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ABSTRACT Block cipher algorithms encrypt sensitive personal, financial, and confidential information
to prevent unauthorized access. The ARIA is a general block cipher algorithm with an involutional SPN
structure optimized for lightweight environments and hardware implementation. This study focuses on
implementing ARIA in the crypto-subsystem of the Linux kernel because it has yet to be implemented
despite being recognized as a global standard. This study improves the practicality of ARIA by implementing
it in the Linux kernel with reasonable performance and attempts to reduce CPU cycles for substitution and
diffusion operations while alleviating the lack of ARIA-specific instructions in existing CPUs. To achieve
this, the study implemented the AVX, AVX2, and AVX512 versions of ARIA that can operate in parallel in
addition to two types of ARIA-specific substitution functions using AES-NI and GFNI. We implemented an
accelerated version of ARIA that performs up to 10.6 times better than the generic version. The optimization
of the affine transformation in AES-NI based ARIA has been shown to reduce the required cycle count
by 32.2%. Moreover, ARIA demonstrated competitive speeds when compared to other algorithms, such as
Camellia, that are implemented in the Linux kernel.

INDEX TERMS ARIA algorithm, Linux kernel, AVX, AES-NI, GFNI.

I. INTRODUCTION
As personal, financial, and confidential data are increas-
ingly being shared and stored online, and their protection
from unauthorized access has become increasingly important.
Block cipher algorithms encrypt this sensitive information,
rendering it unreadable by anyone without an appropriate
decryption key. In addition, with the development of data
analysis technology, real-time data encryption and decryption
are becoming increasingly important as the amount of data
collected on networks increases rapidly. This growth in data
collection has increased the need for high-performance block
cipher algorithms that can encrypt and decrypt large amounts
of data quickly and efficiently.

ARIA [1] is a general-purpose block cipher algorithm with
an Involutional Substitution Permutation Network (ISPN)
structure with the same encryption and decryption processes
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optimized for lightweight environments and hardware imple-
mentations. ARIA is a derivative of the Advanced Encryption
Standard (AES) [2] that incorporates its structure and design
principles with modifications to enhance security. Both algo-
rithms perform substitution and diffusion in each round and
have the same input (128-bit) and key sizes (128-bit, 192-
bit, 256-bit). AES is an SPN with various encryption and
decryption processes. AES uses one substitution function, S1,
for encryption and its inverse, S−1

1 , for decryption. ARIA
also uses S1 and S

−1
1 but additionally uses other substitution

functions S2 and S
−1
2 , for a total of four substitution functions.

Unlike AES, ARIA uses all four substitution functions for
encryption and decryption. This indicates that although AES
instructions can be utilized to implement ARIA, some of
them, S2 and S

−1
2 , must be implemented differently.

In this study, we first analyzed open-source operating
systems to understand the implementation and usage of
ARIA. This is because, generally, block cipher algorithms
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are components of the operating system and are accessible
to users. Including ARIA in open-source Linux, an operating
system standard, can enhance user accessibility, as it can
be integrated into various commercial devices that run on
Linux. Block cipher algorithms, like ARIA, are typically
incorporated into user-space libraries, such as OpenSSL and
GNUTLS, and are used in the context of Layer 7 within
a network. However, these algorithms can also find signif-
icant utility in a networking, specifically from Layer 2 to
Layer 4 (L2 to L4). In the Linux, the functionalities asso-
ciated with these layers are implemented within the ker-
nel. In situations where a block cipher algorithm, such as
ARIA, is not inherently integrated into the cryptographic
subsystem in the kernel of Linux, the range of algorithm
selection options available to the user can be limited. It is
important to note that block cipher algorithms can serve
not only networking purposes within the Linux kernel but
can also contribute to file system and storage operations.
Therefore, it is essential to implement algorithms that are
fundamentally demanded in both the user-space and the ker-
nel. Moreover, when implementing ARIA in the kernel, it is
crucial to ensure commercially viable performance. Since
encryption/decryption is inherently a time-consuming opera-
tion, it should be implemented using variousmethods (such as
utilizing physical acceleration features and adopting parallel
techniques) to maximize performance as much as possible.
Considering that Linux is commonly deployed in CPU-
based environments, the implementation should be optimized
for CPU-based performance. Thus, we investigate security-
related Linux implementations to explore the incorporation
of ARIA algorithm in the kernel with reasonable perfor-
mance by utilizing not only the fundamental implementation
of ARIA but also the acceleration capabilities supported
by the CPU.

Transport Layer Security (TLS) in Linux, which ensures
end-to-end data integrity and confidentiality, comprises the
TLS handshake step in OpenSSL of the user space and the
encryption/decryption process in the kernel implementation
of TLS (kTLS). The kTLS in the Linux kernel operates on
the Upper Layer Protocol (ULP), which runs on top of the
TCP layer. Figure 1 shows the implementation of the block
cipher algorithms in the kernel. The crypto subsystem can
be utilized in any part of the kernel, and Fig. 1 illustrates its
usage in the network subsystem. SM4 [3], [4] and Camel-
lia [5], [6] are among the algorithms incorporated into the
crypto subsystem of the kernel. Each generic version of the
algorithm can be considered the simplest implementation in
the kernel using the C programming language. The other
versions could be optimized based on instructions provided
by the CPU. Similar to SM4 and Camellia, ARIA is a
standardized algorithm [7] and TLS standard [8]. However,
unlike other algorithms, ARIA does not have a generic kernel
implementation although it has long been established as a
standard. Therefore, in this study, we applied ARIA to the
crypto subsystem in the kernel and enhanced its practicality
by maximizing its performance.

