2πRi − ED. (4)

In (4), the incident field Einc denotes the DPS, which is
the signal when the target is assumed absent. The FSSR is
the ratio of the power density of the total signal due to the
presence of the target to that of the DPS. Intuitively, the FSSR
deviating from one indicates that there is forward scattering
from an object interfering with the DPS. From (1) to (4),
we rewrite ε as

ε =

∣∣∣∣1 −
1
iR

∫∫
F
(
x ′, z′

)
e

π i
R [(x−x ′)

2
+(z−z′)

2]dx ′dz′
∣∣∣∣2 . (5)

III. TARGET SHADOW PROFILE RETRIEVAL WITH FSSR
From (5), we define

AF (x, z) =

∫∫
F
(
x ′, z′

)
e

π i
R [(x−x ′)

2
+(z−z′)

2]dx ′dz′, (6)

which is the Fresnel integral for the aperture F
(
x ′, z′

)
. To fur-

ther simplify the equation we assume a centered line of FSSR
observation,2 i.e., the FSSR is observed on a line that passes
through the projection of the geometric center of the target on
the observation plane. Then the centered line of observation is
defined as x = 0 on the observation plane, and the integration
consequently becomes

AF (z) =

∫ ∫
F
(
x ′, z′

)
e

π i
R x

′2
e

π i
R (z−z′)

2
dx ′dz′ (7)

We divide the target shadow into N strips with equal width
and each individual strip p is regarded as a rectangle (Fig. 3
for illustration). The integration in (7) can be approximated
as

AF (z) ≈

N∑
p=1

∫ ap

bp
e

π i
R x

′2
dx ′

∫ cp

dp
e

π i
R (z−z′)

2
dz′ (8)

where ap and bp respectively mark the x ′ coordinates of
the top and bottom sides of the strip p, while cp and dp

2The line of FSSR observation can be formed either by a fixed target and
a moving receiver or by a fixed receiver and a moving target.

FIGURE 3. The target shadow is divided into strips, one of which is shown
by the shaded area. Each strip is regarded as a rectangle.

respectivelymark the z′ coordinates of its right and left sides.3

The first integration in (8) is given by∫ ap

bp
e

π i
R x

′2
dx ′

=
1
2

√
R
i

(
erfi

(√
iπ
R
ap

)
− erfi

(√
iπ
R
bp

))
(9)

where erfi (x) is the imaginary error function, whoseMaclau-
rin series is [40]

erfi (x) =
2

√
π

(
x +

x3

3
+
x5

10
+ · · · +

x2n+1

n! (2n+ 1)

)
. (10)

This indicates that if the conditions

∣∣∣∣√ iπ
R ap

∣∣∣∣ ≪ 1 and∣∣∣∣√ iπ
R bp

∣∣∣∣ ≪ 1 can be satisfied, we have∫ ap

bp
e

π i
R x

′2
dx ′

≈ ap − bp = hp, (11)

where hp is the height of the strip p. As a result,

AF (z) =

N∑
p=1

hp

∫ cp

dp
e

π i
R (z−z′)

2
dz′. (12)

We define Gp (z)

Gp (z) =

∫ cp

dp
e

π i
R (z′−z)2dz′

=

√
R
4i

(
erfi

(√
iπ
R
(cp − z)

)
− erfi

(√
iπ
R
(dp − z)

))
(13)

then

ε(z) =

∣∣∣∣∣∣1 −
1
iR

N∑
p=1

hpGp(z)

∣∣∣∣∣∣
2

. (14)

3If the target shadow is in a concave shape, some of the strips may have
holes in the middle, in which case the first integration in (8) will be the sum
of several separate integrations.

77150 VOLUME 11, 2023



X. Shen, D. Huang: FSSR: Concept and Its Application in Shadow Profile Retrieval

Suppose that there are M observations εq(zq) at (0,R, zq),
q = 1, · · · ,M , solving hp can be formulated as a nonlinear
least-square problem:

ĥ = argmin S(h), (15)

in which h is the vector representation of hp and

S(h) =

M∑
q=1

r2q , (16)

with

rq = εq(zq) −

∣∣∣∣∣∣1 −
1
iR

N∑
p=1

hpGp(zq)

∣∣∣∣∣∣
2

. (17)

By minimizing S(h), the optimal values for hp can be found
and thus the shadow profile of the target is retrieved.4 There
are several algorithms readily available to numerically solve
the nonlinear least-square problem. The most used one is
the trust region method [34], which has been proven to gen-
erate strictly feasible iterates and offer strong convergence
properties. In this paper, we propose to use the default trust-
region-reflective algorithm available in MATLAB, which
possesses the ability to deal with complex-valued problems.

