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ABSTRACT Water drilling machines are used to drill boreholes in the ground to extract groundwater. The
resources required for water drilling vary from region to region due to underground water table depth and
ground soil layer. Water drilling on a hard underground soil layer requires different resources than a soft
underground. The proposed study facilitates the drilling industry by selecting the region with a soft land
layer and increasing the penetration rate. Furthermore, the number of days and water table depth prediction
allows the drilling industry to estimate the depth of the water table and time resources to reach the water
table at different locations. The classification techniques classify the region based on the soil land layer.
Regression techniques are used for predicting water table depth and number of days. The experiments
are performed on a borehole log dataset provided by a research organization. This study used Support
Vector Machine, TabNet, and Deep Tabular models to predict the land soil layer and compare the results
with our proposed Ensemble Weighted Voting Soil Layer Classifier (EWV-SLC). The performance of the
classification model is evaluated using accuracy, Precision, Recall, and F1 Score. The experimental finding
shows that the EWV-SLC model performs better in accuracy and F1 score than other machine learning
techniques. The performance of the regression model is evaluated using Mean Square Error (MSE), Mean
Absolute Error (MAE),Root Mean Square Error (RMSE), and Mean Absolute Percentage Error(MAPE). In
a days and water table depth prediction phase Support, Vector Regressor, Deep Neural Network, and TabNet
Regressor are used, and compare the results with our proposed Ensemble Number of Days (E-NOD) and
Ensemble Water Table depth (E-WTD) Regressor model. E-NOD and E-WTD models achieved less MAE,
RMSE, and MSE than other machine learning methods.

INDEX TERMS Applied machine learning, ensemble learning, voting classifier, deep tabular model.

I. INTRODUCTION
The associate editor coordinating the review of this manuscript and Cleanwa}ter plays an essential role in achlevmg industrial _and
approving it for publication was Ikramullah Lali. economic development, whether used for food production,
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drinking, or domestic use. On earth, 97% of the water is
salt water, and just 3% is fresh water. But two-thirds of the
freshwater is frozen in glaciers and polar ice caps [1]. About
30% of the freshwater is below the earth’s surface, known
as groundwater [2]. Groundwater is the primary water source
necessary for agriculture, irrigation, industrial activities, and
drinking around the globe [3]. Groundwater is immensely
important for maintaining the biodiversity of the region [4]. In
the past, people used hand shovel to dig wells for groundwater
acquisition, but this process was time taking and required
more human efforts. Drilling machines are used to dig a
bore well by drilling a borehole in the ground in search of
water. The Percussion Drilling method is done by putting a
50 kilo gram of heavy cutting tool in the hole and it has low
cost operation cost. The boreholes are drilled considering the
water table at that particular drilling site. The water table is an
underground boundary between the area where groundwater
saturates in the soil surface. The availability of groundwater
is influenced by the water table depth, which varies signif-
icantly across various regions. In some regions, the drilling
process takes more time than other regions. Down the earth’s
surface are various layers and soil types. The subsurface soil
layers and soil types exhibit specific chemical and physical
properties. The soil composition closely relates to climates
and geological and horological characteristics of that region
area. For instance, some areas have soft underground soil
layers, while others have a hard underground soil layer. The
hardness level of soil layers ascertains the time and cost of
resources required to drill a borehole for the extraction of
scarce water resources. Consequently, borehole placement on
a drilling site with hard soil composition renders expensive
machinery, skilled workforce, and time budget compared to a
soft underground soil layer.

Due to population growth, demands for freshwater water
have increased [5]. To meet the global water demand a
huge number of bore wells are being drilled, resulting in
over-exploitation of scarce groundwater resources. Due to a
surge in drilling operations a wealth of borehole drilling data
is being generated. The high dimensional and dynamic bore-
hole drilling data requires in-depth analysis and modeling [6].
Furthermore, the drilling industry is a multi-billion industry
embodying highly skilled task forces, and heavy machinery
involving massive budgets. Thus over and under-utilization of
resources can be a cause of major loss to drilling companies.
In the past few decades, advanced technologies have been
employed to speed up the drilling process and to minimize
the drilling time to reach the water table depth. Factors like
soil hardness, water table depth, and number of days spent
on the drilling process in certain regions are essential to be
considered before starting the drilling process.

The predictive analytics help the drilling companies and
hydro-geological resource managers in effective planning
to estimate drilling cost and drilling resources in advance.
Therefore there is a dire need to analyze the vast amount
of data generated by the drilling process [7] to extract the
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information from the data. Due to technological advance-
ment Machine Learning (ML) and Artificial Intelligence (AI)
approaches are being widely adopted across many domains
[8]. The machine learning algorithms are capable enough
to learn from data, identify underlying patterns, and help
make organization owners make informed decisions. Fur-
thermore Machine Learning methods are highly effective
at solving complex problems by mapping the spatial and
temporal correlations by learning the patterns in time series
data. For instance trend forecasting in the stock exchange,
Computer-aided diagnosis systems, and text classification.
To perform the analysis and extracting the information from
the rich hydro geological data-sets, machine learning method
are highly preferred due to their exceptional performance. In
a article [9] employed machine learning techniques method
for prediction of subsurface structures using well logging
data. For sustainable management of water resources ground
potential maps plays important role. Reference [10] use
Naive Bayes (NB) based ensemble model (integrate Naive
Bayes with Bagging, Adaboost and Rotation Forest) for
ground water potential classification on the dataset of Kon
Tum Province, Vietnam. Reference [11] employed entropy,
Gini and Ratio-based classification tree for ground water
potential classification [add detail] in a mountainous region
of Iran. In a study [12] employed several machine learn-
ing based approaches such as Artificial Neural Network
(ANN), [13] employed Support Vector Machines (SVM) and
[14] employed the Adaptive Neuro-fuzzy Inference systems
(ANFIS) for prediction of ground water level. Deep learn-
ing frameworks are becoming popular recently because of
their ability to handle large size data while producing better
performing models. Several deep learning models such as
Long Short-Term Memory (LSTM) and Recurrent Neural
Network (RNN) are well known to be highly efficient at
managing the long term dependencies. For instance [15]
proposed Long Short-Term Memory model for prediction
of water-table depth using real dataset of Hetao Irrigation
District China.

The depth of the water table, soil layer and number of days
required for borehole drilling are varies from region to region.
The resources for drilling are varied due to the hardness level
of the soil. To meet the water needs, the development author-
ities launch several drilling projects for water extraction
in particular regions. The allocated resources, budget, and
time need to be taken into account beforehand and the con-
cerned department. For the sake of that, expensive tests and
site surveys are performed by drilling and hydro-geological
experts in a specific area based on their experience. Unfor-
tunately, there is no automatic way of doing so. Machine
learning-based solutions can be employed to accurately
predict sub-surface properties and hydro-geological charac-
teristics such as soil type, water table depth, and time required
to reach the water table in a specific region.