FIGURE 1. Implementations of block cipher algorithms in the kernel.

Implementing ARIA in the kernel presents three chal-
lenges. The first is decreasing the number of CPU cycles
during substitution and diffusion operations, which have a
high overhead, and the second is that current CPUs do not
have ARIA-specific instructions. This study makes two con-
tributions towards solving these problems. First, we imple-
mented the Advanced Vector eXtensions (AVX) [9], AVX2,
and AVX512 versions of ARIA that can work in parallel with
the generic version. Second, we implemented ARIA-specific
substitution functions using the AES-New Instructions (AES-
NI) [10] and Galois Field New Instructions (GFNI) [11]
and applied these codes to the main branch of the Linux
kernel. The two contributions presented are novel and have
not been previously reported. These performance-optimized
implementations enhance the practicality and performance
of ARIA in the kernel, making it more suitable for mod-
ern cryptography applications that require fast and efficient
encryption and decryption of large amounts of data.

The remainder of this paper is organized as follows.
Section II presents a comprehensive overview of block cipher
cryptography and its associated algorithms and presents
techniques that enhance their performance. Section III
presents a comprehensive analysis of the relevant literature
on block cipher algorithms and their historical develop-
ment in the Linux operating system. Section IV proposes a
high-performance ARIA implementation in a Linux kernel.
The performance of the proposed implementation is thor-
oughly evaluated in Section V. Finally, conclusions are drawn
in Section VI, and future research avenues are identified.

II. BACKGROUND
A block cipher [12], [13] operates on fixed-size data blocks,
typically of 64 or 128 bits at once, using a secret key.
It encrypts plaintext into ciphertext by applying mathemat-
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ical operations such as substitution and permutation. Block
ciphers are used to encrypt and decrypt data transmitted over
networks, files, and disk drives, sensitive information in pay-
ment systems, data stored on mobile devices and embedded
systems, and to verify firmware authenticity during the boot
process.

Several well-known algorithms exist for block ciphers,
including the AES [2], which is regarded as one of the
most secure and efficient block cipher algorithms. The US
government has adopted AES, which is utilized in various
applications such as wireless networks, disk encryption, and
secure communication protocols. The Data Encryption Stan-
dard (DES) is an older block cipher algorithm that utilizes a
key length of 56 bits and a block size of 64 bits. However,
owing to its short key length, it has been largely replaced by
AES and triple DES (3DES), which is a variation of the DES
algorithm that uses a key length of 168 bits by applying the
DES algorithm thrice. Although 3DES is considered more
secure than DES, it is slower and less efficient than AES.
Twofish and Serpent are highly secure encryption algorithms,
which allow for the use of key lengths up to 256 bits and block
sizes of 128 bits. Although both were finalists in the NIST
AES competition, neither was chosen as the AES standard.
Rijndael [2] won the competition and became AES, resulting
in Twofish and Serpent being less widely adopted in practice.

Although other algorithms exist, the SM4 and Camellia
block cipher algorithms applied to the Linux kernel should
be thoroughly examined. The SM4 algorithm is a relatively
new symmetric-key block cipher approved by the Chinese
government as a standard encryption algorithm in 2012 and
has also been internationally considered as the ISO standard.
Camellia is a block cipher algorithm that has been adopted
as the standard encryption algorithm by the Japanese govern-
ment and is recommended by the European UnionAgency for
Network and Information Security (ENISA) as a secure and
efficient alternative to AES. It has also been recognized as an
international IETF standard [5]. Although, SM4 andCamellia
have similar key lengths and block sizes to algorithms such
as Twofish and Serpent, they are specifically optimized for
use in embedded systems and resource-constrained devices.
Figure 1 shows the generic versions of each code applied to
the Linux kernel for Camellia and SM4 in 2006 and 2018,
respectively.

The generic version of encryption and decryption per-
formed in the software has performance limitations. One
approach to resolve this problem is to use special instruc-
tion sets, specifically designed to accelerate encryption and
decryption processes, such as GFNI, AES-NI, and AVX,
which are supported by x86-based Intel CPUs. This not
only improves the overall speed of the algorithm, but also
reduces the computational load on the system, leading to
lower power consumption and increased battery life in
portable devices. The GFNI is an instruction set that enhances
the performance of cryptographic and security applications.
This provides vgf2p8affineqb for affine transformations and
vgf2p8affineinvqb for affine-inverse transformations. AES-

NI, introduced by Intel in 2008, is another set of instruc-
tions specifically designed to improve AES algorithm perfor-
mance. This includes vaesenc for the AES encryption rounds,
vaesenclast for the final encryption round, and vaesdec and
vaesdeclast for decryption.
To achieve high performance in the substitution and dif-

fusion operations, tasks should be completed within minimal
CPU cycles. Parallel processing of multiple tasks reduces the
required number of cycles. AVX is a set of instructions for
x86 processors developed by Intel and later adopted byAMD.
This allows for Single Instruction and Multiple Data (SIMD)
operations, which can significantly improve the performance
of specific computations. AVX also includes new instruc-
tions for floating point, integer, and data shuffling operations.
However, applying AVX to optimize the performance of
the block cipher algorithm requires the x86 assembly lan-
guage, which is a significant challenge. The scarcity of AVX
code in the kernel indicates the complexity and difficulty of
its implementation. Furthermore, the implementation of an
AVX-based code must be tailored to the size of the register
utilized, and the application of AVX should be based on the
specific characteristics of the algorithm.