IV. DISCUSSION ON RESOLUTION OF THE RETRIEVAL
METHOD
In the retrieval method described above, given R, Gp (z) is
known only if the location and width of the strips are given.
In order to solve strip heights hp, the width of the strips, i.e.,
the desired resolution of the retrieval, must be assumed first.
Furthermore, (13) indicates that given G0 (z), the value of
Gp (z) is merely the horizontal translations of G0 (z). Con-
sider G0 (z) given by

G0 (z) =

∫ c0

d0
e

π i
R (z′−z)2dz′, (18)

As an example for c0 = 10, d0 = −10 and R = 105,
the real and imaginary parts of G0 (z) are plotted in Fig. 4.
When R is increased to 106 (c0 and d0 not changed),
the real and imaginary parts of G0 (z) are plotted in
Fig. 5(a) and 5(b), respectively. Then we change c0 and d0
to c0 = 50 and d0 = −50, the real and imaginary parts
of G0 (z) are plotted in Fig. 5(c) and 5(d), respectively. It is
worth noting that the function to be integrated in (18) for
z = 0 is exactly the same as that in (11). Hence, we can
justify the approximation in (11) by examining the real and
imaginary values of G0 (0). For instance, the real part for
z = 0 in Fig. 4(a) is approximately 20 (which is the value
of c0 − d0 according to (11)), and the imaginary part is very
close to zero (0.02094 in Fig. 4(b)). It can be concluded from
Figs. 4 and 5 that the approximation of (11) is accurate when

4Compared to SISAR, which uses inverse Fresnel transformation, the
proposed approach for shadow profile retrieval is an optimization method,
and is able to accommodate discrete observations from different receiver
locations.

FIGURE 4. The real (a) and imaginary (b) values of G0(z) for (18), for
R = 105, c0 = 10 and d0 = −10.

ap and bp are small compared withR. From (6) to (11), we can
see that there are three approximations in the shadow profile
retrieval algorithm. Each approximation will introduce some
error which affects the accuracy of the retrieval. The first
approximation is to assume that the FSSR is observed on
the line of x = 0 on the observation plane. The second
approximation is the target shadow profile discretization, i.e.,
dividing the shadow shape into multiple rectangular strips.
In general, less number of strips will induce a higher level
of error, but the error will depend on the shape of the target,
which will be discussed using numerical results in the next
section. The third is the approximation in (11) under the

condition that

∣∣∣∣√ iπ
R ap

∣∣∣∣ ≪ 1 and

∣∣∣∣√ iπ
R bp

∣∣∣∣≪ 1. Because ap

and bp can represent the physical dimensions of the target,
the condition above can be approximately regarded as the
far-field condition defined by the far-field parameter S [32]:

S =
2h2

R
≪ 1, (19)

in which h is the largest dimension (normalized with respect
to the wavelength) of the target. In this section, we will
conduct our analysis for both far-field scenarios and close to
near-field scenarios where S≈ 1.

A. POSITION OF LINE OF OBSERVATION AND SHADOW
PROFILE DISCRETIZATION
In the first approximation, the centered line of FSSR observa-
tion (x= 0) is a prerequisite in the retrievalmethod, so the first
integration in (8) can then be associated with strip heights,
given by (11). When x ̸= 0, this approximation will result in
errors in the retrieved heights. To investigate the impact of
x ̸= 0, consider a strip of height hp and width 2c shown in

VOLUME 11, 2023 77151



X. Shen, D. Huang: FSSR: Concept and Its Application in Shadow Profile Retrieval

FIGURE 5. The real (a) and imaginary (b) values of G0(z), for R = 106,
c0 = 10 and d0 = −10. The real (c) and imaginary (d) values of G0(z), for
R = 106, c0 = 50 and d0 = −50.