To address the aforementioned issues, we developed mod-
els based on SoTA machine learning techniques to provide
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useful insights through predicting water table depth, soil
layer and the number of days to facilitate groundwater
resource managers and drilling companies. This proposed
work develops an adaptive Ensemble Weighted Voting Clas-
sifier (EWV-SLC) to provide prediction results that assist
management to take informed decisions. The voting strategy
combines the knowledge of all the candidate classifiers and
assign class labels based on their weighted contribution. The
motivation behind proposing an EWV-SLC is that the ensem-
ble learning classifiers is an better prediction model when
we have a imbalanced class label. For water table prediction
Random Forest (RF), Extreme Gradient Boosting (XGB) and
Bagging Regressor as selected as candidate learners. While
to predict the number of days, Decision Tree (DT), RF, and
XGB as candidate learners. The experiments are performed
on the real dataset comprising of borehole logs. To evaluate
the proposed model we performed comparative analysis with
baseline models including Support Vector Machine, TabNet,
Deep Neural Network (DNN) and Deep Tabular models. land
layer is an attribute that represents the layer of land at differ-
ent depths. In the borehole log dataset, we have 7 land layers
including Gyeongam Formation, Landfill Layer, Ordinary
rock formation, Sedimentary layer, soft rock layer, Weathered
rock layer, Weathered soil layers. The land layer class label
is suffering from the imbalanced class problem. To solve the
imbalanced class problem, Synthetic Minority Oversampling
Technique (SMOTE) data re-sampling technique is used.

The key use cases of the proposed study are listed below:

« Environmental Planning: The proposed model can pro-
vide assistance to an environmental planning organiza-
tion in selecting suitable locations for urban planning
and infrastructure development

o Assessment of Environmental impact: Environmental
impact assessments are crucial before starting the devel-
opment of an industrial project. The proposed study
assists decision-makers in minimizing the consequences
by assessing the potential of the soil layer.

o Water Resource Management: The proposed study can
assist the water resource manager to manage the water
resources for water conservation strategies, and ensure
the sustainable use water of water by utilizing the water
table prediction.

The key contributions are listed below:

o Applied enhanced data pre-processing and feature engi-
neering techniques on raw data to improve the quality
of the data and make it more suitable for the machine
learning models.

« Development and Integration of the bagging and boost-
ing ensemble technique with k Nearest Neighbor (KNN)
using weighted voting strategy to develop a land layer
prediction model for optimal planning of groundwater
extraction schemes.

o Development and integration of bagging and boost-
ing ensemble technique with Decision Tree(DT) using
ensemble voting strategy to predict number of days for
optimal planning for water pumping schemes
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« Development of water table depth prediction model for
effective groundwater resource management by combin-
ing the bagging and boosting techniques through the use
of an ensemble voting procedure.

o Comparative analysis with the best available deep learn-
ing models for drilling-process prediction to verify the
effectiveness of the proposed model.

The rest of the paper is organized as follows. Section II
discuss a detailed review of the existing work of various
researcher for water pumping and resource management. The
proposed methodology of our proposed work is presented in
section III. Section IV discussed the results of our proposed
work. The conclusion is presented in section V.

II. LITERATURE REVIEW

This section discusses the existing work done for effective
management drilling and groundwater resources. The pro-
cess of effective management of groundwater and drilling
resources refers to systematically and cooperatively utilizing,
protecting, extracting and developing groundwater resources
for the long-term use. Therefore management and optimiza-
tion of drilling and groundwater is essential to ensures a
secure and sustainable water supply, Protects aquatic environ-
ments against depletion and contamination of groundwater
resources. Clean and safe access to groundwater resource
not only helps agriculture and business but is imperative to
economic and social advantages over the long run. In addition
to that improving the efficacy and efficiency of the drilling
operations maximize water extraction while reducing drilling
costs and environmental implications. In this regards sev-
eral researchers have devised solutions for optimal resource
planning of water pumping schemes. The decision-making
process pertaining to groundwater and drilling optimization
can be greatly aided by the application of machine learning.
The authors in [16] developed a hybrid model using Convo-
lutional Neural Network (CNN), Recurrent Neural Network
(RNN) and RF for classification of drilling states in real-
time. In [17] authors employed machine learning techniques
for the risk assessment of ground water contamination occur-
rence using a Support Vector Machine (SVM), Multivariate
Discriminant Analysis (MDA), and Boosted Regression Tree
considering a dataset of 102 wells. In [18] the researcher
provided an overview of the machine learning methods
for drilling optimization and real time analysis of drilling
parameters.

A. MACHINE LEARNING FOR WATER LEVEL PREDICTION

Machine Learning techniques are widely used for plan-
ning and managing hydrological resources, specifically the
estimation of groundwater parameters. Water level estima-
tion is essential for efficient groundwater management and
achieving sustainable development goals. In [19] the authors
estimated the water level using temperature and monthly
mean precipitation using Multiple Linear Regression (MLR)
and ANN. Similar work have been done in [20] to predict
the groundwater level in the Reyhanli region of Turkey using
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Artificial Neural Networks (ANN) and M5Tree models. The
authors also modeled the impact of monthly average precip-
itation and temperature on the groundwater level. Reference
[21] used rainfall and sea level data to forecast the groundwa-
ter level using RNN and LSTM model for flood management
in coastal area. The reviewed works on Groundwater mod-
eling suggest that LSTM achieved superior performance
compared to RNN. Conventional machine learning-based
solutions are also developed by several researchers such as
Support Vector Machine, Random Forest, and K Nearest
Neighbor are used in the literature. Support Vector Machine
(SVM) is a machine learning technique that can be used in
both classification and regression problems. SVM can be
easily used with categorical and continuous multiple fea-
tures. K Nearest Neighbor (KNN) is a supervised learning
algorithm that can solve classification and regression prob-
lems. For instance, article [22] proposed a hybrid model
based on K-Nearest Neighbor (KNN) and RF for water level
prediction using solar radiation, daily mean temperature, pre-
cipitation and daily maximum solar radiation. To forecast the
ground water level [23] utilized Extreme Learning Machine
(ELM) and SVM model. Experiments are conducted on sea-
sonal variables including temperature, rainfall, evaporation
and transpiration.

B. MACHINE LEARNING FOR GROUND POTENTIAL
CLASSIFICATION

Modeling groundwater potential is highly imperative for
effective groundwater resource management. Article [24]
proposed an ensemble learning model based on Logistic
Regression, namely Random Subspace Logistic Regres-
sion (RSSLR), Dagging Logistic Regression(DLR), Cascade
Generalization Logistic Regression (CGLR) and Bagging
Logistic Regression (BLR) for potential groundwater map-
ping in the province of Vietnam. The proposed work utilized
environmental factors as independent variables. The results
of the study proved that DLR achieved highest superior per-
formance compared to CGLR, RSSLR and BLR. Ensemble
learning frameworks are known to improve the performance
of the model by overcoming the limitations of weak learners.
In [25] ensemble learning scheme is developed for modeling
groundwater. The ensemble framework is built using J48 DT,
Rotation Forest, Bagging, Dagging, Random subspace, and
AdaBoost. The proposed work considered sixteen ground-
water such as slope,topographic wetness index,elevation,
distance from river network and elevation etc as independent
variables for modeling. The results of the study suggest that
RF-J48 achieved the highest AUC score of 0.797 among
others. The authors in [26] proposed a RF-based Ran-
dom Subspace classifier for mapping groundwater potential
in Kurdistan province of Iran. Experimental results show
that RF has a very high predictive power compared to
Logistic Regression and Naive Bayes. In [27] the authors
compared the performance of ensemble models on ground
potential estimation. The proposed work developed Bagged
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CART,Random Forest, Boosted generalized additive model
and AdaBoost, is applied on ground potential factors dataset
such as groundwater productivity data and other groundwater
potential conditioning factors. The prediction accuracy of RF
was 86 % that is highest as compared to other methods.