III. RELATED WORK
In cryptography, the acceleration of block cipher algo-
rithms has received considerable attention owing to the
growing need for efficient and secure data encryption in
various applications. One widely adopted approach for
accelerating block cipher algorithms is to utilize hard-
ware acceleration methods such as Field-Programmable
Gate Arrays (FPGAs), Application-Specific Integrated Cir-
cuits (ASICs), and GPU acceleration. These hardware-based
methods provide a high level of performance optimiza-
tion and have been the subject of numerous stud-
ies [14], [15], [16], [17], [18], [19], [20], [21], [22], [23].
In the same vein of research, the ARIA algorithm has
also been the focus of optimization studies using parallel
implementation with ARMv8 processors and GPUs (Nvidia
GTX 3060) [24], as well as performance optimization based
on low-power embedded processors (8-bit AVR microcon-
trollers) [25]. These studies demonstrate the increasing inter-
est in exploring a variety of hardware-based approaches for
accelerating block cipher algorithms in cryptography.

Previous research on block cipher algorithms primarily
focused on achieving the best performance through hard-
ware acceleration methods, such as FPGAs, ASICs, and
GPU acceleration. However, algorithms utilizing GPUs and
FPGAs are generally designed to operate within user space
rather than kernel space. Consequently, it is not straightfor-
ward to leverage GPUs and FPGAs within the kernel for
high-performance computation of these algorithms. In addi-
tion, most general users who utilize block cipher algorithms
operate them in CPU-based environments. To implement a
versatile and commercially viable block cipher algorithm,
it is essential to develop an algorithm that can be seam-
lessly utilized by a large number of users in a Linux
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environment, without performance constraints. Therefore,
unlike previous studies, this research aims to optimize the
performance of the ARIA algorithm by aligning it with
the instruction set supported by the CPU in user envi-
ronments for block cipher algorithms. Our research pri-
marily focuses on software-based optimization techniques,
specifically targeting CPU-based environments, rather than
hardware-based approaches. In detail, various software-based
methods achieve acceleration, including table optimization,
slicing techniques, parallelism, and special instruction sets.
Researchers aim to significantly enhance the performance of
block cipher algorithms by combining these techniques, and
numerous studies have been conducted on this topic.

AES algorithms have been extensively studied. In [18],
various optimized designs and implementations of the AES
algorithm are presented to improve its performance by
50 times by implementing fast algorithms, Intel AES-NI
extended instruction sets, and parallel execution on CUDA
and GPU. A hardware-acceleration solution for AES encryp-
tion in the Linux kernel for ARM processors has been
proposed [26]. It utilizes the NEON instruction set, which
enhances the performance of AES encryption on ARM
processors. Another study proposed an efficient and high-
performance AES-based authenticated encryption algorithm
that utilizes AES-NI instructions, nonces, and optional asso-
ciated data with an optimized low-area implementation in
ASIC hardware [19]. In [27], a bit-slice implementation of
AES is presented to improve the performance of differ-
ent microprocessors by evaluating the impact of architec-
ture and optimizing the maximum utilization of superscalars
and SIMD, such as Streaming SIMD Extensions (SSE).
In [28], a method to resist cold-boot attacks on disk drive
encryption is proposed by implementing AES in the Linux
kernel in a nonstandard form. This method uses an SSE
that maintains a secret key within the processor, resulting
in an acceptable performance penalty with a brief security
analysis.

In addition to AES, studies related to other block cipher
algorithms, such as SM4 and Camellia, are tailored to the
characteristics of these algorithms. One study optimized the
S-box implementation and derived the most compact repre-
sentations of bit slicing to improve the performance of AES
and SM4 [29]. In [30], a faster implementation of the SM4
block cipher algorithm is proposed using bit-slice technology,
resulting in an average increase of 80 – 120% in the encryp-
tion and decryption speeds. In [4], the poor performance of
a constant-time SM4 implementation is compared to AES
and performance improvement techniques using GFNI (with
AVX andAVX512) from Intel andNEON fromARMare pro-
posed. In [31] and [32], a constant-time and efficient SM4 is
achieved using AES-NI by exploiting the similarity between
the GF(28) fields of SM4 and AES. Reference [33] presents
an optimized implementation of SM4 on various microcon-
trollers, RISC-V processors, and ARMprocessors with paral-
lel computation. A byte-sliced AES-NI/AVX implementation
of Camellia, presented in [34], demonstrates exceptional

performance at a rate of 5.32 cycles per byte on an Intel
Sandy-Bridge processor. In addition, they experimented with
different slicing techniques (e.g., bit slicing, byte slicing, and
word slicing) to improve the performance of block ciphers.
The performance of six block algorithms, including Camellia,
was analyzed in [35]. Camellia from Libgrypt cryptography
library is the second fastest common cipher after AES; how-
ever, its performance is 7 – 11 times worse than that of AES
even with hardware acceleration support.

Algorithms such as those presented in [34] and [36], which
are different from AES, utilize the AES-IN instruction set for
other algorithms than AES. Inspired by these studies, we pro-
pose an architecture that includes a method utilizing AES-NI
instructions to accelerate the ARIA. The next section explains
the basic concepts of ARIA and the proposed performance
improvements.