Fig. 6(a), we define

B (z) =

∫ hp
2

−
hp
2

e
π i
R (x−x ′)2dx ′

∫ c

−c
e

π i
R (z−z′)

2
dz′, (20)

where∫ hp
2

−
hp
2

e
π i
R (x−x ′)2dx ′

=

√
R
4i

(
erfi

(√
iπ
R
(
hp
2

− x)

)
−erfi

(√
iπ
R
(−

hp
2

− x)

))
(21)

According to (10), if the following can be satisfied
√

1
R

∣∣∣∣hp2 − x

∣∣∣∣ ≪ 1√
1
R

∣∣∣∣−hp
2

− x

∣∣∣∣ ≪ 1,
(22)

FIGURE 6. (a) An example strip and its dimensions. (b) The triangle (grey)
that has the same width and the same area as the example strip (solid
line).

then (21) can be reduced to hp.We define

F (z) = hp

∫ c

−c
e

π i
R (z−z′)

2
dz′, (23)

and

C (z) = B (z) − F (z) . (24)

We use C (z) to represent the difference between the true
value B (z) and the approximation F (z). As the first example,
we consider a far-field scenariowhere hp = 100 andR = 105.
The plots of B (z), F (z) and C (z) for c = 10 are given in
Fig. 7. When x is fixed at 80 and 160, the real and imaginary
parts of B (z) are respectively shown in Fig. 7(a) and Fig. 7(b)
and compared with F (z). It is confirmed that F (z) is close
to B (z), particularly for x = 80. As x becomes larger, B (z)
deviates further from F (z) , which indicates that the error
induced by assuming x= 0 becomes larger. The plot of C (z)
for x = 80 is shown in Fig. 7(c). It is suggested that both
the real and imaginary parts of C (z) oscillate around 0 and
they have nearly identical maximum and minimum values.
When z takes a larger range, the real part of C (z) is plotted
in Fig. 7(d). It is suggested that the maximum and minimum
values of C (z) occurs near z = 0.
The range ofC (z) is a good indicator of the approximation

error due to x ̸= 0, thus we define

Cmax = |C (z)| , (25)

and plot Cmax against x (shown by the solid line in Fig. 8).
Intuitively, as x increases, at a certain point the error

becomes so large that the retreival result is not valid anymore.
Here we employ an extreme case of shape approximation,
which can provide a reference for the error. Consider a tri-
angle that has the same width and the same area as the unit
strip, shown by the grey triangle in Fig. 6(b). Let

J (z) =

∫ ∫
T

e
π i
R x

′2
e

π i
R (z−z′)

2
dx ′dz′ (26)
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FIGURE 7. (a) The real part of function B(z) when x is 80 (blue) and 160
(red), compared with function F (z) (black). (b) The imaginary part of
function B(z) when x is 80 (blue) and 160 (red), compared with function
F(z)(black). (c) The real (black) and imaginary (red) parts of function C(z)
for -600 ≤ z ≤ 600. (d) The real part of function C(z) for -104 ≤ z ≤ 104.

FIGURE 8. Cmax as x increases (solid line) and the value of Dmax (dashed
line).

in which the double integral is performed over the triangle T ,
and

D (z) = J (z) − F (z) . (27)

FIGURE 9. (a) The real (black) and imaginary (red) parts of function D(z)
for -800 ≤ z ≤ 800. (b) The real part of function D(z) for -104 ≤ z ≤ 104.

In this extreme case the triangle is approximated by the
rectangular strip (shown in Fig. 6(b)), and the approxima-
tion yields a big error due to the difference between the
two shapes. The error is represented by D (z), the real and
imaginary parts of which around z = 0 are shown in Fig. 9(a).
It can be seen that they also oscillate around zero, and that
they reach similar maximum and minimum values. We define

Dmax = |D (z)| , (28)

the plot of the real part of D (z) for a larger range (Fig. 9(b))
reveals that different from Cmax , Dmax occurs some distance
from z = 0.

The value of Dmax is calculated and marked by the dashed
line in Fig. 8, which intersects with the curve for Cmax at
approximately x = 120. This indicates that for hp = 100 and
c = 10, the error caused by the approximation in (11)
exceeds the error caused by approximating a triangle with a
rectangular strip, when x exceeds approximately 120. In other
words, for x > 120 it will be nonsensical to use finer strips (a
resolution less than 20 for the example case) to approximate
the shape because the error due to the nonzero x is even larger
than the error caused by using the current strips. Fig. 8 implies
that the resolution of 20 is achievable only if x is less than 120.
The analysis above can be applied to a strip with any width
and height so that the value of x can be related to the desired
resolution of the shadow profile retrieval.