C. MACHINE LEARNING BASED WATER TABLE
PREDICTION

Groundwater table prediction plays an essential role in the
planning and management of ground resources. Reference
[28] compared the performance of RF and XGB in forecast-
ing the water table depth for cranberry field farms in Canada.
Experimental findings state that XGB achieved better results
than RF for water table depth forecasting. In [29] authors
developed ANFIS based model to forecast the groundwater
table.

The fluctuation of water table depth occurs due to seasonal
and environmental changes. To investigate the groundwater
behavior [30] proposed Fuzzy Logic, Radial Basis Function
Neural Network (RBFN), and Co-Active NFIS-based solu-
tion. Accurate modeling of groundwater resources is impor-
tant for the management and planning of hydro-geological
resources. In an article [31] proposed ANN model for sea-
sonal ground water table depth prediction while Genetic
Algorithm (GA) is used to optimize the weights of ANN.
Reference [32] employed ANN and SVM for ground water
forecasting.

Reference [33] devised a solution to monitor the long-term
trend of groundwater table in the northwest region of
Bangladesh using data from 350 wells. In a article, [34]
developed Support Vector Regressor (SVR) and Controlled
Auto Regressive Ridge Regression (CAT-RR) for ground-
water table forecasting. Similar work is done by [35] to
predict the groundwater table to evaluate the sustainability of
groundwater resources using SVR and observe performance
gains.

D. MACHINE LEARNING FOR DRILLING RATE OF
PENETRATION PREDICTION
The drilling rate of penetration prediction is adapted to
optimize drilling performance. In a study [36] used ANN,
SVM, and Hybrid Multi-Layer Perceptron for drilling rate
of penetration prediction. A hybrid ANN with a Simulated
Annealing (SA), Invasive Weed Optimization Algorithm,
Firefly Algorithm (FA), Shuffled Frog Leaping Algorithm,
and Standard Back-propagation to learn the weights for
drilling rate index estimation is proposed in [37]. The exper-
imental results demonstrated that ANN with SA achieved
noteworthy performance among all. Reference [38] used
ANN for the Rate of penetration prediction. The authors opti-
mized the weights of ANN using a self-adaptive differential
equation. Similarly, in [39] the authors employed ANN to
predict penetration rate. To fine-tune the ANN parameters,
Artificial Bee Colony (ABC) is employed.

Reference [19] perform groundwater level prediction using
temperature and monthly mean precipitation factors. Article
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[24] classified the ground potential by making use of environ-
mental factors. In [30] the authors predicted the water table
using environmental and seasonal factors. In another study
[31] ground water table depth is predicted using seasonal
factors. The review of existing and current methods applied
to optimizing drilling operations and managing groundwa-
ter resources suffers from the following limitations. Firstly
Groundwater systems are notoriously difficult to anticipate
because of their complexity and the fact that they are con-
stantly changing in response to pumping, recharge, and
other stratigraphic variables. The existing studies have not
taken into account the subsurface lithologies and startigraphic
uncertainties into account. Further the groundwater data
is often collected by multiple organizations using diverse
methodologies, making it challenging to compare and inter-
pret data from different sources due to the lack of consistency
in data collection and reporting. Predictive groundwater mod-
eling relies heavily on the quality of the data used to make
predictions. Inaccurate predictions, ill-informed decisions,
and wasteful use of resources are all possible outcomes of
low quality data. However, better data can lead to better
groundwater modeling, better decisions, and better long-term
sustainability and efficiency in managing groundwater sup-
plies. The accuracy and reliability of models that predict
hydro-logical and lithological attributes is often compro-
mised due to a lack of proper validation with observed data.
Moreover, in the previous studies, the researcher proposed a
method for groundwater table prediction. But they all pre-
dicted groundwater table using environmental and seasonal
variables.

The quest of devising a machine learning-based solu-
tion to model the down-hole environment automatically is
ever followed. A robust solution is required that can detect
soil layers and suggest the time and resources required to
drill and extract groundwater to reach a specific water table
depth using geological features. To this aim, we developed
a robust model to predict the water table depth, soil layer,
and drilling time to reach a specific water table depth. For
improved model performance and accurate results, we used
a real borehole dataset provided and collected by a research
organization. The proposed model harnesses the lithology
and drilling features to train and test the proposed models;
geological layer name, latitude, longitude, altitude, starting
depth, ending depth, and soil color. Our developed model
is scalable to dynamically varying down-hole environments.
The developed system allow drilling companies and water
boards to maximize efficiency by forecasting water needs
based on historical data. The proposed predictive models
can be used to determine the optimum water sources for
drilling operations, taking into account formation struc-
ture parameters (soil layer properties, water level, drilling
depth) to ascertain the groundwater availability and cost of
drilling operations. The proposed system helps the manage-
ment teams to take informed decision based on Prediction
results. The predictive models can offer valuable insights that
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inform decision-making, enabling water boards and drilling
firms to make data-driven water usage and management
decisions.

IlIl. PROPOSED METHODOLOGY FOR WATER RESOURCE
MANAGEMENT

This section discusses the methodology of our proposed work
for groundwater and drilling resource optimization. man-
agement and Algorithm 1 shows the steps of the proposed
method. The first section, discussed the detail of the data
set. The pre-processing steps are discussed in section two.
The proposed models for water resource management are pre-
sented in section three. Finally, we evaluate the performance
of our proposed methods. The detail of evaluation metrics is
discussed in section four. Figure 1 describes the phases of our
proposed work for water resource

A. DATA-SET

The experiment is performed on the borehole log data set.
The borehole log data set contains several attributes related
to drilling points. This data-set set contains 9287 instances
of 1987 unique borehole logs. The time required to dig a
borehole is known as drilling time. The instances represent
unique occurrences of drilling time, or the time spent drilling
at a particular location for extraction of groundwater. In other
words, each instance of drilling time represents the amount of
time spent on a particular borehole. Groundwater extraction
entails digging boreholes to reach subsurface water sources.
Depending on criteria such as Drilling depth, water table,
and geological conditions(soil layer and composition), the
drilling machine may spend varying lengths of time on each
borehole. By keeping track of the time required to drill each
borehole, drilling companies can collect data to enhance
their drilling procedures and increase productivity. Table 1
describes the detail of the borehole log data set’s feature
detail.

The borehole log data include the features related to
drilling points such as geographic coordinates, soil color,
soil layer, borehole log ID, ending and starting depth, the
thickness of the layer, and groundwater level. A land layer
is a rock unit under the ground surface. The land layer can
be classified into different rock layers. The land layer is a
target attribute that contains seven unique classes of rock
layers, including, the Gyeongam Formation, Landfill Layer,
Ordinary rock formation, Sedimentary layer, soft rock layer,
Weathered rock layer, and Weathered soil layer. In the raw
borehole log dataset, there are multiple records related to
each drilling point. The records pertaining to a single drilling
point contain related information to each point. There are
multiple soil colors and land layers encountered during the
drilling process for groundwater extraction. During drilling
multiple soil colors and land layers are encountered, and this
information can be used to better comprehend the underly-
ing conditions. The various soil colors and land layers can
provide information about the existence of groundwater by
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FIGURE 1. Proposed methodology diagram for prediction of soil layer, water table, and days prediction.