IV. ARIA ALGORITHM
A. OVERVIEW
This section introduces ARIA, following the notation used
in [1]. It was jointly developed by academics, research
institutes, and government agencies in South Korea and is
designed to resist all types of block cipher attacks. It has
been intensely evaluated for its stability, efficiency, and data
processing speed by the University of Leuven in Belgium,
the host of NESSIE (New European Schemes for Signatures,
Integrity, and Encryption) [37]. In addition, it is designed to
resist all known attacks and has a security level similar to
AES. In software implementation, ARIA shows faster perfor-
mance than Camellia and is comparable to AES, indicating its
high level of security and efficiency [37]. The input and out-
put sizes of ARIA were fixed at 128 bits and three key sizes
were available:128, 192, and 256 bits. The number of rounds
performed during encryption/decryption varies depending on
the key size and is 12, 14, or 16 rounds (13, 15, or 17 rounds,
including the final additional round) for 128-, 192-, or 256-bit
keys, respectively.

The algorithm consists of two parts. The first part involves
generating a round key for each round from a given pri-
mary key, which is performed before encryption/decryption.
In this process, four 128-bit values (W1,W2,W3, andW4) are
generated through a combination of the primary key, round
functions (odd/even), and three fixed 128-bit values of the
inverse of π . Then, as a round key generation process, the
round key ekn required for each n-th round is generated using
W1,W2,W3, andW4. However, the details of the preliminary
encryption/decryption, including the round key generation
process, are outside the scope of this study. Hence, further
details are not provided in this paper.

The second part focuses on the encryption/decryption
process that involves repeated round functions. Figure 2
illustrates the logic within a single-round function of ARIA
for encryption. Because the ARIA is an ISPN, each round
function is the same for encryption and decryption. How-
ever, the key used in each round differed depending on the
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FIGURE 2. An overview of the ARIA algorithm represented in terms of the
encryption process.

process. Each round function comprises a round key addi-
tion, substitution layer, and diffusion layer. The round-key
addition results from XORing a 128-bit input with a 128-bit
round key. The substitution and diffusion layers are the most
time-consuming operations within the round function; hence,
reducing the number of CPU cycles used in these layers is
crucial for improving performance.

1) SUBSTITUTION LAYER
This layer uses four S-boxes (S1, S2, S

−1
1 and S−1

2 ), whose
order depends on the even and odd rounds. For the even
rounds, S1, S2, S

−1
1 and S−1

2 were repeated in the given
order, and similarly, for the odd rounds, S−1

1 , S−1
2 , S1 and S2

were repeated. Each S-box is defined as a combination of an
affine transformation (e.g.,AS1 for S1) and an inverse function
inv (x) = x−1 over GF(28). Here, GF represents the Galois
Field. S1 and S2 are defined as follows:

S1 (x) = Ax−1
⊕ a = AS1 (inv (x)) , (1)

where,

inv (x) = x−1
; x ∈ GF(28),

AS1 :=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





x0
x1
x2
x3
x4
x5
x6
x7


⊕



1
1
0
0
0
1
1
0


S2 (x) = Bx247 ⊕ b

= B
(
x−8

)
⊕ b

= B
(
x8 · x−1

)
⊕ b

= BC
(
x−1

)
⊕ b

= Dx−1
⊕ b

= AS2 (inv (x)) , (2)

where,

AS2 :=



0 1 0 1 0 1 1 1
0 0 1 1 1 1 1 1
1 1 1 0 1 1 0 1
1 1 0 0 0 0 1 1
0 1 0 0 0 0 1 1
1 1 0 0 1 1 1 0
0 1 1 0 0 0 1 1
1 1 1 1 0 1 1 0





x0
x1
x2
x3
x4
x5
x6
x7


⊕



0
1
0
0
0
1
1
1


S−1
1 and S−1

2 are also defined as:

S−1
1 (x) = (Ex ⊕ e)−1

= inv
(
AS−1

1
(x)

)
, (3)

where,

AS−1
1

:=



0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0





x0
x1
x2
x3
x4
x5
x6
x7


⊕



1
0
1
0
0
0
0
0


S−1
2 (x) = (Fx ⊕ f )−1

= inv
(
AS−1

2
(x)

)
, (4)

where,

AS−1
2

:=



0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 0
1 1 1 0 0 0 1 1
1 1 1 0 1 1 0 0
0 1 1 0 1 0 1 1
1 0 1 1 1 1 0 1
1 0 0 1 0 0 1 1





x0
x1
x2
x3
x4
x5
x6
x7


⊕



0
0
1
1
0
1
0
0


From a practical perspective, there are two approaches for
obtaining the results of S-boxes: using pre-calculated tables
and calculating them on demand (i.e., using the on-the-fly
method). To elaborate, considering that S-box outputs 8-bits
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for every 8-bit input, it can be stored as a Lookup Table (LUT)
by pre-calculating and mapping 256 values (28). Alterna-
tively, S-box results can be calculated as required. An S-box is
generally implemented as an LUT to simplify the implemen-
tation process and achieve faster processing time. However,
this method requires more resources, such as memory, and
does not allow for parallel processing techniques such as
SIMD.

