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ABSTRACT Content-based image retrieval (CBIR) represents a class of problems that aims at finding
relevant images in response to an image-based search query. The CBIR systems use similarity measures
or distance metrics between a group of representative features in the query image and those in the image
repository. Traditionally, these features were generated by hand, employing image features such as colour,
texture, shape, and so on. Due to the fact that these methods do not provide a comprehensive perspective
of the images, they cannot be widely utilized in contemporary CBIR systems. This is due to the so-called
semantic gap between query intent and system perspective. The most recent advancements in deep learning
offer a viable alternative to manually built features, leveraging the representational learning capability of
deep neural networks. This paper presents a method of implementing a CBIR system using a multi-stage
approach known as classify, differentiate, and retrieve (CDR). The first stage involves using a deep neural
network to encode the images. Later, a custom-trained stacked SiameseNeural network (SSiNN) is employed
to differentiate the latent space representation of the images obtained from the first stage. The experimental
results for the CIFAR-10 dataset were presented, along with an algorithm for applying this strategy to any
generic dataset. Experimental outcomes demonstrate that the proposed strategy is superior to the current best
practices.

INDEX TERMS Content-based image retrieval, CBIR, deep learning, semantic gap, siamese network.

I. INTRODUCTION
Image retrieval systems have been extensively researched,
with approaches ranging from handcrafted features [22], [23],
[24] to the most recent deep learning-based solu-
tions [25], [26]. The term ‘‘content-based image retrieval’’
is used to refer to a group of problems involving the retrieval
of relevant images from a repository of images in response
to image-based queries. One of the vital components of the
CBIR system is a similaritymetric [27]. An optimal similarity
metric has a low value for relevant Images and a high value
for irrelevant images.
Definition 1: For a given set X, for any x, y, z ∈ X, a real-

valued function λ(x, y) defined on the cartesian Product
X × X is a similarity metric [27] if it satisfies the following
conditions:

• λ(x, x) = 0
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• λ(x, y) = λ(y, x)
• λ(x, z) < λ(x, y), if x is similar to z but not to y
• λ(x, y) = λ(x, z) + M, where M is the margin, and the
objective of learning system is to maximize M

The simplest of these measures is the template-matching
method, which involves calculating the Euclidean or Manhat-
tan distance between the pixel values of the source and target
images [1]. One drawback of this method is that each image
may have different lighting, orientation, size, dimensions,
background clutter, direction of capture, etc. This can result
in the unsuccessful retrieval of similar images with such
differences, which is counterintuitive.Â Furthermore, this
technique for retrieving images requires a lot of processing
power. Approaches with computationally intensive retrieval
methodologies are not viable for modern CBIR systems as
the size of the databases is growing exponentially because of
the increase and ease of image capture devices.

To get around this, researchers shifted their focus to
concentrating on image retrieval based on their content.
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Fundamental techniques in this class involve simple com-
parisons of the query image’s extracted features to those of
database images. The features are constructed using prop-
erties of images, such as colour, texture, shape, and spatial
data [2]. Using statistics, histograms, etc. [3] based on the
pixel values of the images can help improve the methods
even further. Image feature extraction methods like SIFT,
Binarized statistical image features, edge descriptors, etc.,
are employed in more advanced approaches. Approaches
that use Gabor filters and genetic algorithms were illustrated
in [7], [8], and [9]. The effectiveness of the feature represen-
tations and their discriminatory power determine the overall
performance of the image retrieval.

With the latest developments in Deep Learning and the rep-
resentation learning capability of artificial neural networks,
the method of automatic feature generation for CBIR sys-
tems has been investigated. The architecture of the CNNs
consists of multiple layers of filters and other mathematical
transformations that produce various feature representations
of the input images at various levels of abstraction. These
developments have given a huge opportunity to leverage the
capabilities of CNNs and Deep Learning for CBIR tasks [4].

Deep learning utilizes neural networks comprised of multi-
ple layers, including fully connected,convolutional, Pooling,
and flattening layers. One advantage of using deep learning
or Deep Neural networks for tasks such as pattern recognition
or computer vision is feature representation. Depending on
the input data, the model can be trained and optimized to
cater to the needs of the task at hand. Another advantage is
that the approach used is kind of domain-independent. Hence,
a computer vision task meant for remote sensing, another for
public security, and a third one for healthcare follows the
same design principles.