In Fig. 10, the results for the same far-field condition while
c is increased to 25 (i.e., a resolution of 50) are shown. The
real and imaginary parts of B (z) compared with F (z) are
shown in Fig. 10(a) and Fig. 10(b), respectively. The plot
of C (z) for x = 80 is shown in Fig. 10(c), while the real
part of C (z) for a longer range is in Fig. 10(d). The real and
imaginary parts of D (z) are shown in Fig. 10(e) and the real
part of D (z) for a larger range is in Fig. 10(f). The values
of Dmax (dashed line) and Cmax (solid line) are plotted in
Fig. 10(g). For this strip with a larger width, the analysis
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FIGURE 10. For hp = 100 and c = 25. (a) The real part of function B(z)
when x is 80 (blue) and 160 (red), compared with function F (z) (black).
(b) The imaginary part of function B(z), also compared with function
F(z)(black). (c) The real (black) and imaginary (red) parts of function C(z)
for -600 ≤ z ≤ 600. (d) The real part of function C(z) for -104 ≤ z ≤ 104.
(e) The real (black) and imaginary (red) parts of function D(z) ) for -800 ≤

z ≤ 800. (f) The real part of function D(z) for -104 ≤ z ≤ 104. (g) Cmax
(solid line) as x increases and the value of Dmax (dashed line).

FIGURE 11. For hp = 250 and c = 10. (a) The real part of function B(z)
when x is 80 (blue) and 160 (red), compared with function F (z) (black).
(b) The imaginary part of function B(z), also compared with function
F(z)(black). (c) The real (black) and imaginary (red) parts of function C(z)
for -600 ≤ z ≤ 600. (d) The real part of function C(z) for -104 ≤ z ≤ 104.
(e) The real (black) and imaginary (red) parts of function D(z) for -800 ≤ z
≤ 800. (f) The real part of function D(z) for -104 ≤ z ≤ 104. (g) Cmax (solid
line) as x increases and the value of Dmax (dashed line).
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suggests that the resolution of 50 is only achievable if x is
less than 100, which is similar to that for c = 10.
Then we consider a close to near-field scenario where the

strip height is 250 (far-field parameter S is 1.25, c is 10).
The analytical results are shown in Fig. 11 in the same order
as those in Fig. 10, which indicate that the resolution of
20 is only achievable if x is less than 120. Transitioning to
near-filed does not have a significant effect on the restriction
on line of observation position.

B. LINEAR APPROXIMATION
For the approximation by (11), we only use the first term of

the Maclaurin series, under the condition that

∣∣∣∣√ iπ
R ap

∣∣∣∣ ≪

1 and

∣∣∣∣√ iπ
R bp

∣∣∣∣ ≪ 1. We define
ap =

1
2
h
p
+ x0

bp = −
1
2
h
p
+ x0,

(29)

where x0 is the x-coordinate of the center of the strip. We also
define the approximated function F̂(x0, hp) and rewrite (11)
as:

F̂
(
x0, hp

)
=

∫ ap

bp
e

π i
R x

′2
dx ′

≈ hp, (30)

taking into account the cubic term in (10), we can obtain

F̂
(
x0, hp

)
≈ hp +

π i
3R

[
h3p + 3hp

(
x20 −

1
4
h2p

)]
. (31)

If x0 ≪ hp, (31) can be simplified to

F̂
(
hp
)

≈ hp(1 +
π i
12R

h2p). (32)

Similarly, taking into account the quintic term in (10) and
applying x0 ≪ hp, we can obtain

F̂
(
hp
)

≈ hp(1 +
π i
12R

h2p −
π2

160R2
h4p). (33)

The analysis above indicates that the cubic and quintic
terms of the approximation are only a function of the far-field
parameter S if the strip is close to the center of the target.
Equations (32) and (33) also suggest that S determines the
benefits of including the cubic term. As the far-field param-
eter becomes larger (i.e., transitioning to near-field), it is
necessary to take into account the cubic, or even the quintic
term of the Maclaurin series of the erfi function. In Fig. 12,
we plot the true values (real and imaginary, shown by the
black lines) of the integration of (30) for x0 = 0 while hp
increases from 200 to 500 for both R = 105 andR = 2 × 105,
and compare them with the approximation given by (30),
(32) and (33). The approximation in (30) has a real part hp
(shown by the blue line in Fig. 11(a)), and is imaginary part
is zero (shown by the blue line in Fig. 11(b)). Equation (32)
has an updated imaginary part (red lines in Fig. 11(b)), and
(33) has an updated real part (red lines in Fig. 11(a)). The

close to near-field case is represented by R = 105, for which
the approximation in (30) and (32) yields more significant
errors as S becomes larger. For R = 2 × 105, the far-field
parameter is less and the errors induced by (32) and (33) are
almost invisible, which also justifies that the error level is
determined by S. It is obvious that the computational loadwill
be higher if we use (32) or (33) instead of (30) in the nonlinear
least-squares algorithm. Nonetheless, it is suggested in the
next section that hp is still numerically solvable with the trust
region method.