2) DIFFUSION LAYER
The results of the 16 S-boxes (16 bytes) were used as input
for the diffusion layer. As described in [1], ARIA supports 8-
and 32-bit implementations. In a basic 8-bit processor imple-
mentation, the input is multiplied by a 16 × 16 binary matrix
in GF

(
28

)16
. Moreover, ARIA provides implementations of

the diffusion layer for 32-bit processors, not just for 8-bit
processors [1].

M1 · P ·M1 ·M , (5)

where

M1 =


I I I 0
I 0 I I
I I 0 I
0 I I I

 , P =


I 0 0 0
0 P1 0 0
0 0 P2 0
0 0 0 P3

 ,

P1 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , P2 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 ,

P3 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , M =


T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

 ,

T =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


In the 8-bit processor implementation, the result can only be
obtained after all the calculations are performed in the diffu-
sion layer. However, the 16 bytes obtained from (1) or (2) can
be partially calculated using (5), enabling parallel processing
such as SIMD, and contributing to faster processing speeds.

B. ARIA IMPLEMENTATION FOR PERFORMANCE
IMPROVEMENT
This section describes the steps involved in porting the ARIA
encryption algorithm to a Linux kernel. We followed the
guidelines outlined in [38] and implemented the ARIA code
as a module within the cryptographic subsystem of the Linux
kernel, as shown in Fig. 1. The implementation is based on a
32-bit architecture.

1) ACCELERATION OF THE SUBSTITUTION LAYER
We utilized AES-NI, GFNI, and AVX instructions on
Intel x86-based CPUs to improve performance. Specifically,

we used the vgf2p8affineqb instruction for affine transfor-
mations such as AS−1

1
and AS−1

2
, and vgf2p8affineinvqb for

inverse affine transformations such as (1) and (2). These
instructions enabled us to efficiently perform inverse transfor-
mations and affine calculations. GFNI support is becoming
increasingly widespread; a growing number of CPUs are
being equipped with this feature. However, for CPUs without
GFNI support, alternative methods for performing Steps (1)–
(4) must be provided. AES-NI instructions are slower than
GFNI for our use-case but can be used as an alternative for
S-box operations.

As ARIA has the same S-boxes (S1 and S−1
1 ) as AES,

vaesenclast and vaesdeclast can be used to compute S1 and
S−1
1 , respectively. However, it is important to consider the
following when using these instructions: Both vaesenclast
and vaesdeclast contain additional operations for AES round
processing, including the ShiftRows operation, which shifts
rows. As ARIA does not require ShiftRows, if InvShiftRows
is performed on the results from vesenclast and vesdeclast,
we can obtain pure S1 and S

−1
1 results as follows.

fInvShiftRows (fvaesenclast (x)) = ÂS1 (înv (x)), (6)

fInvShiftRows (fvaesdeclast (x)) = înv
(
Â
S−1
1

(x)
)

. (7)

Â (x) is defined as A (x) concatenated 16 times, A (x) || . . .

(16 times A (x)), and this definition is used to capture the
relationship between 16-byte and 8-bit operations.
The second consideration is the calculation of S2 and S

−1
2

using only ARIA, which is not included in AES. Because
there are no instructions supporting S2 and S−1

2 , (3) and (4)
must be implemented. For (3), inv (x) must be calculated
followed by AS2 . Similarly, for (4), AS−1

2
must be calculated

followed by inv (x).We confirmed that calculating inv() using
vaesenclast and vaesdeclast consumed fewer cycles than
directly calculating inv(). For (2), inv (x) was obtained using
(6).

ÂS−1
1

(fInvShiftRows (fvaesenclast (x))) = înv (x) (8)

By performing ÂS2 with (8), Ŝ2 (x) can be obtained as follows:

ÂS2

(
ÂS−1

1
(fInvShiftRows (fvaesenclast (x)))

)
= ÂS2

(
ÂS−1

1

(̂
AS1 (inv (x))

))
= ÂS2

(
înv (x)

)
= Ŝ2 (x) (9)

Unlike (8) and (9), to obtain the result of (4), AS−1
2

and AS1
are sequentially performed:

ÂS1

(
ÂS−1

2
(x)

)
(10)

In addition, if AS1 is eliminated using (7), S−1
2 (x) is obtained

as follows:

fInvShiftRows
(
fvaesdeclast

(
ÂS1

(
ÂS−1

2
(x)

)))
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= înv
(
ÂS−1

1

(
ÂS1

(
ÂS−1

2
(x)

)))
= înv

(
ÂS−1

2
(x)

)
= Ŝ−1

2 (x) (11)

AES-NI instructions were used to reduce the number of CPU
cycles. Two affine transformations and one AES-NI instruc-
tion (either vaesenclast or vaesdeclast) are performed,
as shown in Equations (9) and (11). For further optimization,
the two affine transformations can be combined. To calculate
S2, the two transformations AS2 and AS−1

1
in Equation (9) are

combined and referred to as SAS2 . The results are as follows:

SAS2 := AS2AS−1
1

= D (Ex ⊕ e) ⊕ b

= DEx ⊕ (De⊕ b)

= DEx ⊕ g

= Gx ⊕ g

=



1 1 0 0 0 0 0 1
0 1 0 0 1 0 0 0
1 1 0 0 1 1 1 1
0 1 1 0 1 0 0 1
0 1 0 0 1 1 0 0
0 1 0 1 1 0 0 0
0 0 0 0 0 1 0 1
1 1 1 0 0 1 1 1





x0
x1
x2
x3
x4
x5
x6
x7



⊕



0
0
0
1
0
0
0
1


. (12)