Algorithm 1 An Adaptive Ensemble Learning Assisted Cost-Effective Percussion Drilling for Water Boreholes

Data: Drilling Dataset data = (x1,x2,x3,...X,)

Result: Prediction of Soil Layer, Days and Water Table Depth

initialization;
data < (READCSV);
Feature < SplitFeature(data)

for each Feature do
data <— removeduplicate(data);

if AlphaNumericFeatures then
| data <— FeatureEncoding(data)

| data <— KNNImputer(data)

for i from 1 to Data do

data < SMOTE (data)

| data < Under Sampling(data)

Models < InitilizeParameters()

for each Models do

Model < ModelTraining(data);

Y < ModelPrediction(DataWithoutLabel);
Evaluate;

Accuracy < TP+ TN /TP + FN + FP+ TN
Precision <— TP/(TP + FP)

Recall < TP/(TP + FN)

FScore < 2% (PR)/(P+ R)

MSE < 1/m¥" " (yi — yi)?

MAE < 3L, |6i =yl

MSE < Sqrt(1/m Y1, (vi — yi)?);

indicating changes in soil composition. In the same way,
through data analysis, we discovered that the number of days
spent on each point and water table depth varies based on
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numerous factors, such as the depth of the borehole, the kind
of soil and rock being drilled. On average, it may take a
few days to drill a standard borehole, although more intricate
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TABLE 1. Detail description of drilling data set’s feature.

Feature Name Description

X X location coordinate represents the
Longitude

Y Y location coordinate represents the lat-
itude

Altitude Regions on the Earth’s surface

Groundwater level Represent the groundwater level

Starting depth It represents the start depth of that spe-
cific day

Ending depth It represents the end depth of that spe-
cific day

Starting thickness It represents the starting thickness of the
borehole

Land Layer Represent the geological layers name
such as Sedimentary layer, landfill layer,
soft rock layer, weathered rock layer,
and weathered soil layer.

Soil color Represent the soil color like dark brown

or deeper boreholes may take longer based on strati-graphic
uncertainty.

400

00

200 |

| I I

Sedimentary layer  LandFill Layer W Soil Layer W Rock Layer S Rock Layer G Formation a Rock formation
Classes

- class label

Class instances

FIGURE 2. Frequency distribution of land layer class label: Seven land
layers.

Figure 2 shows the frequency distribution of the class label.
It shows that the ordinary rock formation layer is suffering
from a class imbalance problem. during data pre-processing
step, we discussed the solution of this problem later in the
manuscript.

B. PRE-PROCESSING OF BOREHOLE LOG DATA SET

Data pre-processing is a process of cleaning and converting
the raw data into a reliable format. The fundamental objective
of data pre-processing is to prepare data for analysis and
model training by cleansing, converting, and structuring it
into a format appropriate for statistical analysis and machine
learning algorithms. The objective is to increase the data’s
quality and utility by eliminating errors, inconsistencies, and
outliers and guaranteeing that it can be easily examined and
comprehended. Data pre-processing is a crucial phase in the
data analysis procedure, as it has a substantial impact on the
correctness and dependability of the results [40]. Therefore,
it is necessary to pre-process the raw data to handle missing
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values and outliers. In this study, we perform several steps to
pre-process the raw data.

1) REMOVING REPEATED VALUES AND CATEGORICAL
FEATURE ENCODING

The Borehole log data set contains repeated borehole data
points. We remove the repeated borehole log data points
for consistency of data. Remove redundant data points by
applying the Structure Query Language (SQL) ’s group-by
method. To perform the mathematical operation, it is required
that data must be in numerical format. The feature encoder
is used to convert the categorical data values into numerical
ones. The employed method assigns a unique numerical value
to each category of a feature. We perform label encoding by
using the Scikit feature encoder.

2) IMPUTING MISSING VALUES

The objective of handling missing values is to estimate or
replace missing data in a dataset so that it may be ana-
lyzed. Handling missing values is crucial because missing
data might affect the precision and validity of an analysis’s
conclusions. There are numerous approaches for dealing with
missing values, including as replacing them with the mean or
median of the available data, utilizing predictive modeling to
estimate missing values based on trends in the data, or simply
deleting occurrences with missing values from the study.
Depending on the nature of the data and the objectives of
the study, the proper strategy for addressing missing values
will vary [41]. We Pre-processed the borehole log data set to
find out and remove the missing values. We find that the soil
color attribute has some missing values. To fill in the missing
values, we used the KNN imputation method to impute the
missing value. The KNN imputation method uses distance
measure to identify the neighboring point. The complete
neighboring observations are used to estimate the missing
values [42]. The missing value is imputed with the estimated
value by the scikit imputer method considering the two neigh-
bor points. The KNN imputation is performed using Eq.1.

dist(x,y) = Sqrt(weight % (distfrompresentcoord)z) (1)

where Weight is equal to the total number of coordinates
divided by a number of present coordinates.

3) FEATURE EXTRACTION AND SELECTION FOR BOREHOLE
LOG DATASET

Feature extraction is a process of combining variables into
features, to reduce the number of features. In Feature engi-
neering, the extraction of relevant features helps us to
increase the performance of the predictive model [43]. In this
study, we extract some features from the existing features
to improve the performance of the prediction model. In the
feature extraction step, first, we extract the total depth fea-
ture related to each drilling point. The total depth feature is
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extracted using Eq.2.

n
TD =" ED — SD )
i=1

where TD is the total depth, SD is the starting depth, ED is the
ending depth and n is the number of instances of a borehole.
Multiple days are spent on each drilling point, to count
the number of days spent on each drilling point pandas value
count function is used. Eq.3 Describe the equation of a num-

ber of days calculation.

m
days = Z Count(j) 3)

j=1
The water table is an underground boundary between the
area where groundwater saturates and the soil surface. The
borehole log dataset has an ending depth and amount of
water level. In this work, we will predict the Water table. We

calculate the water table using Eq.4

WaterTable = TotalDepth — Amountofwaterlevel — (4)

When a drilling process starts and the point where ground-
water is found is called water level and the complete depth of
the borehole is called the total depth. The groundwater level
is the height of the water table within an aquifer, which is
the water-bearing layer of porous rock, sand, or gravel. For
example, the drilling process stop drilling on 30 meters, and
achieved water on 25 meters, so amount of water level is
5 meter and total depth is 30 meters. The total depth of each
borehole is varied on different locations. Where Total depth is
the total drilling depth of borehole and amount of water level
is water achieved in each drilling point.

This study employs location coordinates X, Y, altitude, soil
color, and depth features for the classification of a land layer.
The water table prediction is performed using soil color, land
layer, X, Y, and altitude. Total depth, X, Y, altitude, soil color,
and land layer are used for a day’s prediction.

4) SMOTE FOR RE SAMPLING

When the distribution of data points is biased or skewed
toward some classes, it’s called an class imbalance problem
[44]. In borehole log data set, the distribution of data is
skewed towards the sedimentary layer. Where ordinary rock
formation layer is minority class. To solve the problem of
imbalance class, this study re-samples the data points to
balance the data. The process of adding or removing the data
instance is called re-sampling. When a new data point is
added into minority classes data point in the data, it’s called
am oversampling. Therefore, when a samples is removed
from majority class to balance the data set, it is called under
sampling [45].

Synthetic Minority Oversampling Technique (SMOTE) is
used to re-sample the data points. In re-sampling process
SMOTE select the data points that are close in the feature
space, draw a line between the data points in the feature
space and draw a new data point sample at a point along
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that line [46]. This study first re-sample the minority ordinary
rock formation layer equal to the data points of sedimentary
layer (majority class). Secondly, perform the under sampling
in the majority class like sedimentary layer and landfill layer
and over sampling in the other minority classes such as
ordinary rock formation layer and gyeongam formation layer.
Finally, over sample all classes equal to the sedimentary layer.

