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ABSTRACT Sliding-window random linear network coding (RLNC) is a good fit for achieving low in-order
delivery delay in future-generation networks characterized by lossy links. In high bandwidth-delay product
networks, however, the issue of integrating RLNC with transmission control protocol (TCP) flow and
congestion control poses a significant challenge. In this paper, we propose an innovative reinforcement
learning (RL) framework that addresses this issue by decoupling the RLNC sliding window from TCP
and dynamically adjusting it to enhance network performance in terms of goodput, in-order delivery delay,
and decoding complexity. By employing RL, we enable autonomous decision-making for adjusting the
sliding window of RLNC, which operates independently of TCP. This decoupling allows RLNC to adapt
dynamically to the varying conditions of the network, without prior knowledge of its characteristics.
By leveraging the benefits of RLNC and TCP separately, we achieve more efficient and effective utilization
of network resources. The results highlight significant improvements in goodput, in-order delivery delay, and
decoding complexity. These improvements are crucial because in network coding, there is always a trade-off
between goodput, delay, and decoding complexity, and minimizing this trade-off is very challenging. Using
RL and decoupling of RLNC sliding window from TCP, we address this challenge andminimize the trade-off
significantly. Goodput is improved by up to 11%, the in-order delivery delay is reduced by a factor of 9%,
and coding complexity shows an improvement of up to 45% compared to the state-of-the-art.

INDEX TERMS High BDP networks, in-order delay, reinforcement learning, RLNC, TCP sliding window.

I. INTRODUCTION
Reliable low-latency communication is the core of
future-generation networks such as the industrial Internet
of things and non-terrestrial networks. These networks gen-
erally have a high bandwidth-delay product (BDP) and
are considered crucial to the development of 6th genera-
tion communication systems [1]. Random linear network
coding (RLNC) [2] is an important alternative to con-
ventional retransmission-based loss-recovery mechanisms
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for achieving low end-to-end delivery delay, especially in
high-BDP networks [3].

RLNC is a network coding (NC) process used in network
communication to increase data transmission reliability and
effectiveness. RLNC linearly combines packets at the sender
side to add redundancy to the transmitted data. The coded
packets produced by this process are linear combinations
of the original packets [4]. These coded packets are then
transmitted over the network. Fig. 1 shows a network model
with RLNC encoder and decoder on the sender and receiver
devices respectively.1 The RLNC encoder generates coded

1The RLNC encoder and decoder can also reside at R1 and R2.
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FIGURE 1. A network model with an RLNC encoder at the sender device and an RLNC decoder at the receiver device.

packets and sends them to the receiver via the bottleneck
link between router 1 (R1) and router 2 (R2). The sender can
choose to send only data packets (NoNC), coded packets, or a
mix of both depending on the user’s requirement.

On the receiver side, the RLNC decoder allows for the
decoding of the original packets using a subset of received
coded packets. After decoding a coded packet, the receiver
sends an acknowledgment (ACK) packet to the sender to
confirm the receipt of said coded packet. Instead of relying on
receiving all the original packets individually, the receiver can
use a set of coded packets to reconstruct the original packets.
This property of RLNC provides robustness against packet
loss and network errors, as any subset of coded packets is
potentially sufficient for decoding.

RLNC has several advantages in lossy network environ-
ments, such as wireless networks or networks with high
congestion. It can improve the reliability of data transmission
by reducing the impact of packet loss and increasing the
likelihood of successful data recovery. Additionally, RLNC
can enhance network efficiency by reducing retransmissions
and enabling opportunistic data forwarding.

RLNC can be broadly categorized into block RLNC and
sliding-window RLNC. Block RLNC operates on fixed-size
blocks of packets, where a block typically consists of a prede-
termined number of packets. The block size is predetermined
and remains constant throughout the transmission. Encoding
is performed across the blocks of packets. The sender applies
RLNC to the collected packets in the block. It randomly gen-
erates coefficients and linearly combines the packets using
these coefficients to create coded packets. Each coded packet
contains a linear combination of the original packets in the
block. This creates blocking delay which is not good for
applications expecting in-order delivery. Unlike blockRLNC,
which operates on fixed-size blocks, sliding-window RLNC
adapts to varying network conditions and packet arrivals. The
sender and receiver both initialize a sliding window. The
window size represents the number of packets that can be
encoded or decoded at a given time.