Similarly, for calculating S−1
2 , AS1 and AS−1

2
in (9) were

combined and referred to as SAS−1
2
, and the following results

were obtained:

SAS−1
2

:= AS1AS−1
2

= A (Fx ⊕ f ) ⊕ a

= AFx ⊕ Df ⊕ a

= AFx ⊕ g

= Hx ⊕ h

=



1 0 1 1 0 0 0 1
0 1 1 1 1 0 1 1
0 0 0 1 1 0 1 0
0 1 0 0 0 1 0 0
0 0 1 1 1 0 1 1
0 1 0 0 1 0 0 0
1 1 0 1 0 0 1 1
0 1 0 0 1 0 1 0





x0
x1
x2
x3
x4
x5
x6
x7



⊕



0
0
1
0
0
0
0
0


(13)

Therefore, equations (9) and (11) can be redefined to require
fewer cycles.

ŜAS2 (fInvShiftRows (fvaesenclast (x))) = Ŝ2 (x) , (14)

fInvShiftRows
(
fvaesdeclast

(
SÂS−1
2

(x)
))

= Ŝ−1
2 (x) (15)

2) PARALLEL PROCESSING WITH AVX
In the generic version of ARIA, we utilized parallel pro-
cessing to improve performance beyond the limits of GFNI
or AES-NI. As one of the SIMD instruction sets, AVX [9]
supports the simultaneous computation of multiple values
using a single instruction. AVX primarily uses 128-bit regis-
ters and the number of usable registers differs for each AVX
version. The AVX, AVX2, and AVX512 versions process 16,
32, and 64 blocks in parallel, respectively. It should be noted
that while multiple values can be calculated simultaneously,
calculation of each value must require the same operation.

Figure 3 shows the parallel processing of 16 128-bit inputs
in a single round using AVX. AVX can store data in 16 128-
bit registers. Therefore, the first step is to store sequentially
incoming 16 inputs to perform encryption or decryption in
parallel.

Once 16 inputs were gathered, they were sliced into bytes.
The same S-box operation was performed on a single 128-bit
register in the substitution layer. The byte-sliced 16 inputs
are loaded into memory, and as shown in Fig. 3, the top
eight data points are used to calculate the substitution layer
and M matrix of the diffusion layer (diff_m block in Fig. 3).
Whereas, the remaining eight data points are calculated later
in the same process. Only eight data points were processed
simultaneously, because there were 16 AVX registers to
divide and contain two operated values. The first operation
in a round function is round key addition. To support byte
slicing, each round key is filled with a byte of a particular
index in the relevant round key. After round key addition,
the related S-box operations were performed on each 128-
bit slice of the data. After operations (6) are performed,
only those that require S2 operations are multiplied by SAS2 ,
related to (14). On the other hand, only those that require
S−1
2 operations are multiplied by SAS−1

2
before operations (7)

are performed, related to (15). An LUT for the S-box (8)-
bit input) can be implemented using vpshufb of the AVX.
As suggested in [34], we constructed two LUT maps by
separating one affine transformation into high and low LUT
maps as follows:

SAS2 =
SAlowS2

(x0, x1, x2, x3) ⊕
S

AhighS2
(x4, x5, x6, x7) (16)
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FIGURE 3. Detailed operations inside one round function to perform
parallel processing using AVX.

SAS−1
2

=
SAlow
S−1
2

(x0, x1, x2, x3) ⊕
S

Ahigh
S−1
2

(x4, x5, x6, x7) (17)

This significantly reduces the size of the maps by input
into 4-bit elements. The results of SAS2 and SAS−1

2
can be

obtained by XORing the results of the high and low maps
calculated later. This completes the calculations related to the
round substitution layer and the calculations related to the

FIGURE 4. Example of receiving maximum input blocks for each version
of AVX.

diffusion layer are initiated. diff_m, diff_word, and diff_byte
shown in Fig. 3 represent M , M1, and P of (5), respectively.
Four diff_ms were calculated for each 32-bit, and a total of
16 slices of data were reconstructed. For the 16 pieces of
16-byte data, diff_word, diff_byte, and diff_word operations
were performed sequentially. The diff_byte operation corre-
sponding toP is implemented to skip by adjusting the position
of the input byte of the last diff_word.

3) IMPLEMENTATION WITH AVX2 AND AVX512
We also implemented the AVX2 and AVX512 versions of
ARIA, which can handle more input blocks in parallel than
the basic AVX version. AVX2 can handle 32 blocks simulta-
neously with its 16 256-bit YMM registers, and AVX512 can
handle 64 blocks simultaneously with its 32 512-bit ZMM
registers. The number of available registers differed for each
AVX version.

As shown in Fig. 4, the basic AVX version can process
input blocks equal to 16 128-bit XMM registers. However,
because of the need for key storage and processing or tempo-
rary data storage, the input data must be divided into halves,
each half consisting of eight 16-byte blocks.

Each register used by AVX2 accommodates two 128-bit
blocks. However, similar to the basic AVX version, half of
the input data were processed before and the remainder is
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processed subsequently. If the processed input data were <

256 bytes but greater than 128 bytes, they were processed
using the basic AVX version. If the processed input data
were less than 128 bytes in size, they were processed using a
generic version.