Deep learning is effective when an enormous amount
of training data is available for neural network model
training.

With the increased use of data capture devices like dig-
ital cameras, mobile phones, CCTVs, data generated from
streaming platforms like YouTube and social media platforms
like Facebook, Instagram, and LinkedIn, as well as tools that
enable the sharing of the generated data, a large repository of
unstructured data has been generated.
Limitations observed in prior methodologies:

We summarize a few of the drawbacks of existing method-
ologies that inspired us to work on SSiNNs.

1) Semantic-Gap Issue: Although deep learning-based
content-based image retrieval (CBIR) systems surpass
non-deep learning approaches, it remains uncertain
whether this improvement is attributed to the reduc-
tion in semantic gap or merely a result of mathemat-
ical approximation accomplished by the deep learning
model.

2) Inter-class relationship: Some of the existing approaches
employ classificationmodels, either through pre-trained
models or custom-built models. These methods use
cross-entropy as their loss function, which has the

disadvantage of not capturing inter-class relation-
ships [15]. As a result, there is room for improvement.

3) High-dimensional operations: The high dimensionality
of feature vectors is another trait shared by deep-
learning-based techniques. Some of the approaches
employ dimensionality reduction techniques such
as PCA (Principal Component Analysis) or VAEs
(Variational AutoEncoders) [21]. These approaches
may mathematically reduce the dimension without
impacting the similarity metrics, but they exacerbate
the semantic-gap problem.

To overcome the gaps in existing techniques, we present
the Stacked Siamese Neural Network, which employs a
two-stage strategy to tackle the CBIR problem. The moti-
vation for proposing a two-stage approach is that we want
to encode images without being constrained by learning
interclass relationships, and when we differentiate, we work
with a latent space representation that can learn interclass
relationships and thus transform the initial latent space rep-
resentations. This work attempts to develop a new CBIR
methodology that can be used for any dataset by dividing
the total problem into two stages, each of which is optimized
separately, therefore outperforming existing methodologies.

Our contributions:
1) Introduced a novel content-based image retrieval

method known as Stacked Siamese Neural Net-
work (SSiNN).

2) The phases involved in developing an SSiNN for
any dataset for a CBIR task, including the retrieval
approach, were discussed.

3) For the purpose of evaluating the proposed CBIR
approach, a neural network architecture has been devel-
oped and presented. This architecture makes use of
a pre-trained model and transfer learning for the first
stage and a custom model for the second stage.

4) The details of the dataset that was used for the analysis
and the metrics that were used for the evaluation have
been outlined.

5) The experimental results of the proposed method in
comparison to existing methodologies are presented.

II. RELATED WORK
Utilizing Deep Learning for CBIR has been a topic of study
for a decade. In this section, we shall describe some of
the most prominent strategies utilized by prior researchers.
Abdel-Nabi et al. [5] presented a deep learning-based image
retrieval method that employs the mathematically inte-
grated output from several AlexNet model layers to repre-
sent the corresponding images. Camlica et al. [6] utilized an
autoencoder-based method to determine the significance of
picture blocks and thus achieve the retrieval task. Shakarami
and Tarrah [10] used an approach that systematically com-
bined the output from the fully connected layer towards the
output of AlexNet, HOG, and LBP feature vectors, which
were further reduced in dimension by using PCA to produce
the final image descriptor.
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Kruthika et al. [11] in their work for early detection of
Alzheimer’s disease using images from MRI scans, using
an ensemble model consisting of a Capsule Network, Con-
volution Neural Network, and an Auto Encoder. Capsule
networks [12] were developed to address the orientation
problem encountered by Convolution Neural Networks. The
difficulty with orientation in CNNs is caused by the pooling
layers, which result in data compression. Capsule networks
solve the challenge by employing dynamic routing methods
to assess object characteristics like posture, velocity, and
texture.

Using Siamese or triplet networks [13], a variant of
deep neural networks, was offered as a solution to the
orientation problem encountered by CBIR systems when
employing CNNs.

Cai et al. [14] has also created a piece of work that is related
to the Siamese networks. In this framework, the network
would take two images as input, and it would be trained
in such a way that, if the images were similar, they would
be encoded with features that tend to be similar through a
mechanism that is known as a weight sharing mechanism.
If the images were dissimilar, they would be encoded with
features that tend to be dissimilar.