5) DATA STANDARDIZATION

Data Standardization is a process of converting the data into a
uniform format. It transforms the data on the same scale. The
standard scaler method is used for the standardization of data.
It reduces the effects of the too large or too small values of
features [47]. The formulation of standard scalar is described
in Eq.5.

Z=X-po 5)

where Z is a new Scale value, X is a value that needs to be
normalized, p is a mean of distribution and o is a variance of
the distribution.

C. PREDICTIVE MODELING OF GROUNDWATER
RESOURCE

1) CLASSIFICATION TECHNIQUES FOR GROUNDWATER
RESOURCE

This study used Support Vector Machine [48] for the
classification of soil layers. It separates different multi-
ple classes (Soil Layers) by constructing a hyperplane into
multi-dimensional space. It can minimize the error by iter-
atively generating an optimal hyperplane. Drilling Dataset
is given as input to SVM model, and the kernelling trick is
applied to transform the low-dimensional space into a higher-
dimensional space. The reason to select SVM as a classifier
is due to the nonlinear nature of drilling dataset. Because
of the kernel method, SVM works better when applied to a
nonlinear problems. This study uses RBF kernel and set the
value of gamma parameter as 0.9. RBF kernel performed the
transformation of feature space using Eq.6.

K(x,x') = exp(—|lx — x'[|*/20%) (6)

where o is a variance and ||x — x’||?is a Euclidean distance
between two points.

This study gives input the Drilling raw dataset to a Tab-
Net model [49] without any preprocessing and this model
is trained using gradient descent. Figure 3 shows the work-
ing flow of the Tabnet model. This method chooses the
features at each step using sequential attention. It performs
instance-wise feature selection; which means that each row
on the training dataset can be different. TabNet performs
soft feature selection because feature selection employs sin-
gle deep learning architecture. TabNet provides both local
and global interpretability. TabNet model is trained on cer-
tain parameters for water table depth, soil layers, and days
prediction.

The decision step is a hyperparameter that is used in model
training. The large step size increases the learning capacity of
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FIGURE 3. Architecture of Tabnet model for soil layer, water table, and
days prediction: Input the geological features and it predicts the water
table, soil layer and days.

the model; however on the other hand it increases training
time. This study trained Tabnet with the value of step 3.
The output of the decision step is combined by getting each
step vote in the final classification, and votes are equally
weighted. Attentive transformer includes the prior scales to
know about each feature and how the previous step uses
them. This attentive transformer derives the mask by using
the previous features. The mask derives the explainability and
is used to ensure that the model must focus on more relevant
features. The sparsemax mask is used for each decision step.
Generally, TabNet uses instance-wise feature selection, and
features are selected for each input, meaning each prediction
is performed on different features. This study used the Tabnet
decoder module to fill in the missing values. Because we pass
the raw data as input to TabNet.

The deep Tabular model’s architecture is derived from
TabNet [49], and Autolnt [S0]. This method performs drilling
feature set embedding, and multi-head self-attention like the
Autolnt model, and the Pretraining part is derived from Tab-
Net. Figure 4 shows the working flow of the deep tabular
model. In a deep tabular model, the name of the drilling
feature set is fed to the embedding layer and then multiplied
with drilling feature values. The model used a point-wise
feed-forward layer and a sequence of multi-head attention
blocks. These attention blocks model the interaction between
the drilling feature sets while the attention pooled skip the
connection to get a single vector from the drilling feature
embedding set.

K Nearest Neighbor [51] belongs to the class of lazy
learners because KNN does not learn from the drilling feature
training set immediately, alternatively, it stores the available
dataset. KNN performs the action on the drilling dataset at the
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FIGURE 4. Architecture of deep tabular model for soil layer classification.
Input the geological features and it predicts the soil layer.

time of classification. KNN is a non-parametric method; on
underlying data it does not make any new assumptions to clas-
sify soil layer samples. It calculates the similarity between
available cases and new cases. It assigns the category of new
cases that is most like the category of available cases based on
the similarity. There is three most common type of distance
metrics that can be used to calculate the distance between
data points, such as Minkowski, Euclidean, and Manhattan
distance. K is the main parameter of KNN that is used to
decide the neighbors for calculating the distance. In our work,
we used Minkowski distance metrics as distance metrics and
set k equal to 2.

Soil layer class label has an imbalanced class label, and
for imbalanced class distribution ensemble voting classifier
[52] is an optimal prediction model. The single prediction
model can be biased towards a majority class and that reduces
the generalization of the model. In contrast, the Ensemble
voting classifier has multiple base learners and in training it
merges the knowledge from each base learner that increased
the generalization of the model in a prediction phase. In a
regression problem such as the number of days and water
table prediction, an outlier can exist that effect the prediction
result and a single classifier can be affected by an outlier.
However, the Ensemble average regressor is robust of an
outlier because it merges the knowledge from multiple base
learners. First, we applied the different machine learning clas-
sifiers such as Random Forest, Gradient Boosting Decision
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tree, K Nearest Neighbor, and others on drilling data-set for
soil layer prediction. Afterward, we selected the candidate
learner for ensemble learning who has high prediction accu-
racy and low error for the water table, days, and soil layer.
To achieve better prediction results we performed parameter
tuning of each model. Thus Grid search is used for hyper-
parameter tuning of each candidate learner. The accuracy of
each model is considered as a weight for each classifier. The
higher prediction accuracy translates into to higher weight
assignment.

This proposed work study selected the following model;
Random Forest (RF) [53], Gradient Boosting (GB) [54], XG
Boost (XGB) [55], and K Nearest Neighbor (KNN) classi-
fiers for a weighted voting wrapper. In this proposed model
merge the knowledge of RF, GB, XGB, and KNN for layer
classification. Figure 5 shows a block diagram of Ensemble
Weighted Voting Ensemble Soil Layer Classifier (EWV-SLC)
for soil layer classification. The purpose of selecting the RF as
a base learner is that it can automatically balance the dataset
in case of an imbalanced class. Where Gradient Boosting is
also suitable for performing the classification in the case of an
imbalance classification problem. The aim of selecting XGB
is that it works well with structure data and achieves good
prediction performance. KNN is an instance base method that
works based on the neighbor’s value. The patterns of soil
color and layer are related to each other. That’s why we select
KNN as the candidate for weighted voting.

2) MACHINE LEARNING MODEL FOR DAYS AND WATER
TABLE DEPTH PREDICTION

The water table and the number of days prediction is a regres-
sion problem. To predict the number of days and water table
this study used Support Vector Regressor, TabNet, Deep Neu-
ral Network and develop an ensemble averaging model for
days and water table depth prediction. Support Vector Regres-
sor is trained using RBF kernel. For experimentation of DNN
model we set the batch size value as 64, maximum epoch
as 1000, Adam optimizer is used to optimize the weights,
and linear activation function is used at the output layer to
produce the output. This study develops a DNN model for the
water table and the number of days prediction. In Deep Neural
Network [56], we multiply the weights with drilling features
input value and pass them to the activation function. The
linear activation function produces the output. The equation
of net input is described in Eq.7. In our work, we used the
ReLU activation function in hidden layers and linear activa-
tion function at the output layer. The Water table and days
prediction is performed using the linear activation function.
The Adam optimizer is used to optimize the weights of the
network. Adam optimizer used Eq.8 to update the weights.

a=¢(wx +Db) (N

W is a weight, b is a bias and x (drilling features) are an input
vectors. ¢ is an activation function.