The sender collects a certain number of original packets
based on the current window size. The number of packets
collected depends on the window size and can vary as the
window slides. The receiver collects the received coded pack-
ets within its window size. The number of received packets in
the window can vary due to network conditions and potential
packet loss. The receiver needs a sufficient number of linearly
independent coded packets within the window to success-
fully decode the original packets. After decoding, both the
sender and receiver slide their windows to accommodate new
packets. The window slides by a certain number of packets,
which can be a fixed amount or dynamically adjusted based
on network conditions or feedback from the receiver.

Sliding-window RLNC avoids blocking delay by encod-
ing across ‘‘yet not-acknowledged (non-ACKed) packets’’,
which also form the transmission control protocol (TCP)
sliding window (TCPw). As new acknowledgments (ACKs)
arrive, the slidingwindowmoves forward, alsomoving the set
of data packets that will be encoded here onward. This allows
the receiver to decode as soon as it has sufficient encoded
packets to reconstruct a data packet. RLNC provides redun-
dancy for reliability, while tuning the TCP sliding window
affords better flow and congestion control.

Sliding-window RLNC provides flexibility in terms of
adding new data packets for encoding while removing older
ones. In technical terms, this is known as closing the win-
dow. Previously, algorithms would adopt an infinite window,
where every encoded packet contains all previously transmit-
ted data packets [5], [6], [7]. These algorithms, however, are
not practical because of excessive memory usage and com-
putational complexities. Later on, a finite-window approach
was introduced where the number of data packets included
in the encoding process does not exceed a predefined limit,
which happens to be TCPw in general, e.g., [8], [9], and [10].

Most finite-window algorithms are also systematic, which
means that they place encoded packets among a stream of data
packets (as shown in Fig 1). Fig. 2 shows an example of the
systematic finite sliding-window operation. {s1, s2, . . . , sn}
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represent data packets, and {c1, c2, c3, . . . , cn} represent
encoded packets. The coding rate (R) determines the insertion
of an encoded packet into the stream after every k data
packets; hence,

R = k/(k + 1). (1)

In this example (Fig. 2) R = 3/4, which means that an
encoded packet is inserted after every k = 3 data packets. The
red cross shows a packet loss during transmission. The dotted
and dashed lines show the range of data packets involved in
the encoding process of each ci.

FIGURE 2. Sliding-window RLNC with TCPw = 6, coding rate(R) = 3/4,
and number of data packets (k) = 3. Dashed and dotted lines show the
range of data packets involved in each encoding process.

In this paper, we highlight the issue of either having
a common window for TCP flow control and encoding
or having an independent but constant encoding window
i.e., Ew. We propose an adaptive learning-based sliding-
window RLNC framework called LS-RLNC to solve the
decision problem of how the Ew should evolve over time
to cope with the changing network environment. LS-RLNC
utilizes reinforcement learning (RL) to achieve this. The goal
is to maximize the overall goodput while keeping the in-order
delivery delay as low as possible.

RL is a branch of machine learning that focuses on training
an agent to make sequential decisions in an environment to
maximize a long-term reward. It involves training an agent by
interacting with an environment and getting positive or nega-
tive feedback as a reward for the actions taken by the agent.

In the context of network communication, RL can be
applied to optimize various aspects of network perfor-
mance, such as throughput, latency, energy efficiency,
and resource allocation as suggested by the litera-
ture [11], [12], [13], [14], [15]. In NC, RL is used in
decision-making scenarios in general. For example [11] uses
RL to solve the decision problem of when should the sender
transmit a coded packet in a systematic NC scenario in non-
terrestrial networks. This implies that the prospect of learning
the ideal action-value function in RL, by engaging with the
environment without a priori knowledge is crucial to NC. This
is appealing to our decision problem because mathematically

modeling it under changing network conditions is complex.
Therefore we choose RL to dynamically evolve the Ew.

