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ABSTRACT This paper presents a novel decentralized dynamic state estimation (DSE) method for esti-
mating the dynamic states of a transmission line in real-time. The proposed method utilizes the sampled
measurements from the local end of a transmission line, and thereafter DSE is performed by employing an
unscented Kalman filter. The advantage of the proposed method is that the remote end state variables of a
transmission line can be estimated using only the local end variables and, hence, the need for communication
infrastructure is eliminated. Furthermore, an exact nonlinear model of the transmission line is utilized for
estimation and the DSE of one transmission line is independent of the other lines. These in turn result in
reduced complexity, higher accuracy, and easier implementation of the decentralized estimator. The proposed
method is applied to a case study with realistic transmission line parameters. The results from the case study
affirm that the proposed method accurately estimates the state variables under different operating conditions.
Furthermore, robust performance is achieved with different noise variances and types. The proposed DSE
method is envisioned to have potential applications in transmission line monitoring, control, and protection.

INDEX TERMS Dynamic state estimation, Kalman filter, power system monitoring, transmission line,
unscented transformation.

I. INTRODUCTION
A. MOTIVATION
Climate change and global warming concerns have led
to a transition from fossil fuel-based power generation
to sustainable and environment-friendly renewables-based
generation. Simultaneously, with the increase in electrifi-
cation and load demand, the transmission system compo-
nents are operated close to their operating limits. These
changes (alongwith several other changes) pose the following
main challenges related to the operation of the transmission
systems [1], [2], [3]:

1) Renewable energy sources (RES) are characterized as
stochastic, intermittent, non-synchronous, and power
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electronics interfaced. These characteristics make their
operation and control more challenging, particularly,
it is difficult to accurately track the system operating
point.

2) Due to increasing RES penetration and electrification
of different energy sectors, the prediction of power
flow patterns in transmission systems is an uphill task
as compared to centralized fossil fuel-based power
generation.

3) The operation closer to the operating limit of com-
ponents could stress the transmission systems which
could also lead to partial power demand failure or
blackouts.

Traditionally, the above-mentioned issues were handled
using the control and monitoring tools available with the
energy management systems (EMSs). However, such tools
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have become inadequate mainly due to the slow update rate
of supervisory control and data acquisition (SCADA) systems
within EMSs, and results based on steady-state models do not
capture the fast system dynamics. The large-scale deployment
of phasor measurement units (PMUs) in the last decades
addressed some of the issues associated with fast capturing
of system dynamics and the evaluation of online dynamic
security assessment [4], [5]. Most of these works are based
on DSE which is essential for time-critical operation, moni-
toring, and control of transitioning power systems [6].
At the same time, transmission lines, which are one of the

important components in transmission systems, also require
proper control and estimation mechanisms for real-time con-
dition monitoring, fault location, and protection. DSE can
be one of the potential solutions to meet such requirements.
Proper metering infrastructure based on PMUs and merg-
ing units (MUs) is one of the main requirements in such
applications [1]. The potential of DSE in the transmission
line protection is explored in [2], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], and [17]. However, some of these
works make grossly inaccurate approximations in both the
modelling and the identification stages, because of which
the speed and accuracy of transmission line estimation and
protection are adversely affected. For instance, [2], [10], [11]
use a quadratic approximation in the dynamic modelling,
while for state estimation, the weighted least squares (WLS)
method is employed in [10], [11], [12], and [13], an improved
version of WLS in [8], unconstraint WLS method in [11],
and Lagrangian multipliers in [2]. However, all these esti-
mation methods are based on algorithms traditionally used
in static state estimation (SSE) and, hence, do not ade-
quately capture the system dynamics, as required by DSE.
A cubature Kalman filter-based DSE method is employed
in [16] for a wide-area backup protection scheme applied
to line outage, generator outage, etc. An ensemble Kalman
filter-based DSE method is presented in [18] which over-
comes some of the limitations of WLS, however, it does not
consider the second-order time derivative terms which leads
to reduced estimation accuracy. The work presented in [14],
advocates the use of unscented Kalman filter (UKF) with
application to fault location for multi-terminal transmission
lines. The transmission line model proposed in this study is
nonlinear which is solved using the state estimation method.
In addition to these limitations, the works related to DSE
application in protection such as [2], [7], [8], [9], [15], and
[17] require remote endmeasurements to performDSEwhich
clearly emphasizes the need for communication. Hence,
these methods along with conventional protection schemes
such as the differential, distance, and pilot relaying could
maloperate in case of communication failures leading to
misoperation.

B. CONTRIBUTIONS
AnUKF-based decentralized DSEmethod has been proposed
in this paper as a potential solution to the aforementioned
challenges and limitations in transmission line DSE such

as limited estimation accuracy, significant computational
requirements, use of remote end measurements (emphasizing
the need for communication infrastructure), etc. The pro-
posed DSE method can estimate the state variables with
improved estimation accuracy, low computational require-
ments, and using only local end measurements. The main
advantages associated with the proposed method are as fol-
lows:

• This is the first work that performs decentralized DSE of
transmission lines using only local measurements, and
no other comparable work currently exists.

• Estimation has high accuracy and speed, as the esti-
mation model does not require any approximations or
linearizations, and the exact nonlinear dynamics of the
transmission line are captured.

• Sampling requirements for DSE have been mathemati-
cally derived, without which decentralized DSE of trans-
mission lines will fail to converge, or the estimation error
will become too large.

• No communication infrastructure is required; thus, any
communication failure, latency, packet loss, etc., will not
impact the estimation quality.