The field of remote sensing is one in which there is
relatively little available data. CBIR in remote sensing
applications using CNNs is not straightforward because
training CNNs from scratch necessitates a massive amount
of training data. Liu et al. [15] achieved CBIR for remote
sensing applications by using Transfer learning and
Siamese networks with a weighted Wasserstein ordinal loss
function.

Öztürk et al. [16] research on CBIR for medical images
employs a stacked autoencoder-based feature representation
for the images and an over-sampling strategy to deal with data
scarcity.

III. STACKED SIAMESE NEURAL NETWORK
In this section, the methodology used in the paper is
explained. Various components that form the building blocks
of the overall solution proposed are presented. The overall
framework can be divided into two stages.

A. STAGES OF THE FRAMEWORK
The first stage of the solution is known as encoding, and the
second stage is known as the differentiating stage.

• A deep neural network is used in the first stage to
transform the images into a latent space representation.

• In the second stage, a pair of neural networks are used
for further transforming the latent space representations,
such that the resulting neural codes from the neural
networks are mapped as close as possible for simi-
lar images and as far as possible for dissimilar ones.
This would help the CBIR system to cleanly differen-
tiate and thus, retrieve relevant images as precisely as
possible.

Role of the two stages in Image retrieval:
• The first stage, also known as the encoding stage of the
proposed model, focuses on transforming the images
into a high-quality feature representation, disregarding
any concerns regarding relationships between different
classes. While this feature representation is effective for
certain tasks, it lacks the ability to capture inter-class
relationships.

• In the second phase of the model, known as the dif-
ferentiation stage, the feature representation is further
transformed into a different representation that effec-
tively captures the inter-class relationships.

In the subsequent sections, we present a detailed descrip-
tion of the different steps associated with creating a fully
functional Content-Based Image Retrieval (CBIR) system
using the suggested approach. Figure 1 visually represent all
the stages involved in both phases.

B. ENCODING STAGE
The goal of this stage is to encode the images, both the
database images as well as the query images. To achieve this,
we would leverage the capabilities of convolutional neural
networks, which are known to be very effective at feature
representation.

The output of a CNN with convolution, pooling, and acti-
vation layers can be expressed as follows:

f (I ) = pool(σ (W ⊛ I ) + b) (1)

here, I represents the CNN input, pool refers to the pooling
layer, σ denotes the activation function, and ⊛ represents the
convolution operation.

The loss function is categorical cross-entropy, and its math-
ematical equation is as follows:

H (p, q) = −

∑
x

p(x)log[q(x)] (2)

here p(x) and q(x) represent the probability distributions of
class X in target and prediction, respectively.

Building a custom deep convolutional neural network
would be both time-consuming and computationally inten-
sive. Hence, we would leverage the transfer learning frame-
work, where we use a pre-trained model and repurpose it
for the current dataset. The pre-trained model used in this
paper is the VGG-16 network with ImageNet weights. For
this network, toward the end, three fully connected layers of
dimensions 1024, 512, and 256 neurons are added and are
represented as FC2, FC1, and FCO.

• FC2: Dense layer with 1024 Neurons
• FC1: Dense layer with 512 Neurons
• FCO: Dense layer with 256 Neurons
FCO is the output layer for the first phase network.
The stage 1 network is shown in Figure 2.

C. NETWORK STRUCTURE OF ENCODING STAGE NEURAL
NETWORK
Convolution Blocks: The network comprises five sets of
convolutional blocks, each containing several convolutional
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FIGURE 1. The SSINN system operates in two distinct phases. In the encoding phase, images from the image database
undergo processing through the initial neural network model to obtain feature representations. It is important to note
that certain steps marked by dotted lines are exclusive to the training process. During training, the same database
images are utilized to train the neural network. Additionally, when encoding a query image, the same first-stage
neural network is employed to acquire the feature representation for the query image. In the differentiating phase,
the feature representations obtained during the encoding stage are employed to train the neural network model
specific to that stage. This trained model is employed for image retrieval, where one of the sub-networks is fed with
the feature representation of the query image, and the other sub-network is fed with the contents of the feature
database, which was constructed during the encoding stage.

layers that are then followed by max pooling for down-
sampling. The details of each configuration are outlined
below.

• Block 1: Two convolutional layers, each employing
64 filters of dimensions 32 × 32

• Block 2: Two convolutional layers, each incorporating
128 filters of dimensions 16 × 16

• Block 3: Three convolutional layers, each composed of
256 filters of size 8 × 8

• Block 4: Three convolutional layers, each equipped with
512 filters of size 4 × 4
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FIGURE 2. The neural network architecture for stage one.