In conclusion of Sections IV-A and IV-B, the far-field
parameter has a significant influence on the accuracy of the
linear approximation, but has an insignificant effect on the
restriction on the location of the observation line. A summary
of the numerical results in this section and their correspond-
ing far-field parameters can be found in Table 2.

TABLE 2. Numerical results and their far-field parameters.

V. NUMERICAL RESULTS
A. FSSR OF CIRCLE, SQUARE AND EQUILATERAL
TRIANGLE
We use the forward scatter radar model illustrated in Fig. 2 for
the numerical analysis. Three different target shadow shapes,
a circle, a square and an equilateral triangle, are considered
and (5) is used to generate the FSSR. Figure 13 shows the
FSSR for the three shadow shapes each with an area of 104

when the observation plane is located 105 from the origin
(R = 105). The FSSR is only observed on the line of x = 0
on the observation plane. The maximum and minimum val-
ues of the FSSR, which occur very close to the -axis, are
predominantly related to the shadow area of the target, but
not significantly affected by the shadow shape. On the other
hand, the change patterns of the FSSR display different char-
acteristics for the three shadow shapes. It can be observed in
Fig. 13 that the number of peaks when z is between 0 and 20
is different for the three shapes. Furthermore, the envelope
of the oscillating pattern of the FSSR also displays distinct
features for each shape. The change patterns of the FSSRmay
be used for target classification.

We use a circle of diameter D to further investigate the
minimum and maximum values of the FSSR on the line of
x = 0. In Fig. 14(a), it is shown how εmin and εmax change
whenD is from 10 to 500 (R = 105). It is suggested that when
the size of the circle increases, εmin monotonically decreases
but εmax can either increase or decrease. In Fig. 14(b), εmin
and εmax are recorded for distance R ranging from 105 to 107

(D = 100). Both εmin and εmax approach 1 as the observation
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plane moves further from the target. It can be concluded
that the maximum and minimum values of the FSSR are
affected by the normalized distance between the target and
the receiver, as well as the size of the target.

FIGURE 12. The real (a) and imaginary (b) parts of the true value of the
intergration (black), and approximated values of using (30), (32) and (33)
(colored lines).

The value of the FSSR deviating from 1 can be an effective
indicator for target detection. For system design in practical
applications the deviation needs to exceed a certain threshold
for target detection. Particularly, εmin may be used to deter-
mine if a target is detected.We plotD againstR for εmin = 0.8
(dashed line) and εmin = 0.9 (solid line) in Fig. 15. This plot
shows the minimum diameter for εmin to fall below 0.9 and
0.8. For example, when R = 106, a circle of diameter more
than 390 will have result in εmin below 0.8. This feature of the
FSSRmay be used to design the threshold for target detection.

B. RETRIEVAL OF TARGET SHADOW PROFILE
We assume that the FSSR is available without any errors
for target profile retrieval. Estimation of the FSSR through
measurements of Ptot will be discussed in Section V-D. Since

FIGURE 13. The FSSR on an observation plane of distance 105 from the
target for three different shadow shapes. (a) A circle with an area of 104.
(b) A square with an area of 104. (c) An equilateral triangle with an area
of 104.

FIGURE 14. The minimum and maximum FSSR on an observation plane
for a circular target. (a) The diameter of the circle is from 10 to 500 while
distance R is fixed at 105. (b) Distance R is from 105 to 107 while the
diameter of the circle is 100.

for any 3D shapes only the shadow silhouette plays a part in
the FSSR, in our analysis we assume that all targets are only
2D and located on a plane parallel to the observation plane.
The observation plane is assumed to be located at R = 105.

The true values of the FSSR is calculated with (5) and
only samples on the line of x = 0 are used. From our
previous analysis, it is suggested that the minimum FSSR can
provide an estimate of the area of the target shadow profile.
So in the first step of the retrieval, we find the minimum
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FIGURE 15. The R-D relationship when the minimum FSSR is 0.8 (dashed
line) and 0.9 (solid line).

value of the FSSR samples and estimate the target shadow
dimension using Fig. 14(a). This dimension will determine
the number of strips needed and their width for the shadow
profile retrieval.