This paper focuses on sliding-window RLNC in specific
and other sliding-window NC schemes in general. LS-RLNC
can be modified to accommodate other sliding-window NC
variations (e.g., [16], [17], [18], [19]). We highlight our
contributions in this paper as follows:

• A practical and adaptive learning-based sliding-window
RLNC scheme called LS-RLNC with congestion and
delay feedback is proposed.We carefully devise the state
space and reward function to maximize goodput and
reduce in-order delay.

• LS-RLNC utilizes the explicit congestion notification
(ECN) feedback and the receiver’s ACK feedback to
evolve the Ew carefully.

• We have implemented and evaluated LS-RLNC in
Mininet and Python 3. LS-RLNC outperforms the state-
of-the-art in goodput, in-order delay, and decoding
complexity.

II. RELATED WORK
Over the years, several sophisticated schemes have shown
better overall performance of the sliding-window approach
by carefully designing the placement mechanism of encoded
packets [5], [11], [20]. Authors in [21] use an adaptive
algorithm for sliding-window RLNC to estimate channel
conditions and adjust the retransmission rates to improve
the overall performance. Caterpillar RLNC (CRLNC) [22] is
another sliding-window RLNC variant that does not rely on
feedback and focuses on decoding simplification. CRLNC
with feedback (CRLNC-FB) [10] and [23] are continu-
ations of CRLNC that embed selective-repeat automatic
repeat request (ARQ) and multihop support into CRLNC
respectively.

Authors in [3] propose a lightweight network-coded
ARQ protocol for ultra-reliable low latency communication
(URLLC). In this work, authors decouple the RLNC sliding
window from TCP and show through simulations that it
outperforms selective-repeat ARQ and CRLNC-FB [10].

Compared to retransmission-based schemes, sliding-
window RLNC schemes are efficient in minimizing the over-
all end-to-end in-order delivery delay, which is crucial tomost
future network delay-sensitive applications [5], [7].

In general, these schemes (except [3]) trade throughput
for improved delay by placing multiple encoded packets
as redundancy. However, the problem of using the same
TCPw remains intact. This is problematic because i) it
deeply impacts the encoding process and ii) it impacts the
complexity–performance trade-off. It determines the nature
of each encoded packet that is created, i.e., the maximum
number of data packets involved in its encoding. In addi-
tion, it determines the size of the decoding matrix, i.e., the
maximum number of packets required to perform decoding.
Further, it impacts the size of the encoding vector of each
encoded packet, consequently affecting the encoding quality.
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Apart from added complexity and delay, there is another
major issue in using a common window for both flow control
and encoding: the inability of TCPw to cope with bursts of
errors for encoding. This problem is highlighted in Fig. 3. The
data packets s5 and s6 are lost during the transmission. Two
linearly independent encoded packets are required to recover
the lost data packets. In the case of common TCPw (Fig. 3a),
the decoder has towait for both c2 and c3 because they include
s5 and s6 in their composition. However, when c3 is received,
the sliding window has moved forward and s1 and s2 are
already deleted (delivered). In this scenario, c2 and c3 are
not enough for decoding. This issue can be handled with an
independent encoding window (Ew), as shown in Fig.3(b).
Here the size of Ew is 4 instead of 6. In this case, c2 and c3 can
be utilized for decoding to obtain the missing data packets
because s5 and s6 are still within range and the dependability
on previous data packets is limited.

III. LS-RLNC SYSTEM MODEL
We outline the LS-RLNC system model in this section. The
system model comprises two modules named the network
module and the RL module. Fig. 4 shows the workflow of
LS-RLNC and the integration of its modules in relation to
the network model (Fig. 1). The details of each module are as
follows.

A. NETWORK MODULE
This section explains the theory and network components of
LS-RLNC. We propose an independent learning-based Ew
that can adapt well to changing network conditions. In gen-
eral, Ew ≤ TCpw According to this relation, the current
sliding-window RLNC schemes can be considered a unique
case where Ew = TCPw. However, it is also true that we can
define Ew as

Ew =

{
d × k, for active encoding,
0, otherwise.

