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ABSTRACT Owing to the no free lunch theorem, no single optimisation algorithm can solve all optimisation
problems accurately, so new optimisation techniques are required. In this paper, a novel metaheuristic called
the deep sleep optimiser (DSO) is proposed. The deep sleep optimisermimics the sleeping patterns of humans
to solve optimisation problems. The DSO is modelled on the rise and fall of homeostatic pressure during
the human sleep process. Human sleep is often modelled on the four sleep stages and the deep sleep stage
is employed in this work. The mathematical model of sleep homeostatic pressure is employed to simulate
and determine the deep sleep state. The performance of DSO is demonstrated by employing 23 traditional
functions (i.e., unimodal, multimodal, and fixed multi-modal functions), six composite functions, three
engineering design problems, two knapsack problems, and six widely known travelling salesman’s problems.
Additionally, the performance is evaluated in terms of accuracy, computational running time, the Wilcoxon
rank sum, and the Friedman test. Lastly, the DSO is compared with 11 other metaheuristics, including
GA, PSO, TLBO, and GWO. The DSO fares comparably well and, in most instances, it outperforms other
metaheuristics.

INDEX TERMS Optimisation, metaheuristics, deep sleep, REM, non-REM.

I. INTRODUCTION
Recently, metaheuristic optimisation techniques have gar-
nered high levels of interest in academia and industry thanks
to their ability to avoid local optima and finding near opti-
mal or optimal solutions in reasonable time; flexibility and
robustness; simplicity and ease of implementation; and math-
ematical derivation-free solutions (i.e., they do not require
gradient-based information) [1], [2], [3], [4]. Their ability
to avoid locally optima entrapment is due to the integration
of controlled randomisation techniques. Consequently, meta-
heuristic algorithms have been employed in several fields as
shown in Fig. 1, such as wireless communications [5], [6],
[7], [8], [9]. Metaheuristics are characteristically stochastic
and not deterministic. Stochastic optimisation techniques are
dependent on the randomness of the modelling operators.
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They escape the entrapment of local optima better than
conventional optimisation algorithms [10]. They usually gen-
erate different solutions on each simulation run. Whereas,
deterministic optimisation gives the same solutions for all
simulation runs.

Metaheuristics can be classified in several ways, such as
the population (i.e., solutions) size, the source of inspiration
of the metaheuristics, the solution or search strategy, and
the search experience [4], [11], [12], [13], [14]. According
to the solution size, metaheuristics can be broadly classified
into: (i) single-solution based (otherwise known as trajectory
based [10], [15]) metaheuristics and (ii) population-based
metaheuristics. As the name implies, a single-solution based
metaheuristic generates only one solution which is based
on the iterative application of a generation and replacement
stage. In the generation stage, a single solution develops a
set of candidate solutions bound by local transformations of
the single solution. To this end, the replacement stage begins.
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FIGURE 1. Some areas of application of metaheuristic algorithms.

In the replacement stage, a new single solution is selected
from the candidate set of solutions generated in the first
stage (i.e., generated stage). An iterative process takes place
between the two stages until the maximum iteration number
is reached or a stopping criterion is met. Popular examples of
single-solution based metaheuristics are Simulated Anneal-
ing (SA) [16], Iterative Local Search (ILS) [17], [18], Tabu
Search (TS) [10], [19], and Greedy Randomized Adaptive
Search Procedures (GRASP) [20].

Population-based metaheuristics are broadly inspired by
different aspects of nature [21], [22]. In population-based
metaheuristics, an initial set (i.e., population) of solutions
is generated. This set of solutions is then replaced with a
new set of solutions which is an improvement on the old
set of solutions. This process iteratively continues until a
stopping criterion is met or a predefined maximum iteration
is reached. The novel metaheuristic proposed in this work
is population-based. Examples of widely-known population-
based metaheuristics are the Genetic Algorithm (GA) [23],
[24], Particle Swarm Optimisation (PSO) [25], Differential
Evolution (DE) [26], Ant-Colony Optimisation (ACO) [27],
[28], Grey Wolf Optimisation (GWO) [1], Artificial Bee
Colony (ABC) [29], [30], Harris Hawk Optimisation (HHO)
[31], and the Whale Optimisation Algorithm (WOA) [2].

Additionally, metaheuristics are categorised based on their
source of inspiration: (i) evolutionary-based, (ii) swarm-
based, (iii) physics-based, and (iv) human-based techniques.
Evolution-based metaheuristics are inspired by biological
evolution. Natural evolution relies on changes in attributes
or characteristics of species over many generations that
influence the process of natural selection. These changes
in characteristics may be advantageous to the individual
over other individuals and can then be passed to future
generations (i.e., offspring). This strategy is exploited by
evolution-based metaheuristics in reaching global optima.
Popular evolutionary-based metaheuristics [15] are GA
[23], [24], DE [26], Genetic Programming (GP) [32],
Biogeography-based Optimiser (BBO) [33], Evolutionary

Strategy (ES) [34], Evolutionary Programming (EP) [35],
[36], [37], Covariance Matrix Adaptation Evolution Strat-
egy (CMAES) [38], and the Quantum-Inspired Evolutionary
Algorithm [39].

Swarms such as termites, bees, spiders, ants, fish, and
birds have inspired many metaheuristics due to swarm emer-
gence, which is the collective (i.e., social) cooperation of
these swarms [40], [41] for finding their location and food
foraging. Examples of swarm-based metaheuristics are PSO,
ACO, ABC, Firefly Algorithm (FFA) [42], Bat Algorithm
(BA) [43], Grasshopper Optimisation Algorithm (GOA) [44],
GWO, Cuckoo Search (CS) [45], Dolphin Echolocation
(DEL) [46], [47], Salp Swarm Algorithm (SSA) [3], and Ant
Lion Optimiser (ALO) [48].
Physics-based metaheuristics are inspired by the physical

laws of the universe such as gravity, annealing, relativity,
explosions, Brownian motion of gases, and Boltzmann dis-
tribution of thermic equilibrium [49]. Widely-known exam-
ples of physics-based metaheuristics are SA, Sine Cosine
Algorithm [50], Big-Bang Big-Crunch (BBBC) [51], Gravi-
tational Search Algorithm (GSA) [52], Central Force Optimi-
sation (CFO) [53], the Solar System Algorithm (SoSA) [54],
and the Crystal Structure Algorithm (CSA) [55].
Human-based metaheuristics are based on animal/human-

social behaviour, otherwise referred to as ‘life-style based’
metaheuristics. Examples of human-inspired metaheuristics
are TS, Group Search Optimiser (GSO) [56], [57], Teaching
Learning Based Optimisation (TLBO) [58], [59], Social Net-
work Search (SNS) for Global Optimisation [60], Harmony
Search (HS) [61], and the Firework Algorithm (FA) [62].
Furthermore, metaheuristics can be categorised according

to memory usage [12], [13], [14] into (i) memory-usage
and (ii) memory-less methods. Classification is based on
whether the search experience of agents can influence future
search direction in the search landscape [4], [12], [13], [14].
Memory-usage inspired metaheuristics are TS, GA, ACO,
ABC, PSO, BA, GWO, and the Firefly Algorithm (FFA)
[63], [64]. Memory-less based metaheuristics employ only
the current state search information (i.e., a Markov-like pro-
cess). Examples of memory-less based metaheuristics are
LS, GRASP, and SA. Figure 2 illustrates the different ways
metaheuristics can be classified.

Additionally, metaheuristics can also be categorised based
on their solution or search strategies as [13] and [11]: (i) con-
structive, (ii) local search-based, and (iii) population-based.
The authors in [11] and [13] posit that metaheuristics can
belong to more than one group. Constructive metaheuris-
tics start the solution-finding process with an empty set of
solutions. A solution is found from their constituted ele-
ment (which may differ based on the problem, e.g., for the
travelling salesman’s problem the elements are the cities)
during each iteration, i.e., a move [65], [66]. In other words,
constructive metaheuristics do not solve the optimisation
problem at once but by dividing the optimisation problem
into sub-problems, and each is solved one at a time, i.e.,
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FIGURE 2. An illustration of the primary classification types of
metaheuristics algorithms in the literature and popular examples of the
categorisations.

incrementally. The solutions to the sub-problems are com-
bined to obtain the complete solution [67]. Constructive
metaheuristics found their roots in greedy algorithms, and
hence they often generate suboptimal solutions [11]. In recent
times there have been several approaches such as randomi-
sation [68], memorisation [69], look-ahead strategy [70] to
overcome this drawback. Examples of constructive meta-
heuristics are ACO, Intelligent Water Drops [71] (employed
in [72], and GRASP. Unlike constructive metaheuristics that
build solutions incrementally, thereby creating a set of partial
solutions [67], local search-based metaheuristics generate a
set of solutions (known as the neighbourhood of the solution)
for each iteration or move. Each group of iterations produces
solutions from the incumbent solutions [73] that become
closer to the optimal solution. Hence, local search-based
metaheuristics are known as a trajectory or neighborhood
search methods [11]. Examples of local search-based meta-
heuristics are ILS [17], [73], stochastic local search (SLS)
[74], Variable Neighborhood Search (VNS) [75], TS, and the
Guided Local Search (GLS) [76].
Several metaheuristics have been proposed in the last cou-

ple of years. This is primarily attributed to the No Free Lunch
(NFL) theorem [77]. The NFL theorem opines that no single
algorithm is better than other algorithms for all optimisation
problems. In other words, there is no universal metaheuristic
that can efficiently solve all problem types. Similar to other
works, this is premised on the NFL theorem in proposing the
Deep Sleep Optimiser, a novel metaheuristic.

It is important to state that other than metaheuristics, clas-
sical solutions [78], [79], [80], learning methods [81], [82],
[83], and algorithms have been employed in the literature to
find global solutions or optima solutions for some real-world
in fields such as social networks [84], [85], [86], [87], [88],
wireless networks [89], and machine learning problems [90],
[91], [92]. However, the focus of this work is on applying
metaheuristics in the search for an optimum or near-optima
solutions.

The outline of this paper is as follows. In Section, II, a brief
background of this work is presented. Section III describes
DSO, its mathematical foundation, and computational com-
plexity. Furthermore, we give a detailed description of
the performance evaluation of the DSO and comparisons
with other metaheuristics in Section IV. Section V presents
the application of DSO to some engineering case studies.
In Section VI, the ability of DSO to solve NP-Hard prob-
lems, specifically, the travelling salesman’s problem and the
knapsack problem is demonstrated. Section VII discusses
the generalizability, challenges, and applications of DSO.
We conclude this paper in Section VIII.

II. BACKGROUND
Sleep is a coordinated sequence of alterations in the brain
affecting muscle and eye movement, heart rate, and respi-
ratory rhythm [93], [94]. It is a critical function that greatly
affects the mental and physical health of humans. Insomnia
(i.e., sleep-disorder) affects the cognitive abilities, energy
levels, and immune systems of humans [95], [96]. Under-
standing the brain is crucial to understanding the process of
sleep [97], [98]. Structures in the brain that participate in the
sleep process are the hypothalamus, suprachiasmatic nucleus
(SCN), amygdala, basal forebrain, brain stem, pineal gland,
and thalamus.