The AVX512 version of the ARIA utilizes 16 of the
32 available 512-bit ZMM registers that accommodate the
four blocks. This approach minimizes the memory storage
and loading overhead by processing half of the input data and
using some of the registers for key or temporary data storage.
Although AVX512 can accommodate up to 2048 bytes of
data, processing 2048 bytes of data simultaneously is rare.
Given that most of the latest CPUs supporting AVX512
also provide GFNI, the implementation of AES-NI for the
AVX512 version of ARIA has been deemed unnecessary.
Thus, we have only included the implementation of GFNI in
this version.

The AVX-based versions of the ARIA algorithm use paral-
lel processing with a minimum data size that can be processed
in parallel. If the data to be processed is less than this min-
imum size, a hybrid method is used that partially utilizes
parallel processing, and the remaining data is processed using
the generic algorithm. The SM4 algorithm-based AVX code
references the cumulative input size and pads the data if
necessary to enable parallel processing. The same approach
can be adopted for ARIA to process data in parallel based
on the cumulative input size, resulting in no performance
degradation even with different cumulative input sizes. This
improvement can be considered for future work.

4) CONSTANT-TIME IMPLEMENTATION
Maintenance of constant-time execution for block cipher
algorithms like ARIA is crucial to ensure the security and
robustness of the encryption process. This involves ensuring
consistent execution time regardless of the input data or secret
key used, preventing timing-based side-channel attacks. Such
attacks exploit variations in execution time to reveal sensi-
tive information about the encryption and decryption key.
Therefore, careful evaluation of the ARIA implementation
is necessary to ensure constant-time execution and prevent
such attacks, thereby strengthening the overall security and
reliability of the encryption and decryption process.

Our code is designed with multiple security measures
to safeguard against data-dependent execution paths that
can leave systems vulnerable to timing attacks. We achieve
this by avoiding data-dependent branching statements and
data-dependent sub-logics such as the substitution layer and
diffusion layer. Moreover, our code leverages SIMD instruc-
tions, such as vaesenclast, vaesdeclast, and vpxor, to enable
the processing of multiple data elements simultaneously in
constant-time [39]. This feature results in a fixed execution
time for function calls, operations, and memory allocations
that remain independent of input data. Constant-time oper-
ations like bit and XOR operations (e.g., vpand, vpandn,
vpxor) help minimize data dependencies.

V. EXPERIMENT
In this section, we describe the performances of the
generic [40], AVX [41], AVX2 [41], and AVX512 [42]
versions of ARIA implemented in the Linux kernel. Our
experimental results confirm that the proposed ARIA imple-
mentation is suitable for commercial applications requiring
block ciphering. As outlined in the Introduction, our goal
is to minimize the number of CPU cycles required when
employing ARIA for encryption and decryption. Thus, the
experimental results presented in this section highlight the
required number of cycles, which are the key performance
metrics. We present the results for all the ARIA implementa-
tions and demonstrate the results of reducing the number of
affine transformations from (9) and (11) to (14) and (15). Fur-
thermore, we compared the performance of ARIAwith that of
the Camellia algorithm, which has already been implemented
in the Linux kernel, similar to our ARIA implementation.

A. EXPERIMENTAL SETUP
The kernel contains modules that support algorithm test-
ing. In particular, a performance test module exists in the
cryptographic subsystem, crypto/tcrypt.c [43]. The tcrypt
module was introduced into the Linux kernel to provide
a standardized method for evaluating the performance of
different cryptographic algorithms, which can help improve
the design and implementation of future algorithms. Using
tcrypt, we can check the relationship between the operations
and the cycles. In the block cipher algorithm, an operation
indicates the process of encrypts or decrypts a single block.

Our experiments did not require high-performance equip-
ment, as only the CPU was needed to support the AVX series
with AES-NI and GFNI. The experimental setup comprised
a machine equipped with an i3-12100 CPU, 16 GB of mem-
ory, and 256 GB of secondary SSD storage. The tests were
conducted on Ubuntu 22.04 Linux with kernel version 6.1.
Our implementation adhered to the ECB and CTR modes
specified in [7]; the results are presented based on the ECB
mode. Two test data block sizes, 1024 bytes and 4096 bytes,
were used for encryption and decryption. Both 128-bit and
256-bit keys were used in the tests.

B. PERFORMANCE COMPARISON OF DIFFERENT
IMPLEMENTATIONS OF ARIA
The ARIA implemented in this study has six versions, each
designed to accommodate various instruction sets supported
by a CPU. The generic version is used in the absence of
both AVX and GFNI/AES-NI, or when only AVX is present.
The second version utilizes AVX and AES-NI when both
are available but GFNI is not. The third version prioritizes
GFNI when both GFNI and AES-NI are present and utilizes
AVX. The fourth version employs AVX2 and AES-NI. The
fifth version utilized AVX2 and GFNI. Finally, the sixth
version employs AVX512 and GFNI. Before the experiment,
we expected the results to show that the generic version
would exhibit the lowest performance owing to its lack of
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parallel processing and reliance on sequential data process-
ing. Among the versions supporting the AVX technology,
we expected AVX512 to demonstrate the highest perfor-
mance, followed by AVX2 and AVX. We anticipated that
GFNI would outperform AES-NI in terms of operational
efficiency, because it requires fewer cycles for the same
operation.