Wnew = Wold — aVdw orr )
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We have proposed the Ensemble Number of Days (E-NOD)
regressor model. In our proposed model for a number of days
prediction, we have merged the knowledge of the Decision
Tree Regressor, Xtra Tree Gradient Boosting Regressor, and
Random Forest Regressor. Figure 5 shows the block diagram
of the proposed model for a number of days prediction. To
predict the water table depth, we have proposed the Ensemble
Water Table Depth (E-WTD) model based on, Random For-
est Regressor, Xtra Tree Gradient Boosting Regressor, and
Bagging Regressor. Figure 5 presents the block diagram of
the E-WTD model for more clarity. The purpose of using the
XGB regressor model is attributed to its better performance
on tabular data.

Figure 5 shows the proposed EWV-SLC for soil layer
classification, the E-NOD model for days prediction, and
the E-WTD model for a Water Table prediction. Bagging
Regressor is a meta-estimator that fits base regressors on
each subset of the actual dataset, and it finally performs the
individual predictions by averaging. A decision tree [57] is
a rule-based model that split the dataset into smaller sub-
sets and incrementally developed the tree. It is a famous
entropy-based regressor that commonly performs better in
the case of tabular data. Random Forest is a Bagging base
method. In both proposed models (E-NOD) and (E-WTD)
we combine the prediction from multiple base models. First,
we trained base models on data and get the prediction results
from all base models. Finally, E-NOD) and E-WTD makes a
prediction that is the average of base-estimator

Give an input geological features set to all the candidate
classifiers (KNN, RF, GB, and XGB) and train each candidate
classifier on the features set for EWV-SLC. Each classifier
performs prediction, and perform voting by assigning the
weight to each classifier. By voting finally, we perform the
final prediction (Soil Layer).

Give an input geological features set with days target
attribute to DT, RF, and XGB Regressor for E-NOD. Each
model is trained on the geological feature set and predicts
the days that is required to reach the water table. Finally,
we average the result of each regressor and predict in a
specific region how many numbers of days are required to
reach the water table.

Give an input geological features set with water table target
attribute to Bagging Regressor, RF, and XGB Regressor for
E-WTD. Each model is trained on the geological feature set
and then predicts the water table. Finally, we average the
result of each regressor and to produce the final water table
prediction outcome.

D. EVALUATION METRICS

We evaluated the performance of prediction models using
Accuracy, Precision, Recall, and F-score for soil layer classi-
fication. Mean Square Error, Root Mean Square Error, Mean
Absolute Error, and Mean Absolute Percentage Error are used
to evaluate the performance of the prediction model for water
table days, prediction.
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FIGURE 5. Proposed architecture of E-NOD, EWV-SLC and E-WTD model: Input the geological features and it

predicts the water table, soil layer and day.

1) ACCURACY

Accuracy metrics describe how much our classifier predicts
data points correctly from all data points. In Eq. 9, we write
the formula of accuracy.

Accuracy = (TP +TN)/(P+ N) )

2) PRECISION

Precision is the probability that the classifier predicts a pos-
itive class correctly. In Eq. 10, we write the formula of
precision.

Precision = TP/(TP + FP) (10)

3) RECALL

The recall is the probability that the classifier predicts the
actual class correctly. In Eq.11, we write the formula of recall
metrics.

Recall =TP/(TP + FN) an

4) F SCORE

F score is a performance measurement metric. It is a harmonic
means of precision and recall. In Eq.12, we write the formula
of F score metrics.

FScore =2(PR)/(P + R) (12)

In Eq. 12, P is precision, and R is a recall score.

5) MEAN SQUARE ERROR

Mean Square Error measures the difference between actual
and predicted values. It tells us how much our predicted
values are close to the actual value. In MSE we take the dif-
ference between the actual and the predicted value and square
the difference. The lesser value of MSE determines closer fit
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and better performance of the model. MSE is calculated by
using Eq.13.

m
MSE = 1/m ) (y — ypred)* (13)
@(=1)
where y is an actual value and ypred is a predicted value.

6) MEAN ABSOLUTE ERROR

Mean Absolute Error measures the difference between actual
and predicted value by taking the absolute difference between
actual and predicted value on the complete dataset. It is
calculated by using Eq.14.

m
MAE = > |(y — ypred)| (14)
(i=D)

7) ROOT MEAN SQUARE ERROR (RMSE)

Root Mean Square Error is a square root of MSE. RMSE
determines the average distance that starts from the fitted line
to the data points. RMSE is calculated using Eq.15.

m
RMSE = squareroot(z - ypred)z)/m) (15)
(=1

8) MEAN ABSOLUTE PERCENTAGE ERROR

Mean Absolute Percentage Error measures the percentage
difference between predicted and actual values. It is calcu-
lated using eq.16.

MAPE = 1/n > (ly — ypred|)/y) (16)
=)

IV. RESULTS AND DISCUSSION
This section discusses the results of our proposed work for
the water table, number of days, and soil layer prediction.
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To predict the ground soil layer in the different regions at a
specific depth this study applies a multi-class classification
algorithm. This article performed the comparison between
traditional Machine Learning methods such as SVM and
KNN and Deep Learning-based models including Tabnet
and Deep Tabular with the proposed Ensemble Weighted
Voting Soil Layer Classifier (EWV-SLC) model. This study
monitors the impact of KNN missing value imputation and
SMOTE resampling technique for soil layer classification.
Table 2 shows the classification result without imputation
and resampling. To deal with the missing values this study
imputes the missing values based on a distance-based method
and ensures the better impact of this method in prediction
performance. In Table 3, the results of the machine learning
method with KNN imputation are presented. The soil land
layer class label has imbalanced class distribution and to
balance the class distribution of the soil layer this study used
SMOTE re-sampling method because imbalanced distribu-
tions cause a problem of a classifier’s biasedness toward the
majority class. Table 4 shows the result of ML method with
SMOTE minority class resampling and KNN imputation. In
Table 5 describes the results of ML method with under and
over-sampling and KNN imputation. Table 6 discussed the
results of the machine learning method with missing value
imputation and SMOTE oversampling resampling for soil
layer classification. The prediction of the water table and the
number of days is performed with machine learning models
such as SVM and Deep Learning models such as Tabnet and
Deep Neural Network. We compare the performance of these
models with our proposed Ensemble model for the water table
and number of days prediction. Table 7 and Table 8 show the
result of the water table depth prediction without and with the
imputation of missing values, and in Table 9 and Table 10 we
discussed the results of a number of days prediction without
and with the imputation of missing values.

A. SOIL LAYER CLASSIFICATION

In the borehole log data set, there are 7 land layers. To
solve this multi-class problem, two deep learning models
Tabnet and Deep Tabular are applied to predict the land layer
in different locations. Empirical investigations suggest that
the prediction performance of SVM and KNN is better as
compared to the deep learning model. Moreover the pro-
posed Ensemble Weighted Voting Soil Layer Classification
(EWV-SLC) outperformed the baseline schemes SVM and
KNN in terms of accuracy and F score.

TABLE 2. Experimental result of machine learning models without
imputation and Resampling for soil layer classification.