In birds and mammals, sleep can broadly be categorised
into Rapid Eye Movement (REM) and non-REM stages.
In REM sleep, dreaming occurs, muscles are relaxed (i.e.,
temporarily paralysed) and the activity of the brain increases
(i.e., brain waves are faster). In non-REM sleep, body tem-
perature reduces and the transition from wakefulness to sleep
begins. Eyemovement reduces, brain activity slows, andmus-
cles relax, with random twitches/spasms. Non-REM sleep
is associated with deep sleep. It is important to state that
the sleep cycle starts with the non-REM sleep stage and
then REM sleep. The REM-nonREM cycle occurs several
times and the average time for a cycle is between 90mins
and 120mins. In a typical night, humans may experience
4− 6 sleep cycles [99], [100], [101], [102].
Recently, the American Academy of Sleep Medicine

(AASM) classified the stages of sleep: (1) non-REM stage 1
(N1), (ii) non-REM stage 2 (N2), (iii) non-REM stage 3 (N3),
and (iv) REM. N1 is the early transition from wakefulness to
sleep and lasts a few minutes (i.e., between 5 − 10). In this
phase, the eye muscles and movement slow down. The heart
beat and breathing rhythm lower and the brain waves slow
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FIGURE 3. The four stages of sleep.

TABLE 1. List of notations.

down. In some instances, people feel a sense of ‘‘falling’’,
which is referred to as hypnicmyoclonic. TheN2 stage entails
further relaxation of the eye muscles and movement. The
body temperature drops further and likewise the brain wave
activity. The N3 stage is the deep sleep stage, during which
the person does not respond to environmental stimuli. It is,
therefore, difficult to wake a person in N3 sleep stage. This is
as a result of the pressure release during sleep. Additionally,
there is no eye or muscle movement and the brain waves are
very slow. The last stage is the REM stage. The REM sleep
stage has been explained in the preceding paragraph. Figure 3
illustrates the stages of sleep by the AASM.

III. DEEP SLEEP OPTIMISATION
In this section, we first describe the inspiration of the pro-
posed DSO. The mathematical model is then discussed.
Table 1 shows the main notations to be used in the following
sections.

A. INSPIRATION OF THE DSO
Modern medicine contends that humans who are sleep
deprived are less active and alert. Furthermore, sleep depri-
vation affects human cognitive ability [103], [104]. An agent

(i.e., an individual) that experiences adequate sleep will be
much more physically active, alert, and cognitively fit com-
pared to a sleep deprived agent.

At the beginning of the sleep process, agents feel a gradual
sense of unconsciousness which is akin to a gradual descent
into a hole; and pleasure, thanks to a reduction in levels of
cortisone (i.e., the stress hormone). Moreover, it is generally
said that people fall asleep. Figure 4 illustrates the ‘‘fall into
a hole’’ concept of sleep, with the descent experienced just
after the peaks. The depth of the ‘‘sleep hole’’ reached by
an individual depends on the sleep stages attained during the
sleep process.

To this end, the deeper a person sleeps, the further agent
falls into the hole. The deep sleep state is synonymous with
reaching the bottom of the hole. Consequently, in this work,
we mimic the sleeping patterns of agents, especially the
descent into a hole as a pressure release. The process of a
gradual descent into the ‘‘sleep hole’’ is quite similar to find-
ing the global optimum in Optimisation Theory. The global
minima are akin to the bottom of the ‘‘sleep hole’’.

Since sleep is associated with a ‘‘fall into a hole’’, we will
leverage this into finding a global minimum of an optimi-
sation problem. This is as a result of the pressure release
during sleep. Furthermore, a careful examination of the sleep
process/cycle indicates that to avoid a local optimal in the
search space, an agent is encouraged to experience deep
sleep stage (i.e., N3). The main inspiration of the DSO stems
from the sleeping pattern of a group of agents, which is
explored such that the individual that attains the longest dura-
tion of the deep sleep stage determines the near-optimal or
global-optimal solution to an optimisation problem. From the
categorisation and classification of metaheuristics in Section,
we see that DSO is not a constructive metaheuristic, but
rather a population-based metaheuristic. Additionally, DSO
mimics the human patterns of sleep activity in finding the
optimal or near-optimal solutions to an optimisation problem.
Therefore, we may also categorise DSO as a Human-based
metaheuristic.

B. MATHEMATICAL MODEL OF THE DSO
The DSO mathematical model is based on the two-process
sleep regulation model [105], [106], otherwise known as the
Two-ProcessModel (TPM). The two-process sleep regulation
model is based on the sleep-wake cycle and is dependent
on two processes: (1) Homeostatic processes, in which,
as the wakeful period increases, so does the need for sleep.
In other words, the homeostatic processes increase exponen-
tially while we are awake and exponentially decline dur-
ing sleep. (2) Circadian processes determine the rhythmic
changes between sleep to wake and also wake-sleep. For
emphasis, the circadian process determines the onset and
termination of a sleep episode [105], [107], [108], [109].
The sleep-wake cycle in a two-process sleep regulation is
illustrated in Fig. 4.
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FIGURE 4. Illustration of the two-process sleep regulation showing the
homeostatic pressure (S) [105].

In the two-process sleep regulation, an agent can either be
in a sleep or wake state. The homeostatic pressure

#      »H(t) of an
agent at a given time t is given as [110]

#      »H(t) =


#        »Ho(t) · e(to−t)./xs , sleep state

µ(t)+ (
#        »Ho(t)− µ(t)) · e(to−t)./xw , wake state

(1)

where xs and xw are the sleep power index and wake power
index, respectively.

#        »Ho(t) denotes the initial homeostatic
value. µ(t) denotes the threshold of wake or vice versa. µ(t)
is the ‘‘upper asymptote’ if agent is awake and withµ(t) = 1.
However, µ(t) = 0 (i.e., lower asymptote) if agent is in sleep
state.

#      »H(t) must lie within a maximum threshold, H(t)max ,
and a minimum threshold H(t)min, respectively, which are
given as

H(t)max = H+o + a× C(t), (2)

and

H(t)min = H−o + a× C(t), (3)

where a and C(t) denote the circadian cost per unit function
and C(t) is the circadian periodic function. Besides, H+o and
H−o represent the maximum andminimum initial homeostatic
values, respectively. The circadian periodic function C(t) of
24hrs is given as

C(t) = sin
(
2π
T

(t − α)
)

, (4)

α is circadian time shift variable which specifies the shift
from the circadian maximum. α is a uniform distribution

FIGURE 5. Illustration of the DSO pseudo code.

random variable that lies between 0 and 1. Moreover, the
initial homeostatic value

#        »Ho(t) in (1) is given as

#        »Ho(t) = #»γ + #»r ·
( #      »
Xbest − µ(t) ·

#        »
Xmean

)
, (5)

where
#        »
Xmean is themean homeostatic value of the agents.

#      »
Xbest

is the best candidate solution of the agents in deep sleep. #»r is
a uniformly distributed random vector in

[
0, 1

]
. In addition,

#»γ is the initial population of the agents. It is important to state
that the initial homeostatic value updates the sleeping state of
the agent.

As stated earlier, µ(t) denotes threshold of sleep or vice
versa which lies between 0 and 1. Moreover, µ(t) helps
to tune the exploratory and exploitation capability of DSO.
As µ(t) tends towards 1, the exploration capability of the
optimiser increases and accordingly, so does the avoidance of
local optima. Whereas as µ(t) tends towards 0, the exploita-
tion ability of DSO takes precedence over its exploratory
abilities. DSO is designed to escape from a local optimum by
ensuring the flexiblemovements of agents in the search space.
In DSO, each candidate solution exists within a sleep-wake
cycle based on the homeostatic pressure of its search agent.
The homeostatic pressure decreases during the deep sleep
phase or increases during thewake phase, allowing each agent
to explore or exploit the search space within the confines of
feasibility. It selects a new candidate solution by temporally
restricting the evaluation of the previous solutions using a
greedy selection strategy.

C. THE DSO ALGORITHM
The DSO optimiser is a global optimisation algorithm that
explores and exploits a search space while leveraging the nat-
ural sleep-wake cycle modelled in humans. In the algorithm,
an agent exploits the search space by mimicking a fall in
a hole concept, which decreases the homeostatic pressure,
inducing sleep. Where the quality of sleep is directly propor-
tional to the depth and pressure achieved.

In exploration, the agent’s homeostatic pressure increases,
mimicking the wake-phase of the cycle. With each sleep-
wake cycle, the agent shares its fitness and position, which
becomes the initial guide for the next agent mimicking the
sleep-wake cycle. These actions allow for cognitive and social
learning, less energy consumption, and quick convergence at
the global minimum (NREM or near-NREM regions).
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Algorithm 1 The DSO Algorithm

Input: N , I, T , a, xs, xw,H+o ,H−o , UB, LB

1: F ← Preallocate vector for the fitness of agents
2: Fsol ← Preallocate vector for best fitness solution of the

each iteration
3: Compute the circadian periodic func. using (4)
4: Set the upper and lower homeostatic thresholds using (2)

and (3)
5: #»γ ← Initialise position of the agents randomly
6: for n← 1 to |N | do
7: F(n)← Evaluate the fitness of agent n
8: end for
9: Fsol(1)← Initial best fitness solution of the agents
10: for i← 1 to I do
11: for n← 1 to |N | do
12: F(n)← Evaluate the fitness of agent n
13: k ← Determine the position of agent with best

fitness

14:
#      »
Xbest← Determine the best fitness solution

15: µ← Randomly generate the upper asymptote
16: H←Bound µ withinHmin &Hmax

17: Compute the initial homeostatic value using (5)
18: Determine if agent is asleep or awake using µ

19: Fn← Evaluate the new fitness of the agent updated
state

20: if Fn ≤ F(n) then
21: γ (n, :)←

#»H
22: F(n)← Fn
23: end if
24: end for
25: Fsol(i+ 1)← min (F)
26: end for
27: F∗sol ← argmin (Fsol)
28: return

The pseudo code of DSO is presented in Fig. 5, while a
detailed DSO-TPM algorithm as implemented in this study
is expressed in Alg. 1. Consequently, with each iteration,
an initial solution is first obtained from an agent then a new
candidate solution is computed based on a randomly chosen
asymptote value that is confined within reasonable bounds.
The new solution is evaluated and a greedy selection strategy
is applied. The fitness value and position of the new solution
are repeatedly updated to ensure that global best values are
achieved.

D. COMPUTATIONAL COMPLEXITY
In this subsection, we describe the computational complex-
ity of the DSO. The computational complexity depicts the
worst-case scenario running performance of an algorithm and
DSO in this case. Moreover, we employ the big Omicron
(big-O) in characterising the DSO. The big-O portrays the

TABLE 2. Unimodal benchmark functions.

theoretical worst-case growth rate of the computational mem-
ory or execution time [111], [112].

From Alg. 1, we see that the big-O of notation of the
computational complexity of the DSO is given as
O(max( |N |, |N | ∗ I ) ). This can be approximated to
O( |N | ∗ I ), where |N | denotes the cardinality of the set of
agentsN and I represents the maximum number of function
evaluations.

IV. RESULTS AND DISCUSSIONS
In this section, the performance of the DSO is evalu-
ated via extensive Monte Carlo simulations in a MAT-
LAB environment. The DSO’s MATLAB codes are
in https://github.com/DayoSun/Deep-Sleep-Optimiser. The
DSO’s performance is premised on the widely accepted
23 traditional benchmark test functions, six composite func-
tions, and selected engineering problems.Moreover, the DSO
is compared with 11 state-of-the-art metaheuristics in the
literature. First, in Tables 2-4, we describe the traditional
benchmark test functions. Additionally, we give the control
parameters of the 11 metaheuristics and DSO employed in
the performance evaluation simulation in Table 5.

These benchmark functions [113], [114], [115], [116] are
primarily grouped into three classes: (i) unimodal, (ii) mul-
timodal, and (iii) fixed-dimension multimodal benchmark
functions. The unimodal functions in Table 2 are charac-
terised by convergence, leading to a single global solution,
whereas the multimodal functions given in Table 3 are often
associated with a harsh search landscape with several local
optima and single global optima. However, the number of
variables of fixed-dimension multimodal functions given in
Table 4 cannot be adjusted. An in-depth description of these
benchmark functions can be found in [113], [114], [115], and
[116]. To ensure fairness, each metaheuristic ran recursively
for 30 individual runs and terminated at 200 iterations per run.