• No inter-dependency between transmission lines as the
estimation process for a transmission line is independent
of the other line. This feature keeps any estimation
errors remain segregated and thus makes them easier to
identify.

• Estimation works with flat start or zero initial values.
Hence, estimation accuracy does not depend on the accu-
racy of initialization.

The remainder of the paper is organized as follows. Section II
explains the problem statement and the methodology used
in the work. The transmission line modelling, unscented
Kalman filter, pseudo inputs, and the choice of the sampling
rate of DSE are presented in Section III. The details of the
case study used in the work are given in Section IV. Section V
presents and discusses the results of the case study. The eval-
uation of estimation performance under different conditions
is done in Section VI. Finally, the conclusion is outlined in
Section VII.

II. PROBLEM STATEMENT AND METHODOLOGY
With appropriate assumptions, the following time-continuous
nonlinear differential and algebraic equations can be used to
model a transmission line [19]:

ẍ(t) = ḡ[ẋ(t), x(t), u̇(t),u(t), y(t), υ(t)] (1)

y(t) = h[ẋ(t), x(t), u̇(t), υ(t)] + w(t) (2)

The sampling of (1) and (2) at a sampling
time period T0 results in (3) and (4), as shown at the
top of the next page. To represent (3) and (4) in the discrete
form, (k + 1)T0 and kT0 are rewritten as (k + 1) and k ,
respectively, resulting in (5) and (6), as shown at the top of the
next page. It is worth noting here that sampling (discretiza-
tion) is applied to the terms corresponding to states x and
inputs u only, and not to the measurements y. The sampling
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x((k + 1)T0) − 2x(kT0) + x((k − 1)T0)

T02
= ḡ

[(
x((k + 1)T0) − x(kT0)

T0

)
, x((k + 1)T0),

(
u((k + 1)T0) − u(kT0)

T0

)
,

u((k + 1)T0), y((k + 1)T0), υ((k + 1)T0)
]

(3)

y((k + 1)T0) = h
[(

x((k + 1)T0) − x(kT0)
T0

)
, x((k + 1)T0),

(
u((k + 1)T0) − u(kT0)

T0

)
,

υ((k + 1)T0)
]

+ w((k + 1)T0) (4)

x(k + 1) = g[x(k), x(k − 1),u(k + 1),u(k), y(k + 1), υ(k + 1)] (5)

y(k + 1) = h[x(k + 1), x(k),u(k + 1),u(k), υ(k + 1)] + w(k + 1) (6)

of these terms introduces discretization error but it has been
adequately included in the process noise term υ so that the
performance of DSE is not adversely impacted [20].

In the state estimation problem, the state x(k + 1) is
considered to be a random variable with an estimated mean
and covariance as x̂(k + 1) and Px(k + 1), respectively.
The measurement noise denoted as w(k + 1) is additive,
while the process noise denoted as υ(k + 1) is not additive,
as can be seen in (5) and (6). υ(k + 1) is nonlinearly related
to the state and measurement. Constant covariance matrices
are considered for both measurement noise R and process
noiseQ. The problem formulation considers the process noise
υ(k + 1) as a state and thus adds it to the state x(k + 1). This
addition results in augmented state random variable χ (k +

1) = [x(k + 1)T , υ(k + 1)T ]T . χ̂ (k+1) and Pχ (k+1) denote
the estimated mean and covariance of χ (k + 1), respectively.
Thus, (5) and (6) can be restructured as:

χ (k + 1) = g[χ (k), χ (k − 1),u(k + 1),u(k), (7)

y(k + 1), υ(k + 1)]

y(k + 1) = h[χ (k + 1), χ (k),u(k + 1),u(k)] + w(k + 1)

(8)

A. PROBLEM STATEMENT
With inputs given as χ̂ (k), χ̂ (k − 1), Pχ (k), Pχ (k − 1), g,
h, u(k + 1), u(k), y(k + 1), R, and, Q, evaluate χ̂ (k + 1)
and Pχ (k + 1), in a way that the state estimation algorithm
is decentralized, and uses only the local end measurements
(which can be easily measured using PMUs/MUs).

B. METHODOLOGY
The conceptualization of the overall methodology used for
the decentralized DSE in the transmission line is presented in
Figure 1. The local end is equipped with measuring infras-
tructure for measuring the local end voltage and current.
This work uses the sampled (instantaneous) measurements of
the voltage and current. The motivation to choose sampled
measurements over phasors is that the phasors are updated at
a lower frequency compared to sampled measurements. With
a reduced update rate of phasors, the accuracy to record a tran-
sient event reduces. A sampling rate of 1.25 kHz (i.e., each
sample arrives in 0.8 milliseconds) is used in this work which

is capable of preserving the signal information to be used in
state estimation problems. For a given measurement, white
Gaussian noise is added to the true value of the measurement
to model their finite accuracy. The mean of the added noise
is considered as zero, while the standard deviation (SD) is
taken corresponding to the respective measurement accuracy.
The measurement units send the sampled measurements and
their associated noise variances to the DSE block. Since
this method utilizes only the local end measurements for
estimation purposes, the communication requirements are
easily qualified. The DSE block utilizes these sampled mea-
surements and estimates the state vector (i.e., remote end
voltage and current) using UKF in a decentralized manner.
Thereafter, the estimates of the state vector could be sent
to a local substation or central control center to be used in
applications like monitoring, protection, and dynamic secu-
rity assessment.