The first numerical analysis was carried out using a trian-
gular target, the dimensions of which is shown in Fig. 16(a).
It can be considered a far-field scenario as the far-field param-
eter S is 0.8. The true values of the FSSR at different locations
on the line of x = 0 on the observation plane are shown by
the black curve in Fig. 16(b). Then we use a finite number of
observations of ε to retrieve the approximate shadow profile
of the target. In this case, 45 observation points (shown by
the red circles in Fig. 16(b)) with a fixed increment in z are
selected. Firstly, we estimate the size of the target by finding
the minimum value of the observed ε (0.844 in Fig. 16(b))
and assuming that the target is circular shape. It is estimated
that the observed the value of εmin corresponds to a circle with
diameter 105 (Fig. 14(a)). Based on the assumption that the
target profile should have similar dimensions, for retrieval we
allow a total width of 400, which approximately quadruples
the estimated diameter of 105. Consequently, 20 strips each
of which has a width of 20 are used to represent the shadow
profile.

A nonlinear least-square function (‘lsqnonlin’ in MAT-
LAB) with the trust-region-reflective algorithm is employed
to find the optimal solution for strip heights hp. Then the
retrieved shadow profile is plotted on the z′ − x ′ plane
(Fig. 17(b)). In Fig. 17(a), the approximated triangle using
20 strips (10 of which have a height of 0) is shown for
comparison. It can be seen that the retrieved shadow profile
agrees with the approximated triangle. We also plot the errors
rq and r ′

q (q = 1, . . . , 45) in Fig. 16(c), where

rq = εq(zq) −

∣∣∣∣∣∣1 −
1
iR

20∑
p=1

hpGp(zq)

∣∣∣∣∣∣
2

, (34)

in which εq is the observed FSSR, hp is the heights of strips
in the approximated triangle (Fig. 17(a)). r ′

q is computed

FIGURE 16. (a) Dimensions of the triangular target. (b) The true FSSR is
shown by the black curve, and the observed FSSRs at 45 different
locations are marked by the red circles.

using (34) by replacing hp with h′
p, which is the retrieved

heights (shown in Fig. 17(b)). Error rq shows how much
the approximation in (8) and (11) deviates from the true
FSSR generated by the exact triangle and the Fresnel diffrac-
tion formula. Error r ′

q shows the same deviation for the
retrieved shadow profile. It can be seen that the error for the
approximated triangle is in the order of 10−3 for all 45 obser-
vation points. The retrieved shadow profile in Fig. 17(b)
generates very similar error to that of the approximated
triangle.

A more complex shape is also used to examine the retrieval
performance. The dimensions of the irregular shape is shown
in Fig. 18(a) (the far-field parameter is the same as before),
and the true FSSR generated by Fresnel diffraction is shown
by the black curve in Fig. 18(b). There are 50 observation
points which are shown by the red circles in Fig. 18(b).
Note that the middle section of the target is not symmetric
about the z-axis. Nonetheless, the retrieval algorithm can only
obtain the heights of the strips so it is reasonable to place the
midpoints of all the strips on the z′-axis.

Figure 19(a) shows the approximated shadow profile using
30 centered strips (12 of which have a height of 0) with width
of 10. The retrieved shadow profile using 30 strips is shown
in Fig. 19(b), which also displays good agreement with the
approximated shadow profile. Errors rq and rq′ are shown
in Fig. 19(c), both of which are in the order of 10−2 for
the 50 observation points. The error due to the target’s non-
centerd middle section is not significant, which is as expected
according the analysis in Section IV. The distance from the
the z’-axis to the center of the middle section generally satis-
fies (22) for R = 105 and hp ≈ 75.
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FIGURE 17. (a) The approximated shape where the original triangle is
represented by 10 rectangular strips. (b) The retrieved shadow profile
using the observed FSSRs at 45 locations. (c) The black circles show the
error defined by (34) for the approximated triangle (a), and red crosses
show the error for the retrieved shadow profile at 45 different locations.

C. ERROR DUE TO UNCENTERED LINE OF OBSERVATION
AND SHADOW PROFILE DISCRETIZATION
We first investigate the impact of x ̸= 0. For the triangular
target in Fig. 16(a), with all the observation points moved to
the line of x = 80 and all other parameters kept the same, the
retrieved shape is shown in Fig. 20(a) and errors rq and r ′

q are
shown in Fig. 20(b), in which it can be seen that the accuracy
of the retrieval drops. When the observation points are moved
further to the line of x = 160, the retrieval results are shown
in Fig. 20(c) and (d). In this case the triangular shape is not
visible anymore, suggesting that the error is too big for the
retrieval. This is in line with our analysis in Section IV, which
suggests that the desired resolution of 20 is not achievable if
x is larger than 120.