A. TRADITIONAL BENCHMARK TEST FUNCTIONS
1) ACCURACY TEST COMPARISON
In Tables 6-10, we investigate the performance of the DSO
for variables ranging from 30, 100, 250, and 500 dimensions,
considering the functions described in Tables 2-4. Moreover,
the DSO’s accuracy, taking into consideration the mean and
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TABLE 3. Multimodal benchmark functions.

TABLE 4. Fixed-dimension multimodal benchmark functions.

standard deviation as performance metrics, is compared with
11 metaheuristics including the TLBO, GA, DE, PSO, ABC,
GWO, SCA, BBO, ACO, RCSA, and HS. Hence, the aver-
age values in Tables 6-10 are compared with the expected
values in Tables 2-4 (i.e., fmin column). We see that the DSO
outperforms the other algorithms as the variable dimension
increases. This is due to its exploitation ability. It is worth
mentioning that even with the harsh terrains of the fixed
multi-modal function landscape of functions F14-F23, the
DSO was able to obtain the global optimum for functions
F16 and F17, and fared quite well with other multimodal
functions.

2) SEARCH AND CONVERGENCE ANALYSIS
In addition, the search and convergence performance of the
DSO is investigated. Figs. 6-13 show the search and conver-
gence analysis of the DSO.

Owing to the paucity of space in this paper, we only show
the convergence of functions F1, F4, F7, F9, F10, F13, F14,
and F16. The search history plot shows the position of agents
in the search landscape. The homeostatic pressure plot shows

FIGURE 6. Illustration of the DSO search and convergence analysis for F1.

the rise and fall of the homeostatic pressure given (1) for
different iterations. The convergence curve shows the conver-
gence of an agent over the course (i.e., iterations) of the search
space of a respective function. Owing to space, we compare
the interquartile ranges of the DSO and PSO, rather than all
the 11 metaheuristics. In Figs. 6-13, we observe that the DSO
is able to benefit from its exploration and exploitation ability
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TABLE 5. The control parameters of the respective metaheuristics.

FIGURE 7. Illustration of the DSO search and convergence analysis for F4.

FIGURE 8. Illustration of the DSO search and convergence analysis for F7.

to find the global optima for the traditional test functions.
As per the convergence, the DSO’s performance is impressive
even in the face of several local optima in the landscape of

FIGURE 9. Illustration of the DSO search and convergence analysis for F9.

FIGURE 10. Illustration of the DSO search and convergence analysis for
F10.

FIGURE 11. Illustration of the DSO search and convergence analysis for
F13.

FIGURE 12. Illustration of the DSO search and convergence analysis for
F14.

the multimodal functions F14 and F16 in Figs. 12 and 13.
Furthermore, we investigate the sleep-wake cycle patterns of
the agents in Figs. 6-13. We observe that sleep-wake patterns
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TABLE 6. Results of benchmark functions with 30 dimensions.

TABLE 7. Results of benchmark functions with 100 dimensions.

FIGURE 13. Illustration of the DSO search and convergence analysis for
F16.

of the agents follow the trend illustrated in Fig. 4. To this end,
we demonstrate the sleep-wake cycle of the first and last agent
for the respective functions.

Furthermore, we discuss the convergence capabilities of
DSO for the functions illustrated in Figs. 8 – 13 that primarily

represent unimodal, multimodal, and fixed-dimensional mul-
timodal functions. In Fig. 8, we observe that DSO converges
before the 100th iteration. This is fair for a high dimen-
sional quartic function with Gaussian noise. Similar to the
convergence in Fig. 8, in Fig. 10, we observe that the DSO
converges at about the 100th iteration for the multimodal
Ackley function (i.e., F10).With careful fine-tuning of DSO’s
parameters, the convergence could be accelerated. However,
for a less rugged search landscape in Fig. 11, we see that
the DSO converges at about the 50th iteration. It shows
that the terrain of the search landscape plays a role in the
convergence of the proposed metaheuristic. Additionally, for
the fixed-dimensional multimodal functions (F14 and F16) in
Figs. 12 and 13with a less harsh search landscape, we observe
that the DSO converges less than or at about the 50th iteration.

3) SEARCH TRAJECTORY OF THE AGENTS
Figures 14-21 present the search trajectory of the agents.
Figures 14-19 illustrate the search route of the agents in
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TABLE 8. Results of benchmark functions with 250 dimensions.

TABLE 9. Results of benchmark functions with 500 dimensions.

unimodal and multimodal functions (i.e., F1, F4, F7, F9, F10,
and F13 in Tables 2 and 3). Similarly, Figs. 20 and 21 show
the search direction of the agents in fixed multi-multimodal
functions (i.e., F14 and F16 in Table 4). We observe that,
at the beginning of the search by the DSO agents, exploration
of the search landscape takes precedence over exploitation.
This gives the DSO the ability to avoid the local optima trap
(i.e., for multimodal landscape) though this comes with a
drawback of a longer convergence time. Moreover, as the
iteration progresses, exploitation takes precedence to achieve
convergence and an optimal solution. Consequently, we see
that the search trajectory of the DSO agents for multi-modal

functions is unique owing to the difficult landscape of the
functions. We observe that the DSO converges close to the
optimal point if not at the optima.

4) COMPUTATIONAL TIME
Tables 11-15 present the computational running time of
the DSO for 30, 100, 250, and 500 variable dimensions.
We observe that the DSO performs better than the other meta-
heuristics as the number of dimensions increases. Specifically
for 30 (i.e., F5, F8, F11), 100 (i.e., F2), 250 (i.e., F3-F7, F11,
F12), and 500 (i.e., F5-F12) dimensions, the DSO converges
fastest respectively. For lower dimensions such as 30, the
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TABLE 10. Results of multimodal benchmark functions with fixed dimensions.

FIGURE 14. Illustration of the DSO search trajectory for F1.

FIGURE 15. Illustration of the DSO search trajectory for F4.

computational time of the DSO remains on par with other
metaheuristics.

5) WILCOXON RANK SUM TEST AND FRIEDMAN TEST
To demonstrate that the performance of the DSO is not a
random occurrence, we employ the Wilcoxon rank sum test,
which is a non-parametric test. With a statistical significance
level of 5% [117], the probability values (p-value) of the
DSO and other metaheuristics for the respective test func-
tions with different dimensions are indicated in Tables 16-20.

FIGURE 16. Illustration of the DSO search trajectory for F7.

FIGURE 17. Illustration of the DSO search trajectory for F9.

We observe that the DSO’s p-values for all the test functions
irrespective of the number of dimensions are far lower than
0.05. This clearly shows that the performance of the DSO is
not a random occurrence. Consequently, the null hypothesis
is rejected, and the alternative hypothesis is true (i.e., the
superior performance of the DSO is statistically significant).
We observe that, in most instances, the DSO p-value is less
than the other metaheuristics.

Furthermore, we explore the Friedman test to give a per-
spicuous ranking of the metaheuristics. Friedman test allows
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TABLE 11. Results of the computational running time of benchmark functions with 30 dimensions.

TABLE 12. Results of the computational running time for benchmark functions with 100 dimensions.

FIGURE 18. Illustration of the DSO search trajectory for F10.

us to compare more than two populations with a block-
ing variable without assuming the observations are normal
distributions. Therefore, we use the ranks of the observed

FIGURE 19. Illustration of the DSO search trajectory for F13.

values to determine the rankings of themetaheuristics. A brief
mathematical basis of the Friedman test is described in
Appendix B. In Tables 21 - 26, we present the ranking results
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TABLE 13. Results of the computational running time for benchmark functions with 250 dimensions.

TABLE 14. Results of the computational running time of benchmark functions with 500 dimensions.

TABLE 15. Results of the computational running time of multimodal benchmark functions with fixed dimensions.

of the metaheuristics when subjected to the Friedman test.
In Tables 21-24, we see that the Friedman statistics (i.e.,
68.15, 93.36, 92.92, and 87.57, respectively) are greater than

the critical value of 19.68. Hence, we reject the null hypoth-
esis that assumes that all the metaheuristics have the same
performance. Consequently, in Tables 21-24, we see that
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FIGURE 20. Illustration of the DSO search trajectory for F14.

FIGURE 21. Illustration of the DSO search trajectory for F16.

the performance of the DSO improved as the variable
dimensional sizes increased for both unimodal and mul-
timodal benchmark functions. In several instances, either
DSO outperformed the other metaheuristics, or it was the
second-best metaheuristic. Besides, the ranking results of
the fixed-dimensional benchmark functions are presented
in Table 25. We observe that the Friedman statistic (i.e.,
−184.05) is far less than the critical value of 19.68. Hence,
the null hypothesis is accepted and therefore, the perfor-
mances of all the metaheuristics are the same. However, from
a wholistic view depicted in Table 26, and with a Fieldman
statistic value of 40.45 greater than the critical value of 19.68,
we observe that both the DSO and ACO outperformed all the
other metaheuristics.

B. COMPOSITE BENCHMARK TEST FUNCTIONS
Similar to the multimodal functions, composite functions
have several local optima and, consequently, a harsh and
challenging search landscape which is highly similar to real
search spaces [44]. Figures 22 and 23 illustrate the local
optima and a jagged landscape of functions F26 and F27.
Composite functions are recursive structurally and an effec-
tive way of testing the performance of metaheuristics on local
optima avoidance. Hence, composite functions test the explo-
ration and exploitation capabilities of metaheuristics. In this

FIGURE 22. Illustration of the rotated hybrid composition function 1 with
noise in fitness (i.e., F26).

FIGURE 23. Illustration of the rotated hybrid composition function 2
(i.e., F27).

work, we investigate the performance of the DSO in solving
composite functions along lines of accuracy, computational
running time, and the Wilcoxon rank sum metric. We inves-
tigate six composite functions (i.e., F24-F29), namely [118]:
(i) hybrid composition function 1, (ii) rotated hybrid compo-
sition function 1, (iii) rotated hybrid composition function 1
with noise, (iv) rotated hybrid composition function 2, (v)
rotated hybrid composition function with a narrow basin
for the global optimum, and (vi) rotated hybrid composition
function 2 with the global optimum on bounds. Further-
more, the functional entities, range, and optimal values of the
benchmark composite functions in this work are illustrated in
Table 27.

1) ACCURACY TEST
In Table 28, we investigate the accuracy of the DSO for
the above mentioned composite functions [118] and also
comparing with other metaheuristics. We observe that the
performance of the DSO is similar to that of the GA, GWO,
PSO, SCA, and ABC for functions F24, F25, F27, F28, and
F29 respectively, in no particular order.

2) COMPUTATIONAL RUNNING TIME
In Table 29, we observe that the computational running time
of the DSO is comparable with other metaheuristics. The
DSO’s average computational running time in solving the
composite function is 31.75s.

3) WILCOXON RANK SUM TEST AND FRIEDMAN TEST
We investigate the p-values of the DSO and other metaheuris-
tics to see the statistical significance of the results of themeta-
heuristics. In Table 30, we observe that all the metaheuristics

83652 VOLUME 11, 2023



S. O. Oladejo et al.: DSO: A Human-Based Metaheuristic Approach

TABLE 16. Results of the rank sum metric of benchmark functions with 30 dimensions.

TABLE 17. Results of the rank sum metric of benchmark functions with 100 dimensions.

TABLE 18. Results of the rank sum metric of benchmark functions with 250 dimensions.