III. MODELLING
A. TRANSMISSION LINE MODELLING AND THE DISCRETE
DIFFERENTIAL AND ALGEBRAIC EQUATIONS (DAEs)
This section presents the derivation of the discrete DAEs of a
transmission line by using continuous DAEs. A single-phase
π -model representation of a transmission line is presented in
Figure 2. The resistance, inductance, and shunt capacitance of
a transmission line are represented as RJ , LJ , and CJ , respec-
tively. The sending and receiving end current are represented
as iJ and ij, respectively. Similarly, the sending and receiving
end voltage is represented as vJ and vj, respectively. For
UKF-based DSE, the sending end currents are taken as the
measurements z = (iA, iB, iC ), while the sending end voltages
are taken as the pseudo inputs u = (vA, vB, vC ). The receiving
end currents and receiving end voltages are the estimated
quantities x = (ia, ib, ic, va, vb, vc) as presented in Figure 1.
The continuous DAEs for a transmission line model as

shown in Figure 2, can be written as:

iJ = ij + CJ
dvj
dt

+ CJ
dvJ
dt

(9)

vJ = vj + RJ

[
ij + CJ

dvj
dt

]
+ LJ

[
dij
dt

+ CJ
d2vj
dt2

]
(10)

where subscript J represents the sending end side and sub-
script j represents the receiving end side.
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FIGURE 1. Conceptualization of the proposed methodology.

The discrete DAEs of a transmission line are obtained
using the continuous DAEs and are presented in (20)−(25).
Among these equations, (5) corresponds to (24) and (25),
while (6) corresponds to (21).

B. UNSCENTED KALMAN FILTER
A UKF was proposed to overcome the limitations associ-
ated with an extended Kalman filter (EKF). UKF has higher
accuracy and easier implementation as compared to EKF.
The nonlinear transformations are used for the propagation
of mean and covariance data in UKF. The basis of UKF is
that the approximation of a probability distribution is simpler
compared to the approximation of a nonlinear function. Based
on the previous intuition, it can be implied that consistent,
efficient, and unbiased estimates of a function that is going
through a nonlinear transformation could be obtained using
this method [3], [21], [22], [23]. It is important to mention
here that the UKF variant used in this work does not suffer
from the issue concerning the choice of selecting the sigma
points weights in the UKF. Also, the stability index of the
UKF variant used in this work is independent of the number
of states and thus has better performance than the generic
UKF [20].

With the application of the nonlinear transformation pre-
sented in (7) toχ(k), the estimates of themean and covariance
of the subsequent state vector χ (k + 1) can be evaluated as
explained in the following steps [3], [20]:

1) Sigma Points Generation: This step generates a set of
points, referred to as sigma points. The sample mean
and covariance of these points and χ (k) are equal.
For capturing its distribution, exactly 2n sigma points
χm(k) needs to generated, given that the dimension
of χ (k) is n, then for capturing its distribution [23].
The sigma points can be generated using the following
equations:

χm(k) = χ̂ (k) + (
√
nPχ (k))m

m = 1, 2, . . . , n (11)

χm(k) = χ̂ (k) − (
√
nPχ (k))m

m = n+ 1, n+ 2, . . . , 2n (12)

where (
√
nPχ (k))m is mth column of the lower trian-

gular matrix
√
nPχ (k) and can be obtained through

Cholesky decomposition, given as

nPχ (k) =

(√
nPχ (k)

)(√
nPχ (k)

)T
(13)

2) Predict State: The predicted state sigma points χ−
m(k+

1) are generated using the sigma points. The estimated
mean χ̂

−
(k+1) and the estimated covarianceP−

χ (k+1)
of a predicted state random variable are equal to the
sample mean and sample covariance of the predicted
state sigma points, respectively, whose expressions are
given as:

χ−
m(k + 1) = g[χm(k),u(k)]

m = 1, 2, . . . , 2n (14)

χ̂
−
(k + 1) =

1
2n

2n∑
m=1

χ−
m(k + 1) (15)

P−
χ (k + 1) =

1
2n

2n∑
m=1

[χ−
m(k + 1) − χ̂

−
(k + 1)]

× [χ−
m(k + 1) − χ̂

−
(k + 1)]T

+

[
Q 0s×3

03×s 03×3

]
(16)

where s is the total number of states to be
estimated.

3) Predict Measurement: In this step, the predicted mea-
surement sigma points γ −

m(k + 1) are generated. The
estimated mean ŷ−(k + 1) of a predicted measure-
ment random variable is equal to the sample mean
of the predicted measurement sigma points and the
estimated covariance P−

y (k + 1) is equal to the sum
of R and sample covariance of the predicted mea-
surement sigma points. The estimated cross-correlation
covariance between the predicted state sigma points
and predicted measurement sigma points is P−

χy(k+1).
These expressions are given as:

γ −
m(k + 1) = h[χ−

m(k + 1),u(k + 1)]
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m = 1, 2, . . . , 2n (17)

ŷ−(k + 1) =
1
2n

2n∑
m=1

γ −
m(k + 1) (18)

P−
y (k + 1) =

1
2n

2n∑
m=1

[γ −
m(k + 1) − ŷ−(k + 1)]

× [γ −
m(k + 1) − ŷ−(k + 1)]T + Pw

(19)

For the conversion of the continuous DAEs of a transmission line into the discrete DAEs, the following formulations are
used:

d2x
dt2

=
x(k + 1) − 2x(k) + x(k − 1)

T 2 ,
dx
dt

=
x(k + 1) − x(k)

T
, x = x(k + 1) (20)

Applying the formulations presented in (20) to (9), leads to:

iJ (k + 1) = ij(k + 1) + CJ

[
vj(k + 1) − vj(k)

T

]
+ CJ

[
vJ (k + 1) − vJ (k)