• Block 5: Three convolutional layers, each utilizing
512 filters of dimensions 2 × 2

Each of the convolution layers uses the ‘same’ padding
and ReLU activation function. After each of the convolution
blocks, a 2 × 2 max pooling with stride 2 is applied.
Fully Connected Layers: Following the convolutional blocks,
the network includes three fully connected layers. The first
fully connected layer comprises 1024 neurons, followed by
the second fully connected layer with 512 neurons. Lastly,
the third fully connected layer consists of 256 neurons. The
activation function used for all the fully connected layers is
ReLU activation.
Output Layer: The output layer is a dense layer with the
number of neurons corresponding to the number of target
classes; in this case, it is 10. And the activation function for
this layer is SoftMax.

D. TRAINING OF ENCODING STAGE
The neural network described above will be trained using the
dataset on which the CBIR task has to be performed on the
classification task. Once the training is complete, the output
of the layer FCOwill be the latest space representation of the
input image.

E. ENCODING OF THE IMAGES
All of the images in the database are encoded using the model
that was built during the training process. The input layer of

the CNN is the input, and the FCO layer is the output of the
CNN model.

F. DIFFERENTIATING STAGE
In the differentiating stage, a network architecture called the
Siamese neural network is used. Siamese neural networks are
a special type of neural network architecture composed of two
identical subnetworks with the same weights and parameters.
The reason for utilizing Siamese Neural Networks (SiNN)
in a stacked fashion in the current framework is their abil-
ity to learn embeddings that position similar classes close
enough in the vector space of the embeddings. In the existing
research, SiNNs were used directly on the images to design
the image retrieval systems. However, in this research, we are
using SiNNs in a stacked manner by consuming the latent
space representation of the first stage rather than directly
working on the images. So far as we know, this is the first time
a stacked Siamese neural network (SSiNN) has been used for
a CBIR task.
Advantages of using a stacked Siamese neural network
(SSiNN):

1) In this approach, we divided the whole framework into
two stages: the first stage does the encoding part and
uses the cross-entropy measure as its loss function.
Cross entropy has the disadvantage of being very good
at differentiating classes but not so good at determining
the similarity of embeddings. Hence, using the sec-
ond stage to solely differentiate would complement the
shortcomings of the first stage.
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2) Using the Siamese network directly on the images,
as in previous approaches, increases the number of
parameters on which the network must operate. This
can lead to overfitting issues, generalization failures,
and increased training effort.

The loss function used by the Siamese neural network for
the experiments here is Contrastive Loss, which is defined
below:

CL = (1 − Y ) × ∥xi − xj∥2 + Y × max(0, α − ∥xi − xj∥2)

(3)

here CL stands for Contrastive loss xi and xj are the embed-
dings of the images Ii and Ij respectively from the dataset.
If the overall transformation on the images is 8, then xi =

8(Ii) and xj = 8(Ij).
Y is label variable, which is defined as:

Y =

{
0, if xi is similar to xj
1, otherwise

(4)

α is a hyperparameter, which defines lower bound distance
for dissimilar samples.

• If the samples are similar (Y = 0), then we minimize
the term ∥xi − xj∥2 that corresponds to their Euclidean
distance.

• Else, (Y = 1), then we minimize the term max(0, α −

∥xi − xj∥2) that is equivalent to maximizing their
Euclidean distance until some limit α.

The block diagram of SNN is as shown in Figure 3

G. NETWORK STRUCTURE OF DIFFERENTIATING STAGE
NEURAL NETWORK
Sub-Networks of Siamese Neural Network: Each of the
sub-network comprises three convolutional layers, followed
by average pooling for down-sampling. The specific con-
figurations are as follows: The convolution layers in each
sub-network are 1D convolutions. The first convolution layer
has 4 filters, the second has 16 filters, and the third has
64 filters. The kernel size for each convolution layer is 5, and
the activation function used is ReLU. After each convolution
layer, there is an Average Pooling layer with a pool size of 2.

The sub-network outputs are merged through a block that
computes the Euclidean distance, subsequently applying a
batch-normalization layer and a sigmoid activation.