For the shadow profile discretization, we reduce the resolu-
tion to 50 so there are only 4 strips of width 50 to approximate
the triangle (Fig. 21(a)). The retrieved shape is shown in
Fig. 21(b). Errors rq and r ′

q are also calculated and shown
in Fig. 21(c). It can be seen that the errors are slightly higher
than those produced by resolution of 20. This confirms that a
lower resolution (wider strips) leads to a higher level of errors.

D. SHADOW PROFILE RETRIEVAL WITH NONLINEAR
APPROXIMATION
Consider the triangular object in Fig. 16(a), if we use (32)
instead of (30) in the nonlinear least-squares algorithm, i.e.,

FIGURE 18. (a) The irregular shape. (b) The true FSSR is shown by the
black curve, and the observed FSSRs at 50 different locations are marked
by the red circles.

FIGURE 19. (a) The approximated shadow profile where the original
irregular shape is replaced by 18 centered strips. (b) The retrieved
shadow profile using the observed FSSRs at 50 locations. (c) The black
circles show the error defined by (34) for the approximated shadow
profile, and red crosses show the error for the retrieved shadow profile at
50 different locations.

include the cubic term of the Maclaurin series, the retrieved
shadow profile is shown in Fig. 22(a). Errors rq and r ′

q are also
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FIGURE 20. (a) The retrieved shape when the observation points are
moved to the line of x = 80. (b) The errors define by (34) for x = 80.
(c) The retrieved shape when the observation points are moved to the
line of x = 160. (d) The errors define by (34) for x = 160.

calculated (shown in Fig. 22(b)) using the following updated
equations:

rq = εq(zq) −

∣∣∣∣∣∣1 −
1
iR

20∑
p=1

hp(1 +
π

12

h2p
Rλ

i)Gp
(
zq
)∣∣∣∣∣∣
2

, (35)

where hp is the approximated heights of the strips, r ′
q is

computed using (35) by replacing hp with h′
p, which is the

retrieved heights of the strips. It can be seen that including
the cubic term has reduce the retrieval errors form the order
of 10−3 (Fig. 17(c)) to the order of 10−4.

If the dimensions of the triangular target are increased by
20% (length is 240 and height is 144), the far-field parameter
is 1.152 so it is considered a close to near-field scenario. The
retrieved shape using only the linear term of the Maclaurin
series is shown in Fig. 23(a), and the result with the cubic
term included is shown in Fig. 23(b). It can be seen that the
retrieval accuracy is significantly improved when the cubic
term is included.

The retrieval process including the cubic term has also been
done for the complex shape in Fig. 18(a). Note that this shape

FIGURE 21. (a) The approximated shape where the original triangle is
replaced by 4 rectangular strips. (b) The retrieved shape using the
observed FSSRs at 45 locations. (c) The black circles show the error
defined by (34) for the approximated shadow profile, and red crosses
show the error for the retrieved shadow profile at 45 different locations.

FIGURE 22. (a) The retrieved shadow profile for the triangular target with
the cubic term included in the nonlinear least-squares. (b) The errors of
the approximated shadow profile (black) and the retrieved shadow
profile (red) at 45 different locations using (35).

is close to symmetric, so the approximation in (32) can be
applied without introduction too big an error. The retrieved
shadow profile is shown in Fig. 24(a) and the errors are shown
in Fig. 24(b). Compared with Fig. 19, it can be concluded that
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FIGURE 23. (a) The retrieved shadow profile for the triangular target in
the close to near-field case with only the linear term included. (b) The
retrieved shadow profile for the triangular target in the close to near-field
case with both the linear and the cubic terms included.

FIGURE 24. (a) The retrieved shadow profile for the irregular target with
the cubic term included in the nonlinear least-squares. (b) The errors of
the approximated shadow profile (black) and the retrieved shadow
profile (red) at 50 different locations using (35).

the retrieval outcome is improved and the errors are less when
the cubic term is taken into account.

E. ESTIMATION OF FSSR FROM THE TOTAL POWER FOR
SHADOW PROFILE RETRIEVAL
In this section, we investigate shadow profile retrieval with
the FSSR estimated through Ptot . From Fig. 13, we can see
that as z moves further away from the origin, the difference

FIGURE 25. (a) The total received power for the triangular target in
Fig. 15(a). The 45 samples used to estimate the total power are shown by
the blue circles and the other 45 sample used for the retrieval are shown
by the red circles. (b) The retrieved shadow profile. (c) The errors of the
approximated shadow profile (black) and the retrieved shadow
profile (red).