T

]
+ w(k + 1) (21)

ij(k + 1) = iJ (k + 1) + vj(k + 1)
[

−
CJ
T

]
+ vj(k)

[
CJ
T

]
+ vJ (k + 1)

[
−
CJ
T

]
+ vJ (k)

[
CJ
T

]
+ w(k + 1) (22)

Restructuring (10) and applying the same formulations as presented in (20), leads to:

dvj
dt

= −

(
1

RJCJ

)
vj −

(
1
CJ

)
ij +

(
1

RJCJ

)
vJ −

(
LJ
RJCJ

)
dij
dt

−

(
LJ
RJ

)
d2vj
dt2[

vj(k + 1) − vj(k)
T

]
= −vj(k + 1)

(
1

RJCJ

)
− ij(k + 1)

(
1
CJ

)
+ vJ (k + 1)

(
1

RJCJ

)
−

[
ij(k + 1) − ij(k)

T

](
LJ
RJCJ

)
−

[
vj(k + 1) − 2vj(k) + vj(k − 1)

T 2

](
LJ
RJ

)
+ υ(k + 1)

vj(k + 1) = vj(k)E1 + vj(k − 1)E2 + ij(k)E3 + ij(k + 1)E4 + vJ (k + 1)E5 + υ(k + 1) (23)

where,

E1 =

[
CJ (TRJ + 2LJ )

D

]
, E2 =

[
−LJCJ
D

]
, E3 =

[
TLJ
D

]
, E4 =

[
−T (TRJ + LJ )

D

]
, E5 =

[
T 2

D

]
,

D = [TRJCJ + T 2
+ CJLJ ].

Substituting ij(k + 1) from (22) into (23), leads to:

vj(k + 1) = vj(k)E1 + vj(k − 1)E2 + ij(k)E3

+

[
iJ (k + 1) + vj(k + 1)

(
−
CJ
T

)
+ vj(k)

(
CJ
T

)
+ vJ (k + 1)

(
−
CJ
T

)
+ vJ (k)

(
CJ
T

)
+ w(k + 1)

]
E4

+ vJ (k + 1)E5 + υ(k + 1)

vj(k + 1) = F1vj(k) − F1vj(k − 1) + F2ij(k) + F3iJ (k + 1) + F4vJ (k) + F5vJ (k + 1) + w(k + 1) + υ(k + 1) (24)

where,

F1 =

[
TE1 + E4CJ
T + E4CJ

]
, F2 =

[
TE3

T + E4CJ

]
, F3 =

[
TE4

T + E4CJ

]
, F4 =

[
E4CJ

T + E4CJ

]
, F5 =

[
T

T + E4CJ

]
Substituting vj(k + 1) from (24) into (22), leads to:

ij(k + 1) = iJ (k + 1) + vj(k)
[
CJ
T

]
+ vJ (k + 1)

[
−
CJ
T

]
+ vJ (k)

[
CJ
T

]
+ [F1vj(k)−F1vj(k − 1)+F2ij(k)+F3iJ (k+1)+F4vJ (k)+F5vJ (k+1)+w(k+1) + υ(k + 1)]

[
−
CJ
T

]
+ w(k + 1)

ij(k + 1) = M1iJ (k + 1) +M2vj(k) +M3vJ (k + 1) +M4vJ (k) +M5vj(k − 1) +M6ij(k) + w(k + 1) + υ(k + 1) (25)
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where,

M1 =

[
1 −

F3CJ
T

]
, M2 =

[
(1 − F1)

CJ
T

]
, M3 =

[
− (1 + F5)

CJ
T

]
, M4 =

[
(1 − F4)

CJ
T

]
, M5 =

[
F1
CJ
T

]
,

M6 =

[
− F2

CJ
T

]

P−
χy(k + 1) =

1
2n

2n∑
m=1

[χ−
m(k + 1)

− χ̂
−
(k + 1)][γ −

m(k+1)−ŷ−(k + 1)]T

(26)

where Pw is the measurement noise covariance matrix.
4) Kalman Update: In the last step, χ̂ (k+1) and Pχ (k+1)

are calculated through the standard Kalman filter [24]:

K(k + 1) = P−
χy(k + 1)[P−

y (k + 1)]−1

χ̂ (k + 1) = χ̂
−
(k + 1)

+ K(k + 1)[y(k + 1) − ŷ−(k + 1)]

Pχ (k + 1) = P−
χ (k + 1) − K(k + 1)[P−

χy(k + 1)]T

(27)

FIGURE 2. A single-phase π-model representation of a transmission line
with designated variables.

C. PSEUDO INPUTS
Pseudo inputs lay the foundation for the proposed decentral-
ized DSE method. It can be observed from (24) and (25)
that the (k + 1)th sample dynamic states and sending end
current (iJ ) can be expressed explicitly in terms of kth sample
dynamic states and sending end voltage (vJ ). This inspection
suggests that if the sending end current (iJ ) are considered as
inputs, instead of conventional measurements, then dynamic
equations of the concerned transmission line can be separated
from other transmission lines in the network. Thus, the decen-
tralized concept suggests treating one set of measurements
as inputs and another set of measurements as conventional
measurements. In the considered transmission line, any set of
measurements (either voltages or currents) can be considered
as pseudo inputs.