(2)

where d is defined as the encoding depth, i.e., the number of
k-packet groups participating in the encoding process and k
represents the number of data packets as indicated in (1).
Because the decoding complexity is O(M3), where M is

the decoding matrix size [3], it is apparent that the size of M
depends on TCPw. Therefore, having Ew limited to a subset
of TCPw is beneficial because i) it reduces the decoding com-
plexity consequently improving decoding delay and ii) it also
simplifies the encoding process by shortening the encoding
vector size. However, the size of Ew is given by (2). Hence,
Ew is affected by d and k . This implies that Ew is dependant
on (1) as well. This becomes a decision problem of how Ew
should evolve and is the central focus of this paper.

Consider that data from an application are buffered in
the TCP sender queue as {s0, s1 . . . sn}. Each data packet
comprisesK equal bits. Whenever the TCPw allows a sending
opportunity, a data or encoded packet is sent according to (1).
Let’s say a data packet sisq+1 is chosen for transmission; then,

FIGURE 3. Burst error effect on sliding-window RLNC. (a) A common
window for both congestion and encoding. (b) Separation of TCPw and
encoding window (Ew ).

isq is the index of the most recent data packet that was sent.
If an encoded packet, e.g., ck is next in line to be transmitted,
then it is created by encoding all data packets present in Ew as

ck =
uE∑
x=lE

gx (k)sx (k), (3)

where lE is the index of the last non-ACKed data packet in
Ew, the upper limit of ck is uE = isq and g

(k)
x are coefficients

randomly chosen over a finite field GF(2m).2 lE , index of ck ,
and uE are carried in the packet header for identification.

At the receiver end, arriving packets (data/encoded) are
buffered. At the application level, data packets are in-order
delivered. Let iod represent the index of the most recent
in-order delivered data packet. siod+1 gets delivered to the
application when it becomes accessible; otherwise, the lost
data packet is retrieved from available encoded packets by
initiating the decoding process. During this time, arriving data
packets are halted in the buffer until the lost data packet is
recovered and delivered to the application. During this period,
more data packets can potentially be lost., e.g., in case of burst
error or congestion control kicking in. Let

lD = iod + 1 (4)

and

uD = uE . (5)

Hence, (4) and (5) form the limits of the decoding window
(Dw) which is given by

Dw =

{
uD − lD + 1 ≥ 2, for active decoding,
0, otherwise.

(6)

2To avoid the overhead of carrying the coefficients, we adopt the
pseudo-random number generator strategy implemented in [11].
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The decoding is done using on-the-fly Gaussian elimina-
tion [24]. When the number of encoded packets in Dw equals
the number of lost data packets, the decoder will most likely
succeed given a large enough GF(2m). The application then
receives the recovered data packets, and the index of the most
recent in-order data packet is modified as iod = uD.
TCPw is directly affected by incipient congestion (IC)

because it controls the sender’s rate. We utilize this infor-
mation for intelligent decision-making about Ew. We adopt
enhanced explicit congestion notification (EECN) [25] to
obtain an early insight into the network condition. The EECN
feedback mechanism is given in Algorithm 1.

Algorithm 1 EECN Feedback Mechanism
// Egress pipeline
if ECN capable packet then

if queue_depth > threshold then
Set ECN register
Store port number in register_port
Store source IP in register_source

end
end
if (ACK packet && destination IP == register_source
&& ingress_port == register_port && ECN register
is set) then

Set ECN-Echo bit
Clear ECN register

end
if (ACK packet && CWR bit is set && source IP ==
source register) then

Clear CWR bit
end

EECN is our prior research work which addresses the limi-
tations of the traditional TCP congestion control mechanisms
in high BDP networks by introducing an enhanced Explicit
Congestion Notification (ECN) technique using P4 pro-
gramming [26]. The EECN mechanism dynamically adjusts
the ECN markings on packets, providing more precise and
accurate feedback to the sender. EECN informs the sender
of incipient congestion without waiting for the receiver’s
feedback. This is done by exploiting programmable net-
work devices to send statistics to the sender directly using
software-defined networks (SDN).