Method Accuracy Precision Recall F Measure

KNN 77.3% 77.82% 77.3% 77.2%

SVM 69.99% 71.1% 69.9% 69.54%

Tab net 64.7% 64.7% 64.7% 64.7%

Deep Tabular  74% 69% 68% 68%

EWV-SLC 79.74% 80.23% 79.78%  19.56%
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Table 2 shows the results of the machine learning classifier
for soil layer classification without the missing value imputa-
tion and resampling. Table 2 shows that the KNN performed
better in terms of accuracy as compared to Tabnet and the
deep tabular model. While the prediction performance our
proposed (EWV-SLC) model in terms of Accuracy, Precision,
Recall, and F score are superior as compared to other models.
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FIGURE 6. Confusion metrics of the proposed model for soil layer
classification without imputation of missing value and Resampling.

Figure 6 shows the confusion metrics of our proposed
model for the classification of soil layer without KNN impu-
tation. It shows that the precision of the proposed model is
80.23% and recall is 79.78%.
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FIGURE 7. Comparison graph of machine learning method for soil layer
classification based on a accuracy and f score metrics.

Figure 7 shows the comparison graph of the machine learn-
ing method for soil layer classification in a specific region
based on accuracy and F score metrics without missing value
imputation. It demonstrates that the accuracy and F score
metrics of the EWV-SLC model are high as compared to other
machine learning methods.
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TABLE 3. Experimental results of machine learning using the KNN
imputation and without Resampling for soil layer classification.

Method Accuracy Precision Recall F Measure
KNN 77.75% 78.35% 77.75%  77.6%
SVM 71.8% 72.63% 71.7% 71.44%
Tab net 64.9% 64.8% 64.92%  64.93%
Deep Tabular ~ 74.5% 69.7% 68.34%  69.04%
EWV-SLC 80.5% 80.6% 80.45%  80.3%

Table 3 presents the results of the machine learning classi-
fier for soil layer classification with the KNN missing value
imputation and without the resampling. According to the
results of Table 3, the accuracy of KNN is better as compared
to TabNet and the deep tabular model. However, the compar-
ative analysis of the proposed model (EWV-SLC) suggests
that the model classifies the land soil layer with a high F
score. Table 3 demonstrate that our missing value imputation
technique worked well for imputing the soil color missing
value. Due to the missing value imputation technique, the
accuracy is increased almost to 0.67%.
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FIGURE 8. Confusion metrics of the proposed model for soil layer
classification with KNN imputation and without resampling.

Figure 8 shows the confusion metrics of our proposed
model for the classification of soil layers with KNN impu-
tation and without resampling. It shows that the precision of
the proposed model is 80.6% and recall is 80.45%.

Figure 9 depicts the graph comparing the machine learning
approach for soil layer classification in a particular region
with KNN imputation. The performance graph demonstrates
that the accuracy and F score of the EWV-SLC model are
superior to those of other machine learning techniques.

Table 4 shows the results of the machine learning clas-
sifier for soil layer classification with Smote minority class
resampling and KNN missing value imputation. In SMOTE
minority class resampling we oversample the minority class
sample equal to the majority class. Table 4 demonstrates
that our proposed model (EWV-SLC) classifies the land soil
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FIGURE 9. Comparison Graph of Machine learning method for soil layer
classification with missing value imputation based on an accuracy and
f score metrics.

TABLE 4. Experimental results of machine learning model using the KNN
imputation and SMOTE minority class oversampling for soil layer
classification.

Method Accuracy Precision  Recall F Measure
KNN 82.5% 82.66% 82.5% 82.34%
SVM 76.07% 75.94% 76.1% 75.24%
Tab net 70.5% 70.5% 70.5% 70.5%
Deep Tabular ~ 77.41% 77.52% 77.48%  17.42%
EWV-SLC 84.33% 84.49% 84.34%  84.2%

layer with high F score metrics that are highest as compared
to other methods. Table 4 conclude that oversampling the
minority class EWV-SLC model improved the almost 3%
results in term of accuracy and F score.
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FIGURE 10. Confusion metrics of the proposed model for soil layer
classification with KNN imputation and SMOTE Minority class resampling.

Figure 10 shows the confusion metrics of the EWV-SLC
model for the classification of soil layer with KNN impu-
tation and minority class oversampling. It shows that the
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precision of the proposed model is 84.49% and recall is
84.34%.
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FIGURE 11. Comparison Graph of Machine learning method for soil layer
classification with missing value imputation and Minority Class
resampling based on accuracy and f score metrics.

In Figure 11 we present the performance of the machine
learning method in terms of accuracy and F score. By apply-
ing the minority class resampling the results of EWV-SLC
and other ML methods increased in terms of accuracy and
F score.

TABLE 5. Experimental results of machine learning model using the using
KNN imputation and with Smote under and oversampling for soil layer
classification.

Method Accuracy Precision  Recall F Measure
KNN 82.34% 82.6% 82.34%  82.28%
SVM 74.63% 75.66% 74.63%  74.43%
Tab net 68.7% 68% 68.7% 68.1%
Deep Tabular  76.3% 76.43% 76.38%  76.31%
EWV-SLC 84.72% 85.18% 84.72%  84.94%

In Table 5 we present the results of our proposed model,
traditional machine learning, and Deep Learning Classifier
for soil layer classification with SMOTE over and under-
sampling. In oversampling, we add more samples to the data
set, and we remove samples in under-sampling.

The Proposed model performed better in terms of accuracy
and F score as compared to another method. By applying the
SMOTE over-sampling and under-sampling the result of our
proposed model is improved from 84.2% to 84.72%.

Figure 12 shows the confusion metrics of the EWV-SLC
model for the classification of soil layer with KNN imputa-
tion and SMOTE over and under-sampling. The result verifies
the efficacy of the proposed model in terms of precision and
recall scores of 85.18% and 84.72% respectively.

Figure 13 shows the performance of the machine learning
method in a bar chart with over and under-resampling for soil
layer classification in a specific region. The performance of
the EWV-SLC model is high as compared to another method
in terms of accuracy and F score.

In Table 6 the results of the machine learning classifier
are presented with SMOTE majority class oversampling.
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FIGURE 12. Confusion metrics of the proposed model for soil layer
classification with KNN imputation and SMOTE under and oversampling.

@
=
[=]
A
30
20 [ TABNET
— VM
[ DEEP TAB
o [ KNN
[ EWV-SLC
o T T
Accuracy F Scare
Metrics

FIGURE 13. Comparison Graph of Machine learning method for soil layer
classification with missing value imputation and over and under
resampling based on a accuracy and f score metrics.

TABLE 6. Experimental results of machine learning model using the using
KNN imputation and with Smote oversampling for soil layer classification.

Method Accuracy Precision Recall F Measure
KNN 83.38% 83.01% 82.34%  82.04%
SVM 78.57% 79.78% 78.57%  78.6%

Tab net 73.9% 74% % 73.9% 73.7%
Deep Tabular  77.5% 77.3% 77.81%  77.6%
EWV-SLC 89.11% 89.48% 89.11%  89.13%

In SMOTE majority class oversampling we over-sample the
data points of all class labels equal to the majority class
label. EWV-SLC achieved 89.13% accuracy that is the high-
est among all the methods. By applying the majority class
oversampling, the F score of EWV-SLC is improved from
84.94% to 89.13%.

Figure 14 shows the confusion metrics of EWV-SLC model
for the classification of soil layer with KNN imputation and
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FIGURE 14. Confusion metrics of proposed model for soil layer
classification with KNN imputation and SMOTE oversampling.