The consideration of sending end voltage vJ as the inputs
needs to be addressed as only the measured values of vJ
are available (given as vyA, vyB, vyC ), not their actual values.
Since the measurements are contaminated and have their
associated noises (given as vwA, vwB, vwC ), they are required

to be considered. One way to consider the associated noises
in the DAEs is by modelling them as input noises [25],
but it requires linearization which topples the advantages
associated with the unscented transformation and nonlinear
filtering. Interestingly, the fact that the difference between
the measured values and their associated noises is equal to
the actual inputs could be utilized to include the associated
noises. Using this hypothesis, the inputs can be written as:

vJ = vyJ − vwJ (28)

Thus, u(k) and υ(k) becomes pseudo input vector and
pseudo-process noise vector, respectively, after the applica-
tion of this hypothesis to the state function presented in (5).
These vectors can be expressed as:

u(k) = [vyA, vyB, vyC ]T

υ(k) = [vwA, vwB, vwC ]T (29)

The pseudo-process noise vwA, vwB, vwC are white noises
which have zero means and SDs as σvwA , σvwB , σvwC . It can be
deduced from this explanation that for each sample the mean
υ̂(k) and covariance Pυ (k) have a constant value and can be
expressed as:

υ̂(k) = [03×1]

Pυ (k) = Q = diag
[
σ 2
vwA , σ

2
vwB , σ

2
vwC

]
(30)

Further, Px(k) denotes the estimated value of the covari-
ance of x(k), x̂(k) denotes the estimated value of the mean
of x(k), the cross-correlation between state x(k) and process
noise υ(k) is given by Pxυ (k). χ (k) denoting the augmenta-
tion of state x(k) and process noise υ(k), can be written as:

χ (k) = [x(k)T , υ(k)T ]T

χ̂ (k) which denotes the mean of the estimates of χ (k) and
Pχ (k) which denotes the covariance of the estimates of χ (k)
can be expressed as follows:

χ̂ (k) =

[
x̂(k)
υ̂(k)

]
; Pχ (k) =

[
Px(k) Pxυ (k)T

Pxυ (k) Pυ (k)

]
(31)

Similarly, the mean and covariance of measurement noise
w(k) can be given as follows:

ŵ(k) = [03×1]

Pw(k) = R = diag
[
σ 2
iwA , σ

2
iwB , σ

2
iwC

]
(32)
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TABLE 1. Parameters and their values for the transmission line
(per-phase).

D. CHOOSING ADEQUATE SAMPLING RATE OF DSE
The sampling rate of DSE is the rate at which state estimates
are updated. The selection of sampling rate is one of the
important parameters in UKF-based DSE of a transmission
line if a detailed non-linear model is used for estimation. This
is because a higher sampling rate ensures the proper capturing
of any dynamic event, while at the same time, it leads to
a higher discretization error as can be seen from (24). The
discretization error depends mainly on the 1/(1 + E4CJ/T )
term in (24), which is equal to (RJCJ/T + CJLJ/T 2

+

1). This term becomes too large for very small T , mainly
becauseCJLJ/T 2 becomes too large. To keep this term small,
CJLJ/T 2 should be close to 1 which means T should be close
to

√
CJLJ , and not too small. T also shouldn’t be too large

as then UKF will fail to converge, as the dynamics will not
be adequately captured. Therefore, the sampling rate (F) in
the case of transmission line DSE is a trade-off between the
event capturing accuracy and the discretization error, and a
value of F = 1/T ≈ 1/

√
CJLJ is a good balance between

the two.
It should be noted that ij has a higher discretization error

as compared to vj, because the d2/dt2 term first appears in
vj, which gives rise to 1/(1 + E4CJ/T ) terms in (24), and
introduces error in vj. This error accumulates and becomes
enhanced when vj is again substituted in the expression of ij,
as ij already has its own errors due to the d/dt terms (that is,
the CJ/T term). Hence, making 1/(1 + E4CJ/T ) small has
such a significant impact on the accuracy of ij and, therefore,
on the accuracy of transmission line DSE itself.

IV. CASE STUDY
A. DESCRIPTION
The case study considered in this work is a three-phase
long overhead transmission line with a nominal voltage of
345 kV. The considered parameters and their values in this
simulation are presented in Table 1 and are taken from [26].
The single-line diagram of the simulation setup is presented
in Figure 3.

FIGURE 3. Single-line diagram of the simulation setup used.

B. SIMULATION SETUP
MATLAB Simulink (R2020b version) installed on a personal
computer with Intel(R) Core(TM) i7-7700K, 4.20 GHz CPU,
and 48.0 GB of RAM is used for the simulation of the case
study. The simulation network consists of a long transmission
line and is connected to a large generator (representing an
infinite grid) at one end and a load at the other end. The
transmission model is developed in Simulink and the voltages
and currents of both sending and receiving ends are taken out
as variables. The sending end currents are considered mea-
surements, while the sending end voltages are considered as
inputs. The receiving end currents and receiving end voltages
are also taken out to be compared with their estimated values
obtained from the UKF-based DSE proposed in this paper.

C. SAMPLING RATE SETUP
Based on the line parameters used in the case study, the
sampling rate is taken as 0.8 milliseconds, which is close
to

√
CJLJ , as explained in Section III-D. A sampling rate

of 0.8 milliseconds translates to a sampling frequency of
1.25 kHz.

D. OTHER PARAMETERS USED IN THE SIMULATION
1) MEASUREMENTS
In the time-domain simulation, the actual values of local end
voltages and currents are sampled at 1.25 kHz (T0 = 800µs),
and white Gaussian noises are added to these samples to
obtain the measurements [3], [20]. The motivation to con-
sider white noise is that it is constant with respect to the
frequency spectrum. Typically in the field, the measurements
are acquired through the instrumentation chain which induces
thermal noise (also referred to as Johnson noise) and is a form
of white noise.

2) PROCESS NOISE COVARIANCE MATRIX
The process noise has the covariance matrix (in per unit
(p.u.)) Q = diag{6.6 × 10−6, 6.6 × 10−6, 6.6 × 10−6

}.