TABLE 19. Results of the rank sum metric of benchmark functions with 500 dimensions.

have a p-value of less than 5% and consequently reject
the null hypothesis. Moreover, in most instances, the DSO
outperforms the other compared metaheuristics except for
GA. This shows that the results of the DSO are statistically
significant and hence, reliable. Furthermore, we carry out
a Friedman test to evaluate the ranking of the metaheuris-
tics. This is similar to the statistical test carried out on the

traditional benchmark function in Section IV-A5. In Table 31,
the result of the Friedman test on the composite function
is presented. We see that the Fieldman statistics value is
calculated to be −377.43 and it is less than the value of the
critical value (i.e., 19.68). Hence, the null hypothesis that the
performances of all the metaheuristics are the same for all
the composite benchmark functions is valid.
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TABLE 20. Results of the rank sum metric of multimodal benchmark functions with fixed dimensions.

TABLE 21. Results of the Fieldman test ranking for the unimodal and
multimodal benchmark functions with 30 dimensions.

TABLE 22. Results of the Fieldman test ranking for the unimodal and
multimodal benchmark functions with 100 dimensions.

TABLE 23. Results of the Fieldman test ranking for the unimodal and
multimodal benchmark functions with 250 dimensions.

TABLE 24. Results of the Fieldman test ranking for the unimodal and
multimodal benchmark functions with 500 dimensions.

V. ENGINEERING DESIGN PROBLEMS
Recently, engineering design problems (EDPs) have
been solved using optimisation metaheuristics to reduce

TABLE 25. Results of the Fieldman test ranking for the fixed-dimensional
multimodal benchmark functions.

TABLE 26. The overall results of the Fieldman test ranking for the
unimodal, multimodal, and fixed-dimensional multimodal benchmark
functions.

computational cost, testing their accuracy and versatility.
In this section, the DSO is applied to solve widely known
EDPs, namely: (i) I-beam EDP [119], (ii) Cantilever EDP
[120], and (iii) Wind power maximisation and turbulence
intensity EDP [121].

A. I-BEAM EDP
The structural representation of the I-beam is illustrated in
Fig. 24. This design problem entails the maximisation of the
vertical deflection in which the mathematical formulation of
the problem is given by

min
b, h, tw, tf

5000
tw(h−2tf )3

12 +
bt3f
6 + 2btf

(
h−tf
2

)2 (6a)

subject to:

2btw + tw(h− 2tf ) ≤ 0 (6b)

10 ≤ b ≤ 50 (6c)

10 ≤ h ≤ 80 (6d)

0.9 ≤ tw ≤ 5 (6e)

0.9 ≤ tf ≤ 5 (6f)

where b, h, tw, and tf denote the width, length, thickness of the
vertical bar, and thickness of the horizontal bar, respectively.
The results of the DSO are presented in Table 33. Similar to
the previous tests, we compare the results of the DSO with
11 other metaheuristics. We observe that the DSO provided
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TABLE 27. Composite benchmark functions.

FIGURE 24. Structural parameters of the I-beam.

better results than the GA, GWO, and RCSA, and the same
results with the other metaheuristics. This shows the DSO’s
ability to solve EDP.

B. CANTILEVER EDP
The cantilever structure is made up of five hollow square
blocks. Figure 25 shows the structure of the cantilever
with each square block denoting an optimisation parame-
ter. The cantilever design problem is premised on minimis-
ing the weight of the cantilever beam. The mathematical

FIGURE 25. Structural parameters of the cantilever.

representation of the EDP is given by

min
x1, x2, x3, x4, x5

0.6224(x1 + x2 + x3 + x4 + x5) (7a)

subject to:
61

x31
+

27

x32
+

19

x33
+

7

x34
+

1

x35
− 1 ≤ 0 (7b)

0.01 ≤ x1, x2, x3, x4, x5 ≤ 100 (7c)

where x1, x2, x3, x4, and x5 denote the dimension of each
of the five hollow square blocks. Table 33 shows the results
of the DSO and other metaheuristics when applied to solve
the Cantilever EDP. In Table 33, we observe that the DSO
performed better than GA, PSO, ABC, GWO, and SCA.

C. WIND POWER MAXIMISATION AND TURBULENCE
INTENSITY EDP
Green energy has received enormous attention in recent
times, owing to global warming. Wind power is one major
way of generating clean and green energy [122]. Optimal
wind turbine placement is critical in wind power maximisa-
tion in wind plants. To do this, in this section, we engage the
work in [121] to optimise the placement of wind turbines in
maximising wind power generation and turbulence intensity.
The mathematical formulation of the problem is by [121]

max
Um,i, Pm,i

B∑
b=1

M∑
m=1

T∑
i=1

βb,m,i U3
b,m,i (8a)

subject to:

am,i ≤ amax (8b)

0 ≤ βb,m,i U3
b,m,i ≤ P

max (8c)

T ≤ Tmax (8d)
T∑
i=1

β idealb,m,i U
3
b,m,i <

T∑
i=1

β∗b,m,i U
3
b,m,i (8e)

where Pmax is the maximum power of the turbine at free
stream wind speed. T denotes the turbulence intensity. U
represents the wind speed m/s at turbine hub height. The
notation a is the turbine axial induction factor. B and M
denote the set of bins and wake zones, respectively.

Figures 26(a)-26(d) show the base case of a hexagonally
placed wind turbine farm with 30 rotor diameter at 4D, 5D,
6D, and 7D turbine spacing respectively, being compared
to the PSO [121], and the DSO optimised cases for each
wind inflow, power production, and turbulence intensity (TI)
experienced at each turbine in a major wake zone (MWZ),
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TABLE 28. Results of composite benchmark functions with 30 dimensions.

TABLE 29. Results of computational time of composite benchmark functions with 30 dimensions.

TABLE 30. Results of the rank sum metric of composite benchmark functions with 30 dimensions.

TABLE 31. Results of the Fieldman test ranking for the composite
benchmark functions.

TABLE 32. Results of the I-beam design problem.

using three mean inflow wind conditions (7, 8, and 10 m/s).
The wind rose and wind speed distribution for the considered
site are given in Appendix A section in [121]. By optimising
the axial induction factor (a parameter which is controlled by

TABLE 33. Results of the cantilever beam design problem.

pitching turbine blades or adjusting generator torque to affect
the tip speed ratio), the power production of each turbine in
the MWZ as well as the turbulence intensity at each turbine is
affected. The result here shows an improved performance in
power production in DSO optimised cases when compared
to the base and PSO optimised cases, for all inflow wind
conditions and turbine spacing.

Although the DSO algorithm is lightweight and performs
better than most metaheuristic algorithms used in this study,
they were a few limitations observed in its performance,
especially when dealing with lower or fixed dimension mul-
timodal problems, which lead to premature convergence
and local optima. The advantage of DSO, however, is in
its computation efficiency and accuracy when dealing with
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FIGURE 26. Comparison of the performance of the DSO with the BASE, and PSO cases for a 4D, 5D, 6D, and 7D wind
turbine power system.

real-world engineering design problems. Additionally, the
DSO, performs excellently well with high dimensional prob-
lems as in the results discussed in Sections IV and V.

VI. NP-HARD PROBLEMS
In this section, we show the capability and proof that the
DSO can be employed to solve NP-hard problems. NP-
hard problems are computationally intractable in finding
exact solutions. Most combinatorial optimisation problems
are NP-hard, and we see from the literature that there are
no deterministic polynomial exact algorithms, except when
P=NP, or else they are computationally intractable [123].
Approximate algorithms such asmetaheuristics can find near-
optimal solutions. Most combinatorial optimisation problems
are in the form given by [124], [125]∑

e∈I∗
G(e) = max

{∑
e∈I

G(e) | I ∈ J
}
, (9)

where F is a finite set and J is a set of subsets of F and is
otherwise called a set of feasible solutions. Moreover, G :
F → R is a linear objective function. The obtained feasible
solution(s) I∗, is such that I∗ ∈ J . Examples of NP-Hard
problems are the Travelling Salesman’s Problem (TSP [126],
[127], the knapsack problem [128], and the subset sum prob-
lem [129]. Herein, we solve knapsack problems and TSPs.

A. KNAPSACK PROBLEMS
Knapsack problems entail the optimal selection of items, with
each having a unique weight and value such that the total
collection value is at its possible largest while the collections’
weight is less than or equal to a constraint limit. To this end,
DSO’s performance is examined via two types of knapsack
problems, namely: (i) 0 − 1 knapsack problems [130] and
(ii) bounded knapsack problems [131]. The mathematical
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TABLE 34. Comparing DSO and DP optimised value, weight, and
computational run time (in seconds) performances for a 0-1 knapsack
problem.

TABLE 35. Comparing best, worst, average, standard deviation, and
standard error of DSO best cost value for the various dimensions in a 0-1
knapsack problem.

expressions of these models are expressed respectively,

max
n∑
i=1

vi xi (10a)

subject to:
n∑
i=1

wi xi ≤ W , (10b)

xi ∈ {0, 1}, (10c)

and,

max
n∑
i=1

vi xi (11a)

subject to:
n∑
i=1

wi xi ≤ W , (11b)

xi ∈ {0, 1, 2, 3, · · · , c}, (11c)

where a set of n items indexed from 1 up to n, each having
a weight wi, and a value vi along with a maximum weight
capacity W . Besides, xi denotes the number of instances
of an item i to include in the knapsack. In Tables 34-37,
we illustrate the performance of DSO for several dimen-
sions of knapsack problems. In Table 34, we compare DSO’s
performance with dynamic programming (DP) for the same
problem. DP in this case serves as an exact solution baseline.
In Table 34, the number of instances an item is selected is set
to 1, while the dimensionality of the problem is varied from
30 to 1000.

It is observed that the performance of DSO is optimal
for dimensions 30 and 100 and near-optimal for dimensions
500 and 1000 but with a far better optimised running time.
In Tables 35 and 36, we give detailed results of the optimised
value and running time obtained via DSO in Table 34. Addi-
tionally, in Table 37, we present the performances of DSO for
a bounded knapsack problem when ranges from 1 to 3.

B. TRAVELING SALESMAN’s PROBLEM
Herein, DSO is employed to solve the widely known TSP.
TSP entails finding the shortest possible route in a set of

TABLE 36. Comparing best, worst, average, and standard deviation of the
computational run-time performance in seconds of DSO in a 0-1
knapsack problem.

cities, such that a city is visited exactly once and returns to
the starting city. The TSP is expressed as,

min
n∑
i=1

n∑
j̸=1,j=1

cij xij (12a)

subject to:
n∑

i=1,i̸=j

xij = 1, (12b)

n∑
j=1,j̸=i

xij = 1, (12c)

∑
i∈Q

∑
j̸=i,j∈Q

xij ≤ |Q| − 1,

∀Q ⊊ {1, · · · , n}, |Q| ≥ 2 (12d)

xij ∈ {0, 1}, (12e)

where cij denotes the cost, that is, distance from city i to city j
and xij represents the decision variable of traveling from city
i to city j. In this work, DSO is applied to solve six TSPs and
four of which are from the traveling salesman problem library
set [132], [133]. The TSPs examined herein are namely: (i) a
5-city problem; (ii) a 13-city problem [134]; (iii) gr17, a
17-city problem [132]; (iv) fri26, a 26-city problem [132];
(v) dantzig42, a 42-city problem [132], and (vi) att48, a 48-
city problem [132]. In Tables 38 and 39, we present the
performance evaluation of DSO in solving the above-named
TSPs. The optimal cost values of the TSPs are 19; 7293; 2085;
937; 699, and 33523, respectively.