From [20], we obtain the expected decoding delay for all
in-flight packets in TCPw as

T̃ Et = 1/(f − pe), (7)

where f is the fraction of encoded packets in TCPw and pe is
the packet loss rate. We denote T̄ Et as the expected decoding
delay for all in-flight packets in Ew. Hence, in our case, as we
have decoupled Ew from TCPw, we can modify f as the
fraction of encoded packets in Ew. This is valid because the
encoding is performed according to (2) instead of TCPw. Note

that both f and pe can be estimated. We estimate f as

ft =
number of encoded packets in Ew

number of all packets in Ew
(8)

This intrinsically allows LS-RLNC to have a lower in-order
delay compared to typical sliding-window RLNC schemes.
Similarly, we can estimate pe. From this discussion, we can
write the expected decoding delay as

T Et =

{
T̃ Et , for TCPw
T̄ Et , for Ew

(9)

Finally, as a safety net, we also implement a retransmission
policy that is triggered only when Ew = W and the decoding
process fails to recover the lost packet in a certain time
period T .

B. REINFORCEMENT LEARNING MODULE
In this section, we explain the use of RL in LS-RLNC. The
integration of the LS-RLNC’s RL module with the network
module is shown in Fig. 4. The goal is to evolve Ew such
that goodput is maximized and in-order delay is kept as low
as possible. To achieve this, we first record some network
information. The sender keeps track of the timestamps of
each data and encoded packet, the total number of each
type of packet sent up to each timestamp, and the packets
comprisingEw. The sender also stores information fromACK
packets, namely, the ID of the last received packet, the value
of iod ,Ew, and the number of acknowledged data and encoded
packets.We now formulate the RL design for LS-RLNC. This
RL design comprises an action space, a state space, and a
reward function.

1) ACTION SPACE
Our action space is rather simple, i.e.,
• increase Ew
• decrease Ew
• no change

2) STATE SPACE
We design the state space of LS-RLNC as follows:

St = (Dwt ,Ewt , ICt ), (10)

where Dwt is Dw, Ewt is Ew, and ICt is the level of incip-
ient congestion at time t respectively. Eq. 10 gives us the
necessary information to estimate the end-to-end in-order
delay. IC is zero if there is no congestion and nonzero when
congestion is anticipated; hence, the effect of queuing delay
is captured. Further, Dw and T E give us the overall decoding
delay. Additionally, note that these variables are linked to
goodput as well. Recall from Section III that data are in-order
delivered to the application when siod+1 is received or when a
coded packet completes the decoding process. In both cases,
goodput is realized whenDw is 0. Consequently, the RL agent
can track the goodput and in-order delay using ACK feedback
and the rest of the stored records at the sender. From the above
discussion, we infer that Dw = 0 being true after a decoding
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FIGURE 4. LS-RLNC workflow in relation to the network model (Fig. 1).

process, results in an episode of LS-RLNC. Any state St
with zero Dw is a terminating state. After each episode, the
increase in the number of siod from that at the start of the
episode divided by the episode duration yields the realized
goodput. If decoding is performed and/or the value of iod
does not increase, a negative reward relative to T E and Dw is
given.

3) REWARD FUNCTION
The formulation of the action space and the state space lead
us to formulate our reward function as follows:

rt =



a× goodputt , Dwt = 0 and
iod t > last iod ,

−b× T Et , Dwt = 0 and
iod t = last iod ,

−c× (T Et + Dwt ), Dwt > 0.

(11)

where a, b, and c are tunable nonzero values. Note that a
negative reward is given when Dw is zero but ior is not
increased. This is because it would be considered a wasted
transmission (encoded packet) with no goodput.

We adopted Q-learning in this work because it uses a
simple value iteration update method, which is feasible for
online learning. Q-learning updates the function as

Q(st , at )← Q(st , at )+ α[rt+1
+ γmaxaQ(st+1, at )− Q(st , at )], (12)

where α is the learning rate, γ is the discount factor, and rt+1
is the immediate reward. Further, we adopted the ϵ-greedy
method to ensure exploration during the initial phase of
learning. With ϵ-greedy, a random action at is taken with
probability ϵ; otherwise, a greedy action

a = maxQt (a) (13)

is taken with probability 1 − ϵ. The RL-related parame-
ters, given in Table. 1, were used following common RL
practices and exhaustive trial and error experimentation.
No function approximation was used in this work because
Dw,Ew, and IC are discrete and do not exceed their limits.
Therefore, using tabular methods for RL is feasible because
the state space is not large.