3) MEASUREMENT NOISE COVARIANCE MATRIX
The measurement noise has the covariance matrix (in p.u.)
R = diag{6.6 × 10−6, 6.6 × 10−6, 6.6 × 10−6

}.
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FIGURE 4. Simulated measurements and the estimated values from UKF-based DSE for the estimated quantities in case of a resistive load.

4) INITIAL VALUES
The initial values for all the variables are taken as zero. The
zero initial values are an advantage as the proposed method
is independent of the initial conditions and works as intended
without the availability of this information.

It has to be noted that the values of matrices R and Q
are calculated based on 1% Gaussian error with 99.99%
confidence band (which corresponds to 0.257% SD of the
noise, or 6.6 × 10−6 p.u. variance) for all the measurements.

V. RESULTS AND DISCUSSION
This section presents the results obtained from the differ-
ent case studies followed by a discussion on performance.
All the case studies are performed using the test setup pre-
sented in Section IV and parameters presented in Table 1.
The UKF-based DSE algorithm runs simultaneously with the
transmission line simulation under the given load conditions.
The generated measurements are given as input to the UKF-
based DSE. Each simulation is run for 0.15 seconds, while
the sampling frequency of 1.25 kHz is used in the simulation.
The results presented in the plots show per unit values, where
the nominal voltage is 345 kV and the nominal current is
calculated using the nominal voltage (345 kV) and rated load
which is 400 MW.

A. WITH RESISTIVE LOAD
This subsection presents the results from UKF-based DSE
when the considered load is purely resistive. The considered
load is S = 350 MVA and as the load is purely resistive
then P = 350 MW and Q = 0 MVAr. The simulated values
(obtained from Simulink) along with the estimated values
obtained from the UKF-based DSE are presented in Figure 4.

ESTIMATION PERFORMANCE
It can be seen fromFigure 4 that the estimated values obtained
from the UKF-based DSE are concurrent with the simulated

values obtained from Simulink. A small mismatch can be
seen at the beginning of the simulation which is due to
the flat start of the guess values for the UKF-based DSE.
Thus, it is evident from the results presented in Figure 4
that the UKF-based DSE accurately estimates the dynamic
states of the transmission line (i.e., receiving end voltages
and receiving end currents). It should be noted here that
the dynamic states are estimated using the local end signals
only.

B. WITH INDUCTIVE LOAD
The loading conditions in power systems are mostly inductive
which could make the system response to disturbances more
sluggish due to the increase in the time constant and also
leads to an increased phase difference between the voltages
and currents. These factors could also impact the performance
of any DSE method and thus forms an interesting case to be
investigated. In this regard, this subsection presents the results
from UKF-based DSE when the considered load is inductive
with a p.f. of 0.85. The considered load is S = 350 MVA and
as the load is inductive with a p.f. of 0.85 thenP = 297.5MW
and Q = 184.4 MVAr. The simulated values (obtained from
Simulink) along with the estimated values obtained from the
UKF-based DSE are presented in Figure 5.

ESTIMATION PERFORMANCE
It can be seen fromFigure 5 that the estimated values obtained
from the UKF-based DSE are concurrent with the simulated
values obtained from Simulink with the inductive load con-
ditions as well. A phase difference between the voltage and
current could be seen in Figure 5 which is due to inductive
load. Therefore, the results presented in Figure 5 confirm that
the dynamic states of the transmission line (i.e., receiving end
voltages and receiving end currents) are accurately estimated
by the UKF-based DSE despite the phase difference between
the voltages and currents due to the inductive load.
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FIGURE 5. Simulated measurements and the estimated values from UKF-based DSE for the estimated quantities in case of an R-L load with pf of 0.85.

C. UNDER LOAD CHANGE CONDITIONS
Power systems mostly operate in the quasi-static state which
means that the system operates at an operating point with
small changes around this point. These small changes could
be in the form of load changes which could adversely impact
the performance of a DSE method. Therefore, in order to
validate the performance of the proposed UKF-based DSE
method during the load change conditions, this case study
is performed. The base load (corresponding to 1 p.u.) is
S = 350 MVA with a p.f. of 0.85, then P = 297.5 MW
and Q = 184.4 MVAr. Thereafter, the load is increased by
10% to 1.1 p.u. at 0.05 seconds and subsequently decreased
to 0.9 p.u. at 0.1 seconds. The variation of this load change is
presented in Figure 6. The simulated values (obtained from
Simulink) along with the estimated values obtained from
the UKF-based DSE corresponding to this load change are
presented in Figure 7.

ESTIMATION PERFORMANCE
Figure 7 shows that the estimated values obtained from
the UKF-based DSE correctly follow the simulated values
obtained from Simulink during the load change conditions as
well. As the load increases at 0.05 seconds, correspondingly
the current in all the phases increases, while the voltage in
all the phases decreases as can be seen in Figure 7. The
currents and voltages settle at a new steady state until another
load change occurs at 0.1 seconds. This change decreases
the load to 0.9 p.u. which leads to decreased current in all
the phases, while the voltage increases. Interestingly, the
estimated values from the UKF-based DSE match well with
the simulated values obtained from Simulink even during
the small transients that occurred due to steep load changes.
It can be concluded from the results presented in Figure 7
and subsequent discussion that the dynamic states of the
transmission line (i.e., receiving end voltages and receiving
end currents) can be accurately estimated from the UKF-
based DSE.

FIGURE 6. A plot showing the load change in per unit.