In Table 38, the accuracy of DSO is presented for the exam-
ined TSPs. We observe that DSO arrived at the optimal cost
for four out of the six TSPs; and near-optimal results for the
other two TSPs. Additionally, it is seen that the performance
of DSO improves as the number of agent size increases.
Furthermore, in Table 39, the computational run time of DSO
for results shown in Table 38 is presented.We observe that the
run time of DSO is fast and less than 10 seconds for an agent
size of 1000 and less than 100 seconds for an extreme agent
size of 5000.

VII. GENERALIZABILITY, CHALLENGES, FUTURE
IMPROVEMENTS, AND REAL-WORLD APPLICATION
OF DSO
A. GENERALIZABILITY
The applicability and generalizability of metaheuristics, such
as DSO, for solving optimisation problems hinge on two
primary factors: (i) the characteristics of the optimisation
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TABLE 37. Comparing DSO and DP optimised values and weights on a bounded knapsack problem with i = 1, 2, 3.

TABLE 38. Performance evaluation of DSO’s accuracy with varying agent
size when applied to six TSPs respectively.

TABLE 39. Performance evaluation of DSO’s computational run time (i.e.,
in seconds) with varying agent size when applied to six TSPs respectively.

problem and (ii) the ability of the metaheuristic. The char-
acteristics of the problem may include the complexity of the
search space, nonlinearity, the size of the decision variables,
the number of optimal solutions, i.e., multi-modality, the
number of objective functions, and the continuous versus
discrete nature of the variables. The ability of metaheuristics
to adapt to the characteristics of the optimisation problem
and provide near-optima or optima solutions has been demon-
strated. DSO’s capability is due to its aptness to explore and
exploit the search landscape by fine-tuning its parameters.
In DSO, control parameters such as minimum initial homeo-
static, maximum initial homeostatic, sleep power index, wake
power index, and maximum sleep duration enabled search

agents to adapt to the search landscape of the different optimi-
sation problems. Generally, fine-tuning these control param-
eters increases the likelihood that DSO will yield favorable
results. Critical to generalizability is the adaptability of DSO
to new problems. Consequently, we investigate the applica-
bility of DSO to traditional and composite benchmarks; real-
world engineering design problems such as I-beam design
problems, cantilever design problems, wind powermaximiza-
tion, and turbulence intensity design problems; TSPs; and
knapsack problems. In our future work, we will investigate
the applicability of DSO to other real-world optimisation
problems, such as the optimal hyper-parameter tuning ofMLs
(i.e., SVM, DL,), optimal resource allocation problems in
next-generation wireless and mobile networks, and medical
image enhancement.

B. CHALLENGES
DSO, in rare cases, can sometimes converge prematurely,
meaning that it may converge to a suboptimal solution before
finding the global optimum. This can happen when the search
agents converge to a local optimum and fail to explore
other regions of the search space. This limitation has been
addressed using perturbation strategies such as randomization
to promote exploration and prevent premature convergence.
Additionally, the inclusion of agent switch asymptote helps to
fine-tune the exploration and exploitation dynamics. To guar-
antee DSOs find the near-optima or optima solutions, we have
embedded the laws of large numbers and Monte-Carlo simu-
lations by running extensive multiple iterations of DSO.

C. FUTURE IMPROVEMENTS
DSO, just like many other metaheuristics, could be
improved primarily by three methods [135]: (i) hybridisation,
(ii) improved learning and search strategies, and (iii) new
variants. The performance of DSO could be improved by
hybridising DSO with other metaheuristics. Hybridisation
of metaheuristics leverages the strengths of the respective
metaheuristics. In this case, DSO’s performance could be
enhanced by hybridising or combining with metaheuristics
such as ACO, GWO, and WOA. Secondly, DSO’s learning
and search strategies could be further enhanced if strategies
such as mutation [136], Levy flight [137], or opposition-
based learning [138] employed in other metaheuristics could
be incorporated or embedded. Moreover, the parallelisation
technique could be incorporated into DSO to enhance search
strategies. Lastly, the DSO algorithm could be modified
leading to variants that can be applied to solve, for instance,
multi-objective optimisation problems [139].
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D. REAL-WORLD APPLICATIONS OF DSO
DSO, owing to its flexibility and adaptability to highly com-
plex problems akin to real-world challenges, could be applied
to the vehicle-routing problems in fleet and trains routing;
facility location problems such as warehouse and distribu-
tion centers location problems; complex job scheduling in
industries and manufacturing; maximizing returns on invest-
ment while managing risks in finance portfolio management;
image reconstruction, segmentation, and enhance problems
in image and signal processing; hyper-parameter optimisa-
tion problems in machine learning; disease diagnosis and
classification, resource scheduling and allocation in health-
related problems; optimal power generation and transmission
problem in the face of several sources of power; resource allo-
cation and scheduling in wireless mobile communications;
computational fluid dynamics analysis and optimum design
for a centrifugal pump; and optimisingmagnification ratio for
the flexible hinge displacement amplifier mechanism design.

VIII. CONCLUSION
In this work, a novel metaheuristic algorithm, Deep Sleep
Optimisation (DSO), has been proposed. The sleeping pat-
terns of humans (i.e., agents) are explored in the DSO. The
homeostatic pressure which determines the sleep state of
the agents is mathematically modelled according to the lit-
erature. We demonstrate that the DSO has been tested on
widely acceptable test functions in the literature, includ-
ing unimodal, multi-modal, fixed-multimodal, and composite
functions. Moreover, we test the performance of the DSO in
real-life engineering design problems. Additionally, DSO’s
capability was also demonstrated by solving NP-hard prob-
lems. To establish the performance of the DSO, we carry
out extensive Monte Carlo simulations in determining the
accuracy, computational running time, and Wilcoxon rank
sum and Friedman ranking tests to establish the statistical
significance of the DSO’s results.

From Friedman’s ranking test, we see that DSO outper-
formed the other 11metaheuristics in several instances for the
traditional benchmark functions (i.e., unimodal, multimodal,
and fixed-dimensional functions). However, according to
Friedman’s ranking test, there was no statistical difference in
the performances of all the metaheuristics, including DSO,
with regard to the composite functions benchmarking. More-
over, DSO produced optimal and near-optimal results when
applied to real-world EDPs. Besides, DSO’s performance
in solving TSPs such as 5, 13, 17, 26, 42, and 48 prob-
lems was satisfying with optimal results in most instances.
DSO showed its ability to handle large dimensional problems
by producing optimal results with considerable computa-
tional run time when employed to solve the 0 − 1 and
bounded knapsack problems with dimensionality as large as
1000. For instance, it took DSO about 1 second to solve a
1000-dimensional bounded knapsack problem, whereas DP
solved the same in about 43 seconds. We have demonstrated
that DSO can solve several types of optimisation prob-

lems and it performs excellently well with high dimensional
problems.

DSO could solve continuous-based optimisation problems
as we demonstrated in evaluating its performance regarding
the traditional and composite benchmark functions. These
benchmark functions are continuous-based problems. More-
over, we further proved that DSO could solve real-world
continuous-based problems by benchmarking with the three
engineering design problems. Besides, we have also demon-
strated that DSO could solve discrete-based problems by
applying DSO to solve the traveling salesman’s problems and
knapsack optimisation problems as indicated in the modified
manuscript. Lastly and to conclude, we observe that the DSO
performed better than other metaheuristics examined in this
work such as PSO and GA.

APPENDIX A
Herein, we give a brief description of the benchmark func-
tions used in this work with a pictorial view of the functions in
Figures 27(a)-27(w). Simply put, unimodal benchmark func-
tions evaluate the exploitative capabilities of metaheuristics.
In Table 2, we benchmark DSO on 7 unimodal functions.
Function F1 is characteristically a continuous, convex func-
tion with 3-dimensional parabola with a spherical constant-
cost contours. F1 is widely known as the sphere function.
Owing to its simplicity and symmetry, it is often the first test
in most instances. F2 is the Schwefel’s Problem 2.22 [140].
It is a non-differentiable, non-random, and non-parametric
function. Search agents in finding the optimal solution may
get stuck in F2’ sharp pointed corners and hence converges
abruptly. F3 is a rotated hyper-ellipsoid and non-separable
function. It is otherwise referred to as Schwefel’s Problem
1.2 and it is a minimum quadratic problem [140]. In simple
words, F4 which is Schwefel’s Problem 2.21 in [140], has
an inverted pyramidal shape. F5 is the Rosenbrock function
[141] and otherwise called Banana function or the Valley
function. It is a continuous, non-convex, and low-dimensional
quartic function. The function is well-suited for the testing the
performance of gradient-based optimisation algorithms. The
minimisation might be difficult to solve owing to the deep
parabolic valley along the curve where X2 = X 2

1 [142]. F6 is
similar to F1. Moreover, it is a shifted sphere function. F7 is
a continuous, convex, and high-dimensional quartic function
with Gaussian noise [142], [143]. The Gaussian noise makes
it difficult for metaheuristics to find the optimal solution.
F8, otherwise referred as Schwefel’s Problem 2.26 [115],
[144], is a scalable and separable test function. Its variable
size can be scaled to any number. Besides, separability is
a measure of the difficulty in finding the optimal solution
of a test function. Separable functions are easy to solve
compared to non-separable functions because the variables
are independent of each other [115]. The Rastrigin function,
F9, is a non-convex, non-linear, separable, and multi-modal
benchmark function [143]. F10 is widely knownAckley func-
tion [145]. The addition of the term 20 + e transforms the
function by shifting the global minimum to the origin, that is
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FIGURE 27. Schematic diagram of the unimodal, multimodal, and fixed-dimension multimodal benchmark functions.
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at zero. F11 is otherwise referred to as Griewangk’s function
is a non-linear optimisation problem and characteristically
non-separable. The first term which contains the spherical
function help create a parabolic shape and the cosine function
in the second term imposes a wave-like on the parabolic ter-
rain surface generated by the first term. The wave-like terrain
caused by the cosine function creates multiple local optima.
However, as the dimensionality of the problem increases the
evaluation of the second term reduces owing to product opera-
tor, thereby making its wave-like terrain become less obvious
and the problem easy to solve [143], [146]. F16 is also known
as the Camel function [115], [147], F17 is the Branin RCOS
function [115], and F18 is the Goldstein price function [115],
[148]. F16, F17, and F18 are a continuous, non-separable, and
differentiable functions. Additionally, they are a non-scalable
and multi-modal functions.

APPENDIX B
Friedman’s test is a non-parametric test for the comparison
among groups. Non-parametric tests are employed when the
data is normally distributed. Consider an observed dataset,
A, having k columns, otherwise known as blocks, and n rows
(i.e., observations) given by:

In this work, the blocks denote the metaheuristics (e.g. GA,
PSO) considered in the evaluation including DSO, whereas
the observations are the functions described in Tables 2-4,
and 27. In Friedman test,A is transformed intoB, by ordering
the values in A according by the observations. For the order-
ing, the best value in an observation across the block as the
highest value. We denote B as:

where the rank sum for each block across the observations is
given by

Ri =
n∑
j=1

rji. (13)

According to Friedman test, the null hypothesis states that
all the blocks have the same performance (i.e., no significant

difference between the blocks), while the alternative hypoth-
esis portends that there is a significant difference between the
groups.

The alternative hypothesis is true such that

X2
r ≫ x2(α, υ), (14)

where X2
r is the Friedman statistics and x2(α, υ) is the criti-

cal chi-square value. The mathematical expression for X2
r is

given by

X2
r =

[
12

nk(k + 1)

k∑
i=1

Ri

]
− 3n(k + 1), (15)

and x2(α, υ), which is the critical chi-square value is depen-
dent on a statistical significance level, α (α = 0.05 in this
case) and υ is the degree of freedom (i.e., υ = k − 1).