IV. SIMULATION SETUP
In this section, we discuss the simulation setup to evaluate
our proposed scheme: LS-RLNC. We evaluate the perfor-
mance of LS-RLNC by comparing it with rapidARQ [3] and
traditional sliding-window RLNC.3 Sliding RLNC uses the
same coding rate R obtained from (1) and encodes packets
across the entire TCPw instead of Ew. However, rapidARQ
uses a constant Ew and relies on the selection of d for better
performance. We decide the best value of d by exhaustive
simulations.

We evaluated LS-RLNC in Mininet and Python 3. Mininet
is a Python-based network simulation tool that creates a
realistic virtual network, running real kernel, switch, and
application code, on a single machine. Because it is Python-
based, the RL and EECN modules, also written in Python,
are called by the Mininet script as Python functions. We used
a dumbbell topology similar to Fig 1, where an application
at the left leaf communicates with an application at the right
leaf. The application transmits at a rate of 20 Mbps, while
the bottleneck link’s bandwidth is set to 10 Mbps to observe
congestion. Congestion is generated by inducing non-ECN
traffic to the network randomly.4 The edge router implements
ECN-enabled queuing, where packets are marked when a

3We refer to it as sliding RLNC in the graphs and here onward to save
space.

4Similar congestion patterns are generated for each scheme to observe
fairness.
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TABLE 1. Simulation parameters.

certain queue threshold is reached. In case of overflow, the
queue is flushed.

We trained our agent in the aforementioned environment by
running 4000 simulations. In each simulation, the application
ran until 4000 data packets were in-order delivered with pe
uniformly randomly chosen from the given range. We cate-
gorized our simulations into four scenarios. All simulation
scenarios follow the simulation parameters given in Table. 1.
Scenario 1 deals with different propagation delays and its
associated results are shown in Fig. 5. Scenario 2 looks at
the effects of dynamic pe on the cumulative goodput, and its
associated results are given in Fig. 6. Scenario 3 is created to
analyze the behavior of LS-RLNC under a bursty pe model.
The results of this scenario are given in Fig. 7. Scenario 4 is
devised to observe the decoding complexity of LS-RLNC in
terms of decoding window size and the average goodput as
well. The results of scenario 4 are shown in Fig. 8 and 9.

Fig. 5 shows the performance of all tested schemes in terms
of delay with uniform pe. We tested the schemes for prop-
agation delays 50 ms, 100 ms, 200 ms, and 300 ms in each
subplot respectively. The cumulative moving average (MA)
of in-order delivery delay incurred by each data packet is
plotted. The MA is calculated over a window of 100 packets.
Both LS-RLNC and rapidARQ showed lower in-order delay
compared to sliding RLNC. However, LS-RLNC showed
better performance than both even though we selected d for
rapidARQ through exhaustive simulations. This is because
the other schemes did not consider IC, T E , and Dw. Early

insight into the network congestion state helps reduce packet
loss at the cost of a lower sending rate (explained later). The
separation ofEw from TCPw provides better protection to data
packets and reduces the decoding delay. Recall from Sec. III
how T E and Dw affect the in-order delay. We reduced T E

by limiting f , which relies on Ew. This led to a shorter Dw
in general (as we show later) resulting in a lower in-order
delivery delay.

We show the packet drop rate in each scenario as well. The
packet drops occur mainly owing to two reasons: i) pe and
ii) IC. LS-RLNC and rapidARQ showed good resilience to
IC compared to sliding RLNC. However, LS-RLNC showed
even lower packet drops than rapidARQ. This is because
i) LS-RLNC got an early indication of IC (due to the
use of EECN [25] framework) and ii) our agent dynami-
cally changed Ew to provide better protection to recent data
packets.