D. UNDER FAULT CONDITIONS
Transmission lines are also subjected to different fault condi-
tions and satisfactory performance of a DSE method during
and after the fault conditions is an important performance
indicator. In this regard, this case study is performed to vali-
date the performance of the proposed UKF-based DSE under
a three-phase fault. The fault is created in the middle of the
transmission line and initiated at 0.04 seconds and cleared
at 0.08 seconds. A fault impedance of 1 � is used in the
simulation. The simulated values (obtained from Simulink)
alongwith the estimated values obtained from theUKF-based
DSE corresponding to this three-phase fault are presented in
Figure 8.

ESTIMATION PERFORMANCE
Figure 8 shows that before the fault is initiated (i.e., between
0 and 0.04 seconds), the estimated values obtained from the
UKF-based DSE matches well with the simulated values
obtained from Simulink. However, when the fault is initiated
at 0.04 seconds, the simulated values go to zero because as
the fault occurs in the middle of the line and is fed only from
the local end, thus the remote end voltages and currents go
to zero. However, the estimated values from the UKF-based
DSE during the fault show a high value for both currents
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FIGURE 7. Simulated measurements and the estimated values from UKF-based DSE for the estimated quantities during load change conditions.

FIGURE 8. Simulated measurements and the estimated values from UKF-based DSE for the estimated quantities with a three-phase fault.

(peak value of 12 p.u.) and voltages (peak value of 1.2 p.u.)
which are different from the simulated values. The main
reason behind the mismatch is that the UKF-based DSE is
using only the local end variables (i.e., voltages and currents)
in the estimation process which go high during the fault and
thus it predicts the remote end variables as high. After the
fault is cleared at 0.08 seconds, the estimated values from
the UKF-based DSE again match well with the simulated
values.

It is interesting to note here that the performance of the
proposed UKF-based DSE method during the fault is associ-
ated with the idea of the DSE-based protection scheme. This
protection scheme identifies a fault based on the mismatch of
simulated and estimated values during the fault. Experimental
validation of one such version of the DSE-based protection
scheme is presented in [7] and [15].

E. LOAD FED FROM BOTH ENDS
Transmission systems are generally connected in meshed
structure and the loads are fed from sources at both ends.

The investigation of the DSE method under such conditions
is an interesting case study. The considered load is resistive
with S = 350 MVA and thus P = 350 MW and Q =

0 MVAr in this case study. The simulated values (obtained
from Simulink) along with the estimated values obtained
from the UKF-based DSE are presented in Figure 9.

ESTIMATION PERFORMANCE
It can be seen fromFigure 9 that the estimated values obtained
from the UKF-based DSE are concurrent with the simulated
values obtained from Simulink during the condition where
the load is fed from both ends. In this case, the receiving
end current in all phases is close to 0.2 p.u. as part of the
load current is fed from the other end, while the receiving
end voltage is close to 1 p.u. Therefore, the results pre-
sented in Figure 9 affirm that the dynamic states of the
transmission line (i.e., receiving end voltages and receiving
end currents) are accurately estimated by the UKF-based
DSE during the condition where the load is fed from both
ends.
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FIGURE 9. Simulated measurements and the estimated values from UKF-based DSE for the estimated quantities with the load fed from both ends.

TABLE 2. Estimation RMSE using different noise variance and type.

F. COMPUTATIONAL FEASIBILITY
The computational feasibility of the proposed decentralized
DSE method is evaluated using the case study presented in
Section IV. The sampled measurements are updated every
0.8 milliseconds (i.e., T0 = 0.8 milliseconds), which means
that in order to run in real-time, the method should compute
the estimates in time less than 0.8 milliseconds for one set
of measurements. In this regard, the average time of the
proposed DSE method for obtaining the estimates of one set
of measurements is calculated as 0.072 milliseconds. The
configuration of the computer used in this work is given
in Section IV-B, while the CPU load was close to 16%.
It can be easily inferred that the proposed DSE method runs
very fast and the average time for obtaining estimates for
one set of measurements is much less than the measurement
update time. In other words, the proposed DSE method runs
in real-time along with the exclusion of linearization and
approximation errors involved in the modelling and estima-
tion method.

VI. EVALUATION OF ESTIMATION ACCURACY
A. USING DIFFERENT NOISE VARIANCE AND TYPE
Noise can have a significant impact on the performance of
a state estimation method. The noises could be of different
types such as Gaussian or non-Gaussian and could have
different variances depending on the metering infrastructure.

The noise considered in all the case studies presented in
Section V is Gaussian, while the percentage error is 1%,
which is close enough to today’s metering infrastructure but
can still be considered conservative compared to the con-
ditions where meters are installed in the field [27], [28].
Therefore, the robustness of the proposedmethod is evaluated
further with higher variances than the base case and as well
as with Laplacian noise type (non-Gaussian).

To evaluate the robustness, the root mean square error
(RMSE) associated with estimation is calculated with dif-
ferent error types and SDs. It shall be noted that all the
RMSE calculations in Table 2 are system based and not the
actual values. The first three cases consider the Gaussian
noise with 0.257% (base case), 1%, and 4% as SD, while the
last three cases consider the Laplacian noise with 0.257%,
1%, and 4% as SD. The results with estimation RMSE under
these cases are presented in Table 2. In each case, RMSE is
calculated using a Monte-Carlo-based process with the num-
ber of Monte-Carlo simulations taken as 1000. Thereafter,
the Gaussian probability distribution is fitted for RMSEs
obtained from each simulation. Finally, a mean value along
with its SD is obtained for each case as presented in Table 2.