REFERENCES
[1] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.

Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.
[2] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.

Softw., vol. 95, pp. 51–67, May 2016.
[3] S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, and

S. M. Mirjalili, ‘‘Salp swarm algorithm: A bio-inspired optimizer for
engineering design problems,’’ Adv. Eng. Softw., vol. 114, pp. 163–191,
Dec. 2017.

[4] E.-G. Talbi, Metaheuristics: From Design to Implementation, vol. 74.
Hoboken, NJ, USA: Wiley, 2009.

[5] S. O. Oladejo and O. E. Falowo, ‘‘Latency-aware dynamic resource allo-
cation scheme for multi-tier 5G network: A network slicing-multitenancy
scenario,’’ IEEE Access, vol. 8, pp. 74834–74852, 2020.

[6] S. O. Oladejo and O. E. Falowo, ‘‘Latency-aware dynamic resource
allocation scheme for 5G heterogeneous network: A network slicing-
multitenancy scenario,’’ in Proc. Int. Conf. Wireless Mobile Comput.,
Netw. Commun. (WiMob), Oct. 2019, pp. 1–7.

[7] S. O. Oladejo and O. E. Falowo, ‘‘Profit-aware resource allocation for
5G sliced networks,’’ in Proc. Eur. Conf. Netw. Commun. (EuCNC),
Jun. 2018, p. 43.

[8] S. O. Ekwe, S. O. Oladejo, L. A. Akinyemi, and N. Ventura, ‘‘A socially-
inspired energy-efficient resource allocation algorithm for future wireless
network,’’ in Proc. 16th Int. Comput. Eng. Conf. (ICENCO), Dec. 2020,
pp. 168–173.

[9] S. O. Ekwe, L. A. Akinyemi, S. O. Oladejo, and N. Ventura, ‘‘Social-
aware joint uplink and downlink resource allocation scheme using genetic
algorithm,’’ in Proc. IEEE AFRICON, Sep. 2021, pp. 1–6.

[10] F. Glover, ‘‘Future paths for integer programming and links to artificial
intelligence,’’ Comput. Oper. Res., vol. 13, no. 5, pp. 533–549, Jan. 1986.

[11] K. Sörensen and F. Glover, ‘‘Metaheuristics,’’ Encyclopedia Oper. Res.
Manag. Sci., vol. 62, pp. 960–970, Jan. 2013.

[12] M. Birattari, L. Paquete, T. Stützle, and K. Varrentrapp, ‘‘Classification
of metaheuristics and design of experiments for the analysis of compo-
nents,’’ Darmstadt Univ. Technol., Darmstadt, Germany, Tech. Rep., Nov.
2001.

[13] H. Stegherr, M. Heider, and J. Hähner, ‘‘Classifying metaheuristics:
Towards a unified multi-level classification system,’’ Natural Comput.,
vol. 21, no. 2, pp. 155–171, 2020.

[14] N. Abd-Alsabour and S. Ramakrishnan, ‘‘Hybrid metaheuristics for
classification problems,’’ Pattern Recognition-Analysis Appl., vol. 10,
p. 65253, Dec. 2016.

[15] I. Boussaïd, J. Lepagnot, and P. Siarry, ‘‘A survey on optimization meta-
heuristics,’’ Inf. Sci., vol. 237, pp. 82–117, Jul. 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025513001588

[16] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi, ‘‘Optimization by
simulated annealing,’’ in Readings in Computer Vision. Amsterdam,
The Netherlands: Elsevier, 1987, pp. 606–615.

[17] H. R. Lourenco, O. C. Martin, and T. Stützle, ‘‘Iterated local search,’’
in Handbook of Metaheuristics. Berlin, Germany: Springer, 2003,
pp. 320–353.

83662 VOLUME 11, 2023



S. O. Oladejo et al.: DSO: A Human-Based Metaheuristic Approach

[18] E. Aarts, E. H. Aarts, and J. K. Lenstra, Local Search in Combinatorial
Optimization. Princeton, NJ, USA: Princeton Univ. Press, 2003.

[19] F. Glover and M. Laguna, ‘‘Tabu search,’’ in Handbook of Combinatorial
Optimization. Berlin, Germany: Springer, 1998, pp. 2093–2229.

[20] T. A. Feo and M. G. C. Resende, ‘‘A probabilistic heuristic for a compu-
tationally difficult set covering problem,’’ Oper. Res. Lett., vol. 8, no. 2,
pp. 67–71, Apr. 1989.

[21] X.-S. Yang, Nature-Inspired Metaheuristic Algorithms. Frome, U.K.:
Luniver Press, 2010.

[22] J. D. Mello-Román and A. Hernández, ‘‘KPLS optimization with
nature-inspired metaheuristic algorithms,’’ IEEE Access, vol. 8,
pp. 157482–157492, 2020.

[23] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis With Applications to Biology, Control, and Artificial
Intelligence. Cambridge, MA, USA: MIT Press, 1992.

[24] J. H. Holland, ‘‘Genetic algorithms,’’ Sci. Amer., vol. 267, no. 1,
pp. 66–73, 1992.

[25] J. Kennedy, ‘‘Particle swarm optimization,’’ in Proc. IEEE Int. Conf.
Neural Netw., vol. 4, Dec. 2011, pp. 1942–1948.

[26] R. Storn and K. Price, ‘‘Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[27] M. Dorigo, ‘‘Optimization, learning and natural algorithms,’’ Ph.D. the-
sis, Dept. Electron., Politecnico di Mila, Milan, Italy, 1992.

[28] M. Dorigo and C. Blum, ‘‘Ant colony optimization theory: A survey,’’
Theor. Comput. Sci., vol. 344, nos. 2–3, pp. 243–278, Nov. 2005.

[29] D. Karaboga, ‘‘An idea based on honey bee swarm for numerical
optimization,’’ Eng. Fac., Compute, Erciyes Univ., Kayseri, Turkiye,
Tech. Rep., tr06, 2005.

[30] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007.

[31] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H. Chen,
‘‘Harris hawks optimization: Algorithm and applications,’’ Future Gener.
Comput. Syst., vol. 97, pp. 849–872, Aug. 2019.

[32] J. Koza, ‘‘Genetic programming as a means for programming comput-
ers by natural selection,’’ Statist. Comput., vol. 4, no. 2, pp. 87–112,
Jun. 1994.

[33] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans. Evol.
Comput., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[34] I. Rechenberg, ‘‘Evolution strategy: Nature’s way of optimization,’’ in
Optimization: Methods and Applications, Possibilities and Limitations.
Berlin, Germany: Springer, 1989, pp. 106–126.

[35] D. B. Fogel, Artificial Intelligence Through Simulated Evolution.
Hoboken, NJ, USA: Wiley, 1998, pp. 227–296.

[36] D. B. Fogel, System Identification Through Simulated Evolution: A
Machine Learning Approach to Modeling. Needham, MA, USA: Ginn
Press, 1991.

[37] D. B. Fogel, Artificial Intelligence Through Simulated Evolution.
Hoboken, NJ, USA: Wiley, 1998.

[38] N. Hansen, ‘‘The CMA evolution strategy: A comparing review,’’ in
Towards a New Evolutionary Computation (Studies in Fuzziness and Soft
Computing), vol. 192, L. Lozano P. Larranaga, I. Inza, and E. Bengoetxea,
Eds. Berlin, Germany: Springer, 2006, pp. 75–102, doi: 10.1007/3-540-
32494-1_4.

[39] H. Talbi and A. Draa, ‘‘A new real-coded quantum-inspired evolutionary
algorithm for continuous optimization,’’ Appl. Soft Comput., vol. 61,
pp. 765–791, Dec. 2017.

[40] A. P. Engelbrecht, Computational Intelligence: An Introduction.
Hoboken, NJ, USA: Wiley, 2007.

[41] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
Hoboken, NJ, USA: Wiley, 2006.

[42] X-S. Yang, ‘‘Firefly algorithm, stochastic test functions and design opti-
misation,’’ Int. J. Bio-Inspired Comput., vol. 2, no. 2, pp. 78–84, 2010.

[43] X. Yang and A. H. Gandomi, ‘‘Bat algorithm: A novel approach for global
engineering optimization,’’ Eng. Comput., vol. 29, no. 5, pp. 464–483,
Jul. 2012.

[44] S. Saremi, S. Mirjalili, and A. Lewis, ‘‘Grasshopper optimisation
algorithm: Theory and application,’’Adv. Eng. Softw., vol. 105, pp. 30–47,
Mar. 2017.

[45] X.-S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc.
World Congr. Nature Biologically Inspired Comput. (NaBIC), 2009,
pp. 210–214.

[46] A.Kaveh andN. Farhoudi, ‘‘A new optimizationmethod: Dolphin echolo-
cation,’’ Adv. Eng. Softw., vol. 59, pp. 53–70, May 2013.

[47] A. Kaveh and N. Farhoudi, ‘‘Dolphin monitoring for enhancing meta-
heuristic algorithms: Layout optimization of braced frames,’’ Comput.
Struct., vol. 165, pp. 1–9, Mar. 2016.

[48] S.Mirjalili, ‘‘The ant lion optimizer,’’Adv. Eng. Softw., vol. 83, pp. 80–98,
May 2015.

[49] S. Salcedo-Sanz, ‘‘Modern meta-heuristics based on nonlinear physics
processes: A review of models and design procedures,’’ Phys. Rep.,
vol. 655, pp. 1–70, Oct. 2016.

[50] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[51] O. K. Erol and I. Eksin, ‘‘A new optimization method: Big Bang–Big
crunch,’’ Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006.

[52] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.

[53] R. A. Formato, ‘‘Central force optimization,’’ Prog. Electromagn. Res.,
vol. 77, pp. 425–491, 2007.

[54] F. Zitouni, S. Harous, and R. Maamri, ‘‘The solar system algorithm: A
novelmetaheuristicmethod for global optimization,’’ IEEEAccess, vol. 9,
pp. 4542–4565, 2021.

[55] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, and P. Sareh, ‘‘Crystal
structure algorithm (CryStAl): A metaheuristic optimization method,’’
IEEE Access, vol. 9, pp. 71244–71261, 2021.

[56] S. He, Q. H. Wu, and J. R. Saunders, ‘‘A novel group search optimizer
inspired by animal behavioural ecology,’’ in Proc. IEEE Int. Conf. Evol.
Comput., Jul. 2006, pp. 1272–1278.

[57] S. He, Q. H. Wu, and J. R. Saunders, ‘‘Group search optimizer: An opti-
mization algorithm inspired by animal searching behavior,’’ IEEE Trans.
Evol. Comput., vol. 13, no. 5, pp. 973–990, Oct. 2009.

[58] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching-learning-based
optimization: An optimization method for continuous non-linear large
scale problems,’’ Inf. Sci., vol. 183, no. 1, pp. 1–15, Jan. 2012.

[59] R. V. Rao, V. J. Savsani, and D. P. Vakharia, ‘‘Teaching-learning-based
optimization: A novel method for constrained mechanical design opti-
mization problems,’’ Comput.-Aided Des., vol. 43, no. 3, pp. 303–315,
Mar. 2011.

[60] S. Talatahari, H. Bayzidi, and M. Saraee, ‘‘Social network search for
global optimization,’’ IEEE Access, vol. 9, pp. 92815–92863, 2021.

[61] Z. Woo Geem, J. Hoon Kim, and G. V. Loganathan, ‘‘A new heuristic
optimization algorithm: Harmony search,’’ Simulation, vol. 76, no. 2,
pp. 60–68, Feb. 2001.