FIGURE 26. (a) The total received power for the irregular target in
Fig. 17(a). The 50 samples used for the retrieval are shown by the red
circles, blue and green circles represent the samples to calculate the DPS
power for case one and two, respectively. (b) The retrieved shadow
profile for case one. (c) The retrieved shadow profile for case two.

between Ptot and Pinc generally becomes less. If we take
multiple samples of Ptot far away enough from the origin,
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the average of these samples, denoted by Psam, will be very
close to Pinc. We apply this principle and try to retrieve
the shadow profile for the triangular target in Fig. 16(a).
We assume that Pinc is 100 mW and that Ptot (shown by the
black line in Fig. 25(a)) is available for sampling on the line
of x= 0 on the observation plane. For the estimation of Pinc,
45 samples of Ptot (shown by the blue circles in Fig. 25(a))
with a fixed increment in z are selected and then averaged.
Secondly, another 45 samples ofPtot (shown by the red circles
in Fig. 25(a)) are used to calculated the 45 observations of
ε for the purpose of target profile retrieval. After that, the
retrieval process is the same as that described in Section V-B.
The retrieved shadow profile is shown in Fig. 25(b), which
agrees with the true shape. The errors are plotted in Fig. 25(c),
which are slightly higher than those in Fig. 17(c). This is due
to the presence of estimation error in the FSSR.

The irregular target is also investigated using the same
approach. In Fig. 26(a), Ptot is plotted by the black line while
the 50 samples used to calculate ε for shadow profile retrieval
are shown by the red circles. For case one we use 50 samples
closer to the origin (shown by the blue circles in Fig. 26(a))
to estimate Pinc and the retrieved shadow profile is shown
in Fig. 26(b). For case two we use 50 samples further away
from the origin (shown by the green circles in Fig. 26(a)) to
estimate Pinc and the retrieved shadow profile is shown in
Fig. 26(c). It can be seen that the second retrieval result is
slightly better due to less error in the estimated Pinc.

VI. CONCLUSION
In this paper, we introduce the concept of the FSSR of a
target in a FSR system as the ratio of the total received
power density to the incident power density for a receiver at
a certain location. The FSSR shows directly how far the total
received signal deviates from the DPS, which the FSCS does
not provide. It is a more suitable parameter to describe the
target in FSR systems.

Numerical results are used to demonstrate how the FSSR
is affected by the normalized size and shape of the target
and the location of the receiver. Using a circular target,
we demonstrate that the minimum FSSR on an observation
plane is a monotonically decreasing function of the normal-
ized diameter, while the maximum FSSR is a non-monotonic
function. When the distance of the observation plane from
the target is increased, both the minimum and the maximum
FSSR converge asymptotically to one.

Our mathematical analysis shows that the shadow profile
of the target can be retrieved using a nonlinear least-square
algorithmwith the discrete observations of the FSSR. A trian-
gular shape and an irregular shape are used to investigate the
performance of the shadow profile retrieval. Our numerical
results indicate that the retrieved shadow profiles represented
by a finite number of rectangular strips display agreement
with the original shapes. There are three sources of errors in
the proposed retrieval algorithm. The first is due to the uncen-
tered line of observation. The error in the retrieved heights
becomes more significant as the line of observation deviates

farther from the center. We demonstrate that the distance of
the line of observation from the center can provide a reference
as to if the desired resolution can be achieved. The second
is due to approximating the original shadow profile with
rectangular strips. The third is caused by the approximation
of the imaginary error function using its Maclaurin series.
Essentially, the far-field parameter determines the level of
error induced by the approximation. Numerical results con-
firm that the error can be reduced by including the cubic term
of the Maclaurin series in the retrieval algorithm. It is also
suggested that the FSSR for shadow profile retrieval can be
measured through the samples of the total received power, and
that the power of the DPS is estimated more accurately when
samples of the total power are taken where the magnitude of
oscillation in the samples is relatively small.

Our investigations on the FSSR indicate that it can be use-
ful in the analytical studies of FSR systems. As a parameter,
the FSSR is relevant to target detection, classification, size
estimation, and shadow profile imaging. In the future, we will
investigate the effects of noise on our approach and design
physical experiments.
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