It can be seen from Table 2 that with Gaussian noise, for
the base case with 0.257% noise SD, the mean of estimation
RMSE is 2.4% and 3.3% in voltage and current, respectively.
With increasing noise SD (i.e., 1% and 4%), the mean of
estimation RMSE increases in both voltage and current. Inter-
estingly, with 4% noise SD which is almost 16 times higher
noise level than the base case, the mean of estimation RMSE
increases only approximately 3 times. The RMSE estimation
results obtained with Laplacian noise in all the cases are very
close to the results obtained with the Gaussian noise as shown
in Table 2. These results confirm the robust performance of
the proposed method.

B. USING DIFFERENT ERROR METRICS
To further evaluate the performance of the proposed method,
the most standard and widely accepted error metrics such as
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TABLE 3. Estimation errors using different metrics with 0.257% noise SD.

RMSE, maximum absolute error (MaAE), and mean absolute
error (MeAE) are employed for calculating the estimation
accuracy. In this regard, the same case study as presented in
Section IV is considered, while both Gaussian and Lapla-
cian noise with 0.257% SD is used. The results obtained
using RMSE, MaAE, and MeAE error metrics are presented
in Table 3. In all the cases, error metrics (i.e., RMSE,
MaAE, and MeAE) are calculated using a Monte-Carlo-
based process with the number of Monte-Carlo simulations
taken as 1000. Thereafter, the Gaussian probability distribu-
tion is fitted for each error metric (i.e., RMSE, MaAE, and
MeAE) obtained from the simulation. Finally, a mean value
is obtained as presented in Table 3.

It can be seen from Table 3 that results obtained with
the two types of noises (Gaussian and Laplacian) are very
close to each other. This observation once again confirms the
robustness of the proposed method in connection to different
types of noise and error metrics as well. Further, MaAE with
Gaussian noise comes out as 5.0% and 7.0% for voltage and
current, respectively. In the case of Laplacian noise, it comes
out as 5.4% and 7.0% for voltage and current, respectively.
MaAE signifies the maximum absolute error among all the
samples during the entire simulation period and since MaAE
is not very high, it is evident that the absolute error remains
within a limited range. Similarly, in the case of MeAE, which
signifies the mean of the absolute error obtained for all the
samples in the simulation period. MeAE remains lower than
the respective RMSE in both Gaussian and Laplacian noise
cases. Overall, it can be concluded that the proposed DSE
method performs well in terms of different error metrics,
confirming its robustness.

C. WITH TRANSMISSION LINE PARAMETERS
INACCURACY
Transmission line parameters could be dynamic in nature
due to several factors and since the proposed DSE method
uses these parameters as input, therefore it is important to
study the impact of transmission line parameters variation
on the estimation accuracy. The study performed in [29]
mentions that transmission line parameters could vary up to
20%. Considering this range of variation, six cases have been
studied in this subsection where transmission line parameters
inaccuracy is considered to be ±20%, ±10%, and ±5%. The
same case study along with the static parameters as presented
in Section IV is considered here.
The results in terms of estimation RMSE obtained with

different percentages of transmission line parameters inac-
curacy are presented in Table 4. In each case, RMSE is

TABLE 4. Estimation RMSE with different percentages of transmission
line parameters inaccuracy.

calculated using a Monte-Carlo-based process with the num-
ber of Monte-Carlo simulations taken as 100. Thereafter,
the Gaussian probability distribution is fitted for RMSEs
obtained from each simulation. Finally, a mean value of esti-
mation RMSE is obtained for each case, presented in Table 4.
Also, the Gaussian noise with 0.257% SD is considered in all
the cases. For comparison purposes, the difference between
the estimation RMSE obtained from each case and the case
without any inaccuracy in transmission line parameters (base
case) is also calculated and presented in Table 4. The esti-
mation RMSEs for the base case are 2.33% and 3.27% for
voltage and current, respectively.

It can be seen from Table 4 that with the increasing
percentages of transmission line parameters inaccuracy, the
estimation RMSE is also increasing and, hence, have a higher
difference from the base case. This observation shows a
proportional relationship between the inaccuracy of the trans-
mission line parameters and the estimation accuracy. How-
ever, it is interesting to see that even when the transmission
line parameters inaccuracy goes high even up to +20% and
−20%, the estimation RMSE increases only by 2.39% and
1.65%, respectively. This increase in estimation RMSE could
be considered as non-substantial compared to the case when
noise SD is 4% leading to estimation RMSE of 8.0% and
11.0% in voltage and current, respectively. Thus, the obtained
results confirm the robustness of the proposed DSE method
against the transmission line parameters inaccuracy.

VII. CONCLUSION
The paper concludes that the performance of the proposed
decentralized DSE method for estimating the dynamic states
of a transmission line in real-time has been satisfactory.
The proposition of the method preserves the nonlinearity
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in the transmission line modelling. The method works in a
decentralized manner which is achieved by treating one set
of measured quantities as pseudo inputs. The feasibility of
the method is evaluated by carrying out various case studies
with resistive load, inductive load, load change, fault condi-
tions, and load fed from both ends. Further, the robustness
is validated by performing case studies with reasonably-high
noise levels and considering transmission line parameters
inaccuracy. The results obtained from these case studies high-
light the intended performance of the proposed method in
terms of accuracy, speed, and feasibility over other exist-
ing methods. The work presented in this paper has helped
identify new research directions concerning the further devel-
opment of the unscented Kalman filter-based DSE method
for transmission lines. These directions include (i) exploring
the performance of the proposed method using the distributed
model of transmission line for cases when the length of a
transmission line is more than 200 km, and (ii) applying
the proposed decentralized DSE method to transmission line
protection.
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