[62] Y. Tan and Y. Zhu, ‘‘Fireworks algorithm for optimization,’’ in Advances
in Swarm Intelligence, Y. Tan, Y. Shi, and K. C. Tan, Eds. Berlin,
Germany: Springer, 2010, pp. 355–364.

[63] Y. Et al., ‘‘Taxonomy of memory usage in swarm intelligence-based
metaheuristics,’’ Baghdad Sci. J., vol. 16, p. 0445, Jun. 2019.

[64] É. D. Taillard, L.M. Gambardella, M. Gendreau, and J.-Y. Potvin, ‘‘Adap-
tive memory programming: A unified view of metaheuristics,’’ Eur. J.
Oper. Res., vol. 135, no. 1, pp. 1–16, Nov. 2001.

[65] J. Montgomery, M. Randall, and T. Hendtlass, ‘‘Search bias in con-
structive metaheuristics and implications for ant colony optimisation,’’ in
Proc. Int. Workshop Ant Colony Optim. Swarm Intell.Cham, Switzerland:
Springer, 2004, pp. 390–397.

[66] M. Randall, ‘‘A general framework for constructive meta-heuristics,’’ in
Operations Research/Management Science at Work. Berlin, Germany:
Springer, 2002, pp. 111–128.

[67] B. Meyer, ‘‘Hybrids of constructive metaheuristics and constraint pro-
gramming: A case study with ACO,’’ in Hybrid Metaheuristics. Berlin,
Germany: Springer, 2008, pp. 151–183.

[68] T. A. Feo and M. G. Resende, ‘‘Greedy randomized adaptive search
procedures,’’ J. Global Optim., vol. 6, no. 2, pp. 109–133, 1995.

[69] F. Glover, M. Laguna, and R. Martí, ‘‘Fundamentals of scatter search and
path relinking,’’ Control Cybern., vol. 29, no. 3, pp. 653–684, 2000.

[70] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Reading, MA, USA: Addison-Wesley, 1984.

[71] H. Shah-Hosseini, ‘‘Intelligent water drops algorithm: A new optimiza-
tion method for solving the multiple knapsack problem,’’ Int. J. Intell.
Comput. Cybern., vol. 1, no. 2, pp. 193–212, Jun. 2008.

[72] B. Crawford, R. Soto, G. Astorga, and J. García, ‘‘Constructive
metaheuristics for the set covering problem,’’ in Proc. Int. Conf.
Bioinspired Methods Their Appl. Cham, Switzerland: Springer, 2018,
pp. 88–99.

VOLUME 11, 2023 83663

http://dx.doi.org/10.1007/3-540-32494-1_4
http://dx.doi.org/10.1007/3-540-32494-1_4


S. O. Oladejo et al.: DSO: A Human-Based Metaheuristic Approach

[73] H. R. Lourenco, O. C. Martin, and T. Stützle, ‘‘Iterated local search:
Framework and applications,’’ in Handbook of Metaheuristics. Berlin,
Germany: Springer, 2019, pp. 129–168.

[74] H. H. Hoos and T. Stützle, Stochastic Local Search: Foundations and
Applications. Amsterdam, The Netherlands: Elsevier, 2004.

[75] N. Mladenović and P. Hansen, ‘‘Variable neighborhood search,’’ Comput.
Oper. Res., vol. 24, no. 11, pp. 1097–1100, Nov. 1997.

[76] C. Voudouris and E. Tsang, ‘‘Guided local search and its application
to the traveling salesman problem,’’ Eur. J. Oper. Res., vol. 113, no. 2,
pp. 469–499, Mar. 1999.

[77] D. H. Wolpert and W. G. Macready, ‘‘No free lunch theorems for
optimization,’’ IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[78] W. Lyu and Z.-A. Wang, ‘‘Global classical solutions for a class of
reaction-diffusion system with density-suppressed motility,’’ Electron.
Res. Arch., vol. 30, no. 3, pp. 995–1015, 2022.

[79] H.-Y. Jin and Z.-A.Wang, ‘‘Asymptotic dynamics of the one-dimensional
attraction-repulsion Keller–Segel model,’’ Math. Methods Appl. Sci.,
vol. 38, no. 3, pp. 444–457, Feb. 2015.

[80] H.-Y. Jin and Z.-A. Wang, ‘‘Global stabilization of the full attraction-
repulsion Keller–Segel system,’’ Discrete Continuous Dyn. Syst., vol. 40,
no. 6, pp. 3509–3527, 2020.

[81] Y. Wang, N. Xu, A.-A. Liu, W. Li, and Y. Zhang, ‘‘High-order interaction
learning for image captioning,’’ IEEETrans. Circuits Syst. Video Technol.,
vol. 32, no. 7, pp. 4417–4430, Jul. 2022.

[82] A.-A. Liu, Y. Zhai, N. Xu, W. Nie, W. Li, and Y. Zhang, ‘‘Region-aware
image captioning via interaction learning,’’ IEEE Trans. Circuits Syst.
Video Technol., vol. 32, no. 6, pp. 3685–3696, Jun. 2022.

[83] G. Zhou, R. Zhang, and S. Huang, ‘‘Generalized buffering algorithm,’’
IEEE Access, vol. 9, pp. 27140–27157, 2021.

[84] Q. Ni, J. Guo, W. Wu, H. Wang, and J. Wu, ‘‘Continuous influence-based
community partition for social networks,’’ IEEE Trans. Netw. Sci. Eng.,
vol. 9, no. 3, pp. 1187–1197, May 2022.

[85] Z. Xiong, X. Li, X. Zhang, M. Deng, F. Xu, B. Zhou, and M. Zeng, ‘‘A
comprehensive confirmation-based selfish node detection algorithm for
socially aware networks,’’ J. Signal Process. Syst., pp. 1–19, Apr. 2023,
doi: 10.1007/s11265-023-01868-6.

[86] X. Zenggang, Z. Mingyang, Z. Xuemin, Z. Sanyuan, X. Fang,
Z. Xiaochao, W. Yunyun, and L. Xiang, ‘‘Social similarity routing
algorithm based on socially aware networks in the big data environment,’’
J. Signal Process. Syst., vol. 94, no. 11, pp. 1253–1267, Nov. 2022.

[87] Y. Duan, Y. Zhao, and J. Hu, ‘‘An initialization-free distributed algorithm
for dynamic economic dispatch problems in microgrid: Modeling, opti-
mization and analysis,’’ Sustain. Energy, Grids Netw., vol. 34, Jun. 2023,
Art. no. 101004.

[88] Y. Mao, Y. Zhu, Z. Tang, and Z. Chen, ‘‘A novel airspace planning
algorithm for cooperative target localization,’’Electronics, vol. 11, no. 18,
p. 2950, Sep. 2022.

[89] G. Liu, ‘‘Data collection in MI-assisted wireless powered underground
sensor networks: Directions, recent advances, and challenges,’’ IEEE
Commun. Mag., vol. 59, no. 4, pp. 132–138, Apr. 2021.

[90] X. Li and Y. Sun, ‘‘Application of RBF neural network optimal segmen-
tation algorithm in credit rating,’’ Neural Comput. Appl., vol. 33, no. 14,
pp. 8227–8235, Jul. 2021.

[91] X. Li and Y. Sun, ‘‘Stock intelligent investment strategy based on sup-
port vector machine parameter optimization algorithm,’’ Neural Comput.
Appl., vol. 32, no. 6, pp. 1765–1775, Mar. 2020.

[92] S. Wang, X. Hu, J. Sun, and J. Liu, ‘‘Hyperspectral anomaly detec-
tion using ensemble and robust collaborative representation,’’ Inf. Sci.,
vol. 624, pp. 748–760, May 2023.

[93] J. M. Gregory, ‘‘Mathematical nature of sleep components for adults,’’
Int. J. Sleep Disorders, vol. 1, no. 1, pp. 13–17, 2017.

[94] O. Faust, H. Razaghi, R. Barika, E. J. Ciaccio, and U. R. Acharya,
‘‘A review of automated sleep stage scoring based on physiological
signals for the new millennia,’’ Comput. Methods Programs Biomed.,
vol. 176, pp. 81–91, Jul. 2019.

[95] F. P. Cappuccio, D. Cooper, L. D’Elia, P. Strazzullo, and M. A. Miller,
‘‘Sleep duration predicts cardiovascular outcomes: A systematic review
and meta-analysis of prospective studies,’’ Eur. Heart J., vol. 32, no. 12,
pp. 1484–1492, Jun. 2011.

[96] F. P. Cappuccio, L. D’Elia, P. Strazzullo, and M. A. Miller, ‘‘Sleep
duration and all-cause mortality: A systematic review and meta-analysis
of prospective studies,’’ Sleep, vol. 33, no. 5, pp. 585–592, May 2010.

[97] J. A. Hobson, ‘‘Sleep is of the brain, by the brain and for the brain,’’
Nature, vol. 437, no. 7063, pp. 1254–1256, 2005.

[98] J. A. Hobson, The Dreaming Brain. 1988.
[99] V. Drago, P. S. Foster, K. M. Heilman, D. Arico, J. Williamson,

P. Montagna, andR. Ferri, ‘‘Cyclic alternating pattern in sleep and its rela-
tionship to creativity,’’ SleepMed., vol. 12, no. 4, pp. 361–366, Apr. 2011.

[100] A. K. Patel, V. Reddy, and J. F. Araujo, ’’Physiology, sleep stages,’’
StatPearls Publishing, Treasure Island, FL, USA, Tech. Rep., 2020.

[101] P.Maquet, ‘‘Sleep on it!’’Nature Neurosci., vol. 3, no. 12, pp. 1235–1236,
2000.

[102] J. Peever, P.-H. Luppi, and J. Montplaisir, ‘‘Breakdown in REM sleep
circuitry underlies REM sleep behavior disorder,’’ Trends Neurosciences,
vol. 37, no. 5, pp. 279–288, May 2014.

[103] P. Alhola and P. Polo-Kantola, ‘‘Sleep deprivation: Impact on cog-
nitive performance,’’ Neuropsychiatric Disease Treat., vol. 3, no. 5,
pp. 553–567, 2007.

[104] J. J. Pilcher and A. I. Huffcutt, ‘‘Effects of sleep deprivation on perfor-
mance: A meta-analysis,’’ Sleep, vol. 19, no. 4, pp. 318–326, Jun. 1996.

[105] A. A. Borbély, ‘‘A two process model of sleep regulation,’’ Hum. Neuro-
biol., vol. 1, no. 3, pp. 195–204, 1982.

[106] S. Daan, D. G. Beersma, and A. A. Borbely, ‘‘Timing of human
sleep: Recovery process gated by a circadian pacemaker,’’ Amer. J.
Physiol.-Regulatory, Integrative Comparative Physiol., vol. 246, no. 2,
pp. 161–183, Feb. 1984.

[107] P. Achermann and A. A. Borbély, ‘‘Mathematical models of sleep regu-
lation,’’ Front Biosci, vol. 8, no. 6, p. 1064, 2003.

[108] D. G.M. Beersma, ‘‘Models of human sleep regulation,’’ SleepMed. Rev.,
vol. 2, no. 1, pp. 31–43, Feb. 1998.

[109] A. A. Borbély and P. Achermann, ‘‘Concepts and models of sleep
regulation: An overview,’’ J. Sleep Res., vol. 1, no. 2, pp. 63–79,
Jun. 1992.

[110] A. C. Skeldon, D.-J. Dijk, and G. Derks, ‘‘Mathematical models for
sleep-wake dynamics: Comparison of the two-process model and a
mutual inhibition neuronal model,’’ PLoS ONE, vol. 9, no. 8, Aug. 2014,
Art. no. e103877.