SMOTE Oversampling. It shows that the model precision of
the proposed model is 89.48% and recall is 89.11%.
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FIGURE 15. Comparison Graph of Machine learning method for soil layer
classification with missing value imputation and SMOTE majority class
oversampling based on a accuracy and f score metrics.

Figure 15 shows the comparison graph of the machine
learning method for soil layer classification in a specific
region with SMOTE majority class oversampling. It con-
cludes that applying the majority oversampling EWV-SLC
model achieved the highest result in terms of accuracy and
F score.

B. WATER TABLE PREDICTION

In this subsection, we discussed the results of water table
depth prediction. The water table is a regression problem,
we predict the depth of the water table using Tabnet, DNN,
SVR. To predict the accurate depth of water table we pro-
posed our Ensemble Water Table depth prediction model
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(E-WTD). E-WTD model predicts the water table depth with
less MAE error as compared to other models.

TABLE 7. Experimental result of machine learning models for Water
Table Prediction without imputation of missing values.

Method MAE MSE RMSE MAPE
Tabnet 5.77 69.99 8.37 0.41
DNN 4.084 403 6.35 0.38
SVR 6.89 11298  10.63 0.47
E-WTD  3.02 28.65 5.35 0.34

Table 7 describes the results of machine learning method
for the prediction of water table depth without imputing the
missing value. The Mean Absolute Error of the E-WTD
model is less as compared to SVR, DNN, and TabNet. It
demonstrates that the E-WTD model predicts the error WTD
with less error.

1 EWTD —
10 { == DNN
3 TabMet
1 VR

Error

MAE RMSE
Error Metrics

FIGURE 16. Comparative Analysis of machine learning model for Water
Table Depth Prediction based on an MAE and RMSE metrics: without the
KNN imputation.

In Figure 16 we present the MAE and RMSE of the
machine learning method in bar chart for prediction of water
table depth in a specific region. It shows that the error of
the E-WDT model is less as compared to other method in
predicting the depth of the water table.

TABLE 8. Experimental result of machine learning models for Water
Table Prediction with the imputation of missing values.

Method MAE MSE RMSE MAPE
Tabnet 5.59 63.92 7.99 0.51
DNN 4.8 53.89 7.34 0.31
SVR 6.45 108.55 10.42 0.51
E-WTD  4.05 39.14 6.26 0.35

Table 8 describes the results of machine learning method
for the prediction of water table depth with KNN imputer for
the missing values. The Mean Absolute Error of the E-WTD
model is less as compared to SVR, DNN, and TabNet. It
demonstrates that the E-WTD model predicts the WTD with
less error.

In Figure 17 we present the MAE and RMSE of the
machine learning method in line chart for prediction of water
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FIGURE 17. Comparative Analysis of machine learning model for Water
Table Depth Prediction based on an MAE and RMSE metrics: with the
KNN imputation.

table depth in a specific region without imputation of missing
value imputation. It shows that the error of the E-WDT model
is less as compared to other method in predicting the depth of
the water table.

1) NUMBER OF DAYS PREDICTION

When we start drilling in a specific region if we already know
the estimate of how many days is required to reach a water
table in a specific region it helps us to estimate the cost and
other resources. In this subsection, we discussed the results of
days prediction. We apply Tabnet, DNN, SVR model for days
prediction and compare the performance with our proposed
model. Table 9 shows the results of the Number of Days
prediction without imputation of missing values and Table 10
shows the results with imputation of missing values.

TABLE 9. Experimental result of machine learning models for Num of
Days Prediction without Missing value imputation on a test dataset.

Method MAE MSE RMSE MAPE
Tabnet 1.04 2.64 1.62 0.236
DNN 1.01 2.45 1.56 0.23
SVR 1.126  3.76 1.94 0.25
E-NOD 0.849 1.46 1.20 0.21

In Table 9 the results of prediction models are discussed. It
shows that our proposed E-NOD model predicts the number
of days with less MAE error compared to DNN, Tabnet, and
SVR. The takeaway of Table 9 is that the proposed E-NOD
model is correctly predicting the required numbers of days
are to reach the water table in a specific region.

Figure 18 describes the error of the machine learning
model for the prediction of a number of days in a specific
region. It demonstrates that the E-NOD prediction model
predicts how many days are required to reach the water table
depth with less MAE and RMSE.

In Table 10 the results of prediction models with KNN
imputation are presented. It shows that our proposed E-NOD
prediction model predicts the number of days with less MAE
error as compared to DNN, TabNet, and SVR. Table 10
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FIGURE 18. Comparative Analysis of machine learning model for days
Prediction based on an MAE and RMSE metrics: without the KNN
imputation.

TABLE 10. Experimental result of machine learning models for Num of
Days Prediction with Missing value imputation using KNN imputer.

Method MAE MSE RMSE MAPE
Tabnet 1.31 4.49 2.12 0.27
DNN 1.18 3.79 1.55 0.25
SVR 1.87 1126 3.35 0.26
Combined Voting  0.95 1.765 1.3 0.22

concludes that E-NOD correctly predicts how many days are
required to reach the water table in a specific region.

35
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00
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FIGURE 19. comparative Analysis of machine learning model for days
Prediction based on an MAE and RMSE metrics: with the KNN imputation.

Figure 19 describes the error of the machine learning
model for the prediction days in a specific region with missing
value imputation. It demonstrates that the E-NOD model
predicts how many days are required to reach the water table
depth with less MAE and RMSE.

V. CONCLUSION

The proposed research study consists of three main mod-
ules. In the first module, the classification of a land layer
is performed. In the classification module we first, balance
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the class label by applying the SMOTE. In this module,
we proposed an ensemble weighted voting classifier with
KNN, bagging, and boosting techniques to predict the land
layer for optimal planning for water pumping schemes. The
accuracy, precision, recall, and F score of the EWV-SL Clas-
sifier are 89.11%,89.48%,89.11%, and 89.13% respectively
which show increased efficiency. Our Precise prediction find-
ings can assist in optimizing operations, hence decreasing
resource wastage and boosting the productivity of drilling
operations. Further to estimate the cost and drilling resources
it is necessary to predict the water table and number of
days. For the prediction of the water table depth in differ-
ent regions, we proposed an ensemble model by using the
bagging and boosting method as a candidate learner. The
MAE, MSE, and RMSE of the E-WTD model are 3.02,28.65,
and 5.35 respectively. In the third module, we present an
ensemble model by selecting a decision tree, bagging, and
boosting as a candidate learner. The MAE, MSE, and RMSE
of the E-NOD model are 0.849,1.46 and 1.20 respectively.
However, the TabNet model did not produce the expected
results in comparison to the Bagging and Boosting method.
Extensive empirical investigations revealed that, compared to
competing approaches, the models we developed performed
better and yielded superior outcomes across all modules. The
results of this research will aid the drilling industry and water
boards to optimize the resources for sustainable groundwater
extraction and management. In this work, we perform soil
layer, water table depth, and number of days prediction. But
in the future, we may predict the next depth for the next day,
soil color, and drilling point. Now we perform experiments on
geological features, but in the future, we may use geological
features with environmental factors for the depth of water.
We may also extract new features from the existing features.
To predict the water table depth, days, and soil layer we
apply a machine-learning model with bagging and boosting
techniques. But in the future other machine learning methods
with boosting or bagging techniques may be used.
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