Figure 5 compares the performance of the six AVX ver-
sions. As expected, the performance of the versions utilizing
AES-NI or GFNI was significantly better than that of the
generic algorithm, as confirmed by the results. In terms of
speed, AVX with AES-NI, AVX with GFNI, AVX2 with
AES-NI, AVX2 with GFNI, and AVX512 with GFNI were
approximately 4.2, 5.3, 5.8, 8.1, and 10.6 times faster than the
generic version, respectively. Furthermore, for AVX, using
GFNI improved the performance by approximately 21.2%
compared to AES-NI, and for AVX2, using GFNI improved
the performance by 26.8% to 31.3% compared to the use
of AES-NI. These results indicate that a CPU that supports
AVX, AES-NI, or GFNI is crucial to achieve maximum per-
formance with ARIA.

C. PERFORMANCE COMPARISON OF OPTIMIZED AFFINE
TRANSFORMATIONS USING AES-NI
The substitution layer is one of the time-consuming opera-
tions within the round function. Therefore, we conducted an
analysis to understand the specific operations and their cycle
consumption. In this section, we confirm that the affine trans-
formation is the most cycle-intensive operation through the
experimental results. By leveraging the AES-NI instruction
set, dedicated to AES, we can able to improve performance
by reducing the cycle count of the affine transformation.
We compare the performance before and after optimiza-
tion by reducing the number of affine transformations when
AES-NI is used. We minimized the affine transformation
computations required to compute S-boxes S2 and S−1

2 ,
as expressed in (12) and (13) of Section IV-B.

Table 1 compares the number of cycles for the
operations performed in the ARIA_SBOX_8WAY func-
tion before and after optimizing the affine transforma-
tion. Based on AVX, each round processed 16 blocks,
and the ARIA_SBOX_8WAY function, which calculated
eight blocks simultaneously, was called twice per round.
Table 1 shows that the affine transformation is the most
cycle-intensive operation in this function. Before optimiza-
tion, an affine transformation was performed twice on four of
the eight blocks to calculate S2 and S−1

2 . Optimization was
performed once for each relevant block. After optimization,
the number of cycles decreased by 32.2%. Figure 6 shows
the proportion of operations within the ARIA_SBOX_8WAY
function. Before optimization, the proportion of cycles for
the two affine transformations was approximately 54%; after
optimization, the proportion of cycles for a single affine
transformation decreased to approximately 40%.Hence, opti-

FIGURE 5. Performance Comparison of six ARIA Implementations:
generic, AVX with AES-NI, AVX with GFNI, AVX2 with AES-NI, AVX2 with
GFNI, and AVX512 with GFNI, considering an example of receiving
maximum input blocks for each version of AVX.
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TABLE 1. The number of cycles in the ARIA_SBOX_8WAY function based
on AVX.

FIGURE 6. Comparison before and after optimizing the number of affine
transformations when using AES-NI.

mizing the affine transformation is crucial for accelerating
ARIA using AES-NI.

D. PERFORMANCE COMPARISON OF ARIA AND
CAMELLIA
While comparing the number of cycles between block
algorithms with different characteristics may not always
accurately reflect performance differences, our findings
demonstrate that Camellia, a widely used block cipher
algorithm in the Linux kernel, and our implementation of
ARIA exhibit comparable performance. This indicates the
validity of our implementation and suggests that it does not
demonstrate inferior performance when compared. We eval-
uate the performance matrix between algorithms based on
the number of cycles. By comparing the number of cycles
required for a single encryption or decryption operation on a
given dataset, we can assess performance differences between
algorithms. To ensure consistent performance measurements
in the same environment, we measure performance using typ-
ical data block sizes of 1024 bytes and 4096 bytes in a CPU
environment that supports AVX and AES-NI. Additionally,
during the experiments, the key size for each algorithm is

FIGURE 7. Performance comparison of ARIA and Camellia Algorithms.

fixed at 128 bits. The metric values for each algorithm are
presented as the average of results obtained from conducting
the experiments more than 1000 times in the same environ-
ment, aiming to reduce variances.

According to the results in Fig. 7, ARIA was 1.24 times
faster than Camellia when tested with 1024-byte data blocks
and 1.3 times faster with 4096-byte data blocks. The results
show that ARIA we implemented is well-optimized for per-
formance, similar to other block algorithms in the Linux
kernel.

VI. CONCLUSION
In this paper, we present a method for implementing a
standardized ARIA algorithm in a crypto subsystem. Our
implementation of the algorithm comprised a generic ver-
sion developed in C, as well as several optimized versions
that leveraged parallel processing through the use of AVX
instructions. Specifically, for systems that support AES-NI,
we present an optimized affine transformation approach to
accelerate the processing of two unique S-boxes among the
four ARIA S-boxes. In addition, when AES-NI and GFNI
were supported simultaneously, the faster GFNI was used
to accelerate ARIA. In conclusion, our experimental results
demonstrate that ARIA can deliver optimal performance in
encryption and decryption tasks depending on the instruction
set supported by the CPU. The future work of our research
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is to mitigate the performance loss due to Generic-based pro-
cessing of the remaining data when the data to be processed
is less than the minimum data size for parallel processing.
A potential strategy for this is to refer to the cumulative
amount of given data and insert padding into the input
data to make it a suitable size for parallel processing with
AVX. We expect that the ARIA applied to the kernel will
be utilized effectively when a block cipher algorithm is
required.
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