[111] D. E. Knuth, ‘‘Big omicron and big Omega and big theta,’’ ACM SIGACT
News, vol. 8, no. 2, pp. 18–24, Apr. 1976.

[112] P. E. Black, Ed., ‘‘big-O notation,’’ in Dictionary of Algorithms and
Data Structures, Sep. 2019. Accessed: Aug. 5, 2023. [Online]. Available:
https://www.nist.gov/dads/HTML/bigOnotation.html

[113] M. Molga and C. Smutnicki, ‘‘Test functions for optimization needs,’’
Test Functions Optim. Needs, vol. 101, p. 48, Apr. 2005.

[114] K. Hussain, M. N. M. Salleh, S. Cheng, and R. Naseem, ‘‘Common
benchmark functions for metaheuristic evaluation: A review,’’ Int. J.
Informat. Visualizat., vol. 1, nos. 2–4, pp. 218–223, 2017.

[115] M. Jamil and X.-S. Yang, ‘‘A literature survey of benchmark functions
for global optimisation problems,’’ Int. J. Math. Modeling Numer. Optim.,
vol. 4, no. 2, pp. 150–194, 2013.

[116] J. G. Digalakis and K. G. Margaritis, ‘‘On benchmarking functions for
genetic algorithms,’’ Int. J. Comput. Math., vol. 77, no. 4, pp. 481–506,
Jan. 2001.

[117] S. A. McLeod. (2019). What a p-value tells you about statisti-
cal significance. Simply Psychology. [Online]. Available: https://www.
simplypsychology.org/p-value.html

[118] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger,
and S. Tiwari, ‘‘Problem definitions and evaluation criteria for the CEC
2005 special session on real-parameter optimization,’’ Nanyang Technol.
Univ., Singapore, Tech. Rep., May 2005.

[119] S. Mirjalili, ‘‘Evolutionary algorithms and neural networks,’’ in Stud-
ies in Computational Intelligence, vol. 780. Berlin, Germany: Springer,
2019.

[120] H. Chickermane and H. C. Gea, ‘‘Structural optimization using a new
local approximation method,’’ Int. J. Numer. Methods Eng., vol. 39, no. 5,
pp. 829–846, Mar. 1996.

[121] M. Charles, D. T. O. Oyedokun, and M. Dlodlo, ‘‘Power maximiza-
tion and turbulence intensity management through axial induction-based
optimization and efficient static turbine deployment,’’ Energies, vol. 14,
no. 16, p. 4943, Aug. 2021.

[122] D. Y. C. Leung and Y. Yang, ‘‘Wind energy development and its environ-
mental impact: A review,’’ Renew. Sustain. Energy Rev., vol. 16, no. 1,
pp. 1031–1039, Jan. 2012.

[123] M. R. Garey, ‘‘A guide to the theory of NP-completeness,’’ in Computers
and Intractability. 1979.

83664 VOLUME 11, 2023

http://dx.doi.org/10.1007/s11265-023-01868-6


S. O. Oladejo et al.: DSO: A Human-Based Metaheuristic Approach

[124] B. H. Korte, Modern Applied Mathematics : Optimization and Opera-
tions Research: Collection of State-of-the-Art Surveys Based on Lectures
Presented at the Summer School ‘Optimization and Operations Research’
Held at the University of Bonn, September 14–22, 1979. 1982.

[125] D. T. Hoang, ‘‘Metaheuristics for NP-hard combinatorial optimization
problems,’’ Ph.D. dissertation, Dept. Elect. Comput. Eng., Nat. Univ.
Singapore, Singapore, 2008.

[126] P. Larrañaga, C. M. H. Kuijpers, R. H. Murga, I. Inza, and S. Dizdarevic,
‘‘Genetic algorithms for the travelling salesman problem:A review of rep-
resentations and operators,’’ Artif. Intell. Rev., vol. 13, no. 2, pp. 129–170,
Apr. 1999.

[127] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys,
‘‘Erratum: The traveling salesman problem: A guided tour of com-
binatorial optimization,’’ J. Oper. Res. Soc., vol. 37, no. 6, p. 655,
Jun. 1986.

[128] S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementations. Hoboken, NJ, USA: Wiley, 1990.

[129] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2022.

[130] M. Abdel-Basset, D. El-Shahat, and A. K. Sangaiah, ‘‘A modified
nature inspired meta-heuristic whale optimization algorithm for solving
0–1 knapsack problem,’’ Int. J. Mach. Learn. Cybern., vol. 10, no. 3,
pp. 495–514, Mar. 2019.

[131] H. Kellerer, U. Pferschy, D. Pisinger, H. Kellerer, U. Pferschy, and
D. Pisinger, ‘‘The bounded knapsack problem,’’ in Knapsack Problems.
Berlin, Germany: Springer, 2004, pp. 185–209.

[132] G. Reinelt, ‘‘TSPLIB—A traveling salesman problem library,’’ ORSA J.
Comput., vol. 3, no. 4, pp. 376–384, 1991.

[133] D. L. Applegate, R. E. Bixby, V. Chvätal, and W. J. Cook, ‘‘The traveling
salesman problem,’’ in The Traveling Salesman Problem. Princeton, NJ,
USA: Princeton Univ. Press, 2011.

[134] Traveling Salesperson Problem. Accessed: Mar. 25, 2023. [Online].
Available: https://developers.google.com/optimization/routing/tsp

[135] A. G. Gad, ‘‘Particle swarm optimization algorithm and its applications:
A systematic review,’’ Arch. Comput. Methods Eng., vol. 29, no. 5,
pp. 2531–2561, Aug. 2022.

[136] B. Jana, S. Mitra, and S. Acharyya, ‘‘Repository and mutation based
particle swarm optimization (RMPSO): A new PSO variant applied to
reconstruction of gene regulatory network,’’ Appl. Soft Comput., vol. 74,
pp. 330–355, Jan. 2019.

[137] E. Emary, H. M. Zawbaa, and M. Sharawi, ‘‘Impact of Lèvy flight
on modern meta-heuristic optimizers,’’ Appl. Soft Comput., vol. 75,
pp. 775–789, Feb. 2019.

[138] H. R. Tizhoosh, ‘‘Opposition-based learning: A new scheme for machine
intelligence,’’ in Proc. Int. Conf. Comput. Intell. for Model., Control
Autom. Int. Conf. Intell. Agents, Web Technol. Internet Commerce, 2005,
pp. 695–701.

[139] Q. Lin, Y.Ma, J. Chen, Q. Zhu, C. A. C. Coello, K.-C.Wong, and F. Chen,
‘‘An adaptive immune-inspired multi-objective algorithm with multiple
differential evolution strategies,’’ Inf. Sci., vols. 430–431, pp. 46–64,
Mar. 2018.

[140] H. Schwefel, Evolution and Optimum Seeking, 3rd ed. New York, NY,
USA: Wiley, 1995.

[141] H. H. Rosenbrock, ‘‘An automatic method for finding the greatest or least
value of a function,’’ Comput. J., vol. 3, no. 3, pp. 175–184, Mar. 1960.

[142] K. A. De Jong, ‘‘An analysis of the behavior of a class of genetic adap-
tive systems,’’ Ph.D. dissertation, Dept. Comput. Commun. Sci., Univ.
Michigan, Ann Arbor, MI, USA, 1975.

[143] D. Whitley, S. Rana, J. Dzubera, and K. E. Mathias, ‘‘Evaluating evo-
lutionary algorithms,’’ Artif. Intell., vol. 85, nos. 1–2, pp. 245–276,
Aug. 1996.

[144] H.-P. Schwefel, Numerical Optimization of Computer Models. Hoboken,
NJ, USA: Wiley, 1981.

[145] T. Bäck and H.-P. Schwefel, ‘‘An overview of evolutionary algorithms
for parameter optimization,’’ Evol. Comput., vol. 1, no. 1, pp. 1–23,
Mar. 1993.

[146] K. E. Mathias and L. D. Whitley, ‘‘Transforming the search space with
gray coding,’’ in Proc. 1st IEEE Conf. Evol. Comput. IEEE World Congr.
Comput. Intell., Jun. 1994, pp. 513–518.

[147] F. H. Branin, ‘‘Widely convergent method for finding multiple solutions
of simultaneous nonlinear equations,’’ IBM J. Res. Develop., vol. 16,
no. 5, pp. 504–522, Sep. 1972.

[148] A. A. Goldstein and J. F. Price, ‘‘On descent from local minima,’’ Math.
Comput., vol. 25, no. 115, pp. 569–574, 1971.

SUNDAY O. OLADEJO received the B.Eng.
degree in electrical and electronic engineering
from the Federal University of Technology Akure,
Nigeria, the M.Eng. degree in communication
engineering from the Federal University of Tech-
nology, Minna, Nigeria, the M.B.A. degree in
strategic and project management from Ecole
Supárieure deGestion, Paris, France, and the Ph.D.
degree in electrical and electronic engineering
from the University of Cape Town, South Africa.

From 2007 to 2017, he was a Senior Core Network Engineer with Glo-
Mobile, Nigeria. He is currently a Lecturer with the School for Data Science
and Computational Thinking, Stellenbosch University, Stellenbosch, South
Africa. His research interests include radio resource management in wire-
less networks, artificial intelligence, swarm intelligence, machine learning,
optimization, computational thinking, data science, and analytics.

STEPHEN O. EKWE received the bachelor’s
degree in electrical and electronic engineering
from the Cross River University of Technology,
Calabar, Nigeria, and the master’s degree in per-
sonal mobile and satellite communication from
the University of Bradford, West Yorkshire, U.K.
He is currently pursuing the Ph.D. degree in elec-
trical engineering with the University of Cape
Town, South Africa. He is currently a Lecturer
with the Department of Electrical, Electronic, and

Computer Engineering, Cape Peninsula University of Technology, South
Africa. His research interests include radio resource management in wireless
networks, socially aware device-to-device communication, network opti-
mization, meta-heuristics, and artificial intelligence.

LATEEF A. AKINYEMI received the B.Sc. degree
(Hons.) in electronic and computer engineer-
ing (computational electronics) and the M.Sc.
degree in electronic and computer engineering
from Lagos State University, Lagos, Nigeria, the
M.Sc. degree in electrical and electronics engi-
neering (communication engineering option) from
the University of Lagos, Akoka, Nigeria, and the
Ph.D. degree in electrical engineering from the
Department of Electrical Engineering, Faculty of

Engineering and the Built Environment, University of Cape Town, West-
ern Cape, South Africa. He is a Lecturer, a Researcher, and a Scholar
with the Department of Electronic and Computer Engineering, Faculty
of Engineering, Lagos State University, Epe campus, Lagos. His research
areas are wireless communications, computational electronics, modeling
and simulations of quantum-inspired nano-particles and devices, microwave
engineering and antennas, artificial intelligence-inspired algorithms, and
machine learning.

SEYEDALI A. MIRJALILI (SeniorMember, IEEE)
is currently a Professor and the Director of the Tor-
rens University Center for Artificial Intelligence
Research and Optimization and is internationally
recognized for his advances in nature-inspired arti-
ficial intelligence (AI) techniques. He is the author
of more than 150 publications, including five
books,100 journal articles, 20 conference papers,
and 30 book chapters. With over 77,000 citations
and an H-index of 92, he is one of the most influ-

ential AI researchers in the world. From Google Scholar metrics, he is
globally themost cited researcher in optimization usingAI techniques, which
is his main area of expertise. He has been a keynote speaker at several
international conferences. He is serving as an Associate Editor for top AI
journals, including Neurocomputing, Applied Soft Computing, Advances in
Engineering Software, Applied Intelligence, IEEE ACCESS, and the Journal
of Algorithms.

VOLUME 11, 2023 83665