Fig. 6 shows the in-order cumulative goodput of each
scheme. Cumulative goodput is measured as the amount
of in-order data delivered divided by the elapsed time. pe
was dynamically randomly chosen from 1 − 15%. All the
schemes experienced similar loss patterns and attempted to
deliver 4000 data packets. The propagation delay, in this
case, was 100ms. The overall cumulative goodput of all
schemes was similar. This is mainly because all schemes
used a similar coding rate R given in (1). We could still
observe some differences, where rapidARQ showed slightly
better goodput and completed the transmission a little earlier.
This is because LS-RLNC provides better resilience to IC at
the cost of a lower sending rate, which impacts the overall
goodput. We tested the cumulative goodput results for other
propagation delays and found similar results. However, this
is only when a uniform pe model is used, as we will see
later that in bursty error models, LS-RLNC shows improved
goodput.

In Fig. 7, we highlight the effects of a bursty pe model on
each scheme. We adopted a similar on-off model as [3] for
this purpose. In this model, there is an ‘‘on’’ period and an
‘‘off ’’ period. During these ‘‘on’’ and ‘‘off’’ periods the pe is
given by

peon > pe (14)

and

peoff = 0. (15)

During an on-off cycle, the average pe is similar to that
of a uniform channel. The burstiness of the channel is
controlled by

B = (Ton + Toff )/Ton, (16)

where Ton and Toff are the time periods for peon and peoff
respectively. As the level of burstiness increases, the average
goodput is reduced. However, compared to the other schemes
LS-RLNC shows better goodput. We also tested the bursti-
ness in relation to the packet drop rate and found similar
results.
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FIGURE 5. Cumulative moving average of the end-to-end in-order delivery delay incurred to all data packets
in each scheme with propagation delays of (a) 50ms (b) 100ms (c) 200ms and (d) 300ms.

FIGURE 6. Cumulative goodput (Mbps) in dynamic pe environment. pe is
dynamically randomly chosen from range [1 − 15%].

Fig. 8 shows the decoding complexity in terms of the
average decoding window size. We chose a different R for
each pe in this case to meet the channel capacity (1-pe).
We also chose the value of d that generated the max average
goodput through exhaustive simulations. LS-RLNC shows
better decoding complexity by keeping a low decoding win-
dow. This is because the agent only allows the Ew to expand
if it yields a better r . LS-RLNC has a lower Dw mainly
due to the separation of Ew and TCPw. Ew generates a
lower T E compared to TCPw because f is reduced, which

FIGURE 7. Performance analysis in terms of average goodput (Mbps)
under a bursty pe model. (a) pe = 10% (b) pe = 20%.

consequently lowers the decoding complexity. LS-RLNC
reduces the decoding complexity by an average of 35% com-
pared to rapidARQ and by an average of 78.5% compared to
sliding RLNC.

Fig. 9 shows the average goodput observed in relation to
the decoding complexity (Fig. 8) for each pe in scenario 4.
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FIGURE 8. Decoding complexity in terms of decoding window size for pe
between [5 − 20%].

FIGURE 9. Average goodput in relation to the decoding complexity
(Fig. 8) for pe between [5 − 20%].

rapidARQ has slightly higher goodput when pe is low but
as pe increases LS-RLNC shows better goodput. This is
the trade-off of LS-RLNC where it improves the decoding
complexity at the expense of goodput. However, as the pe
increases, this trade-off becomes minimal and LS-RLNC
gives better decoding complexity as well as average goodput.

V. CONCLUSION
LS-RLNC is an adaptive sliding window RLNC for
high bandwidth-delay product networks using reinforce-
ment learning. LS-RLNC decouples the encoding window
(Ew) from TCP sliding window (TCPw) and uses net-
work and receiver feedback to optimize the value of Ew.
LS-RLNC shows that a carefully designed RL scheme to
dynamically evolve Ew can achieve high goodput with low
in-order delivery delay and reduced decoding complexity.
Further, we show through simulations that LS-RLNC has
better overall performance than state-of-the-art sliding RLNC
schemes. LS-RLNC improves the goodput by up to 6-10%.

In-order delivery delay is reduced by up to 11% and decoding
complexity is reduced between 28-45%. These improvements
in performance are crucial to the utility of RLNC because in
network coding there is always a trade-off between goodput,
delay, and decoding complexity. The results show that LS-
RLNC minimizes this trade-off effectively. The results also
verify that in scenarios with a bursty error model, LS-RLNC
shows better resilience and improved goodput compared
to state-of-the-art schemes while maintaining low in-order
delivery delay.
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