H. TRAINING OF DIFFERENTIATING STAGE NEURAL
NETWORKS
During the differentiating stage, the specified network will be
trained with the input dataset consisting of the Latent space
representations of the images produced during the encoding
stage.
Data Preparation for Training: Create Pairs of Latent Space
Representations:

The objective of the model is to distinguish embeddings
if they correspond to distinct image classes in the dataset.
Random embeddings from class A are coupled with random

images from class B. Here A and B are some arbitrary distinct
classes. The method is repeated for each class. As these pairs
belong to distinct classes, the network’s output should be 1,
as stated by the variable Y in the definition of contrast loss.
The network is trained using this labeled data with Y as the
output variable.

The network topology and the parameters of the individual
subnetworks of the SiNN are shown in Table 1. And the
network topology and parameters of the overall SiNN are
shown in Table 2. The total number of parameters in the SiNN
is 188,086; out of these, the number of trainable parameters
is 188,082.

The performance comparison at K=20 is shown in Table 5.
In this context, the variable ‘‘K’’ represents the query
input used as an argument within the Content-Based Image
Retrieval (CBIR) system. It instructs the system to retrieve
the top-K similar images from the image database.

I. PREDICTION FROM DIFFERENTIATING STAGE
When the latent space representation of two images is fed
to the model constructed during the differentiating stage, the
model will predict whether or not the images are similar.

J. RETRIEVAL METHOD
The content-based image retrieval process described in this
paper can be summed up by the steps below.

1) Encode all the images from the database and the input
query image using the model from the encoding stage
to obtain the latent space representations of these
images.

2) Use the differentiating network model to find the sim-
ilarity.

3) One of the inputs to the Siamese network is the latent
space representation of the query image, and the other
input is the latent space representation of each of the
database images.

4) Based on the output of the Siamese network, rank the
database images.

5) Furnish the top-k ranked images from the previous step
to retrieve the top-k similar images.

K. ALGORITHMIC REPRESENTATION OF THE PROPOSED
METHODOLOGY
Training Algorithm:

1) Train the proposed stage-I neural network using the
training data to create the encoding model.

2) Employ the encoding model built in Step 1 to perform
inference on the training data images, thereby obtaining
their latent space representations.

3) Utilize the procedure described in the methodology to
create pairs of latent space representations for images.
Label these pairs based on the similarity of the corre-
sponding images.
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FIGURE 3. The neural network architecture for stage two.

TABLE 1. Topology and parameters of subnetworks of SiNN.

4) Employ the labeled pairs from Step 3 to train the
proposed stage II neural network to create the differ-
entiating model.

Retrieval Algorithm:
1) Create the latent space representations of the database

images by utilizing the encoding model.
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TABLE 2. Topology and parameters of SiNN.

TABLE 3. Showcases the average precision at rank K (K=1, 5, 10, 20, 50, and 100) for different classes in the dataset. It measures the average precision of
retrieving the top-K images for each of the classes.

TABLE 4. The table compares Mean Average Precision (mAP) values for existing techniques and our proposed approach. The mAP scores are evaluated
for top-K image retrieval, where K represents the number of retrieved images. The values of K considered in this evaluation are 1, 5, 10, and 20. The mAP
(Mean Average Precision) for image retrieval is calculated by averaging the Average Precision (AP) values for all query images at a given parameter K; we
denote this value as mAP@K.

2) Pass the query image to the encoding model to
obtain the latent space representation of the query
image.

3) Feed the latent space representation of the query image
as one of the inputs into the differentiating model and
simultaneously input the latent space representations
of the database images as the other input. The model
output will be a similarity score, indicating the level of
similarity between the query image and the database
images.

4) Rank the images based on the outputs from Step 3.
Furnish the top-K images as the output of the CBIR
system.

IV. EXPERIMENTAL RESULTS
The proposed methodology was evaluated using one of the
public datasets. The details of the dataset used, the defini-
tions of the performance metrics employed, and finally, the
outcomes of the experiments done are described in this part.

A. DATASET
The dataset used for evaluation is the CIFAR-10 dataset [28].
This is one of the public datasets, with 60,000 images dis-
tributed over 10 different classes. The various classes present
in the dataset are deer, truck, horse, bird, frog, automo-
bile, dog, ship, cat, and airplane. The dimensions of the
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FIGURE 4. Performance comparison for different K-values for different state-of-the-art methods from [13] and the proposed method. Here K denotes the
query input used to retrieve the top-K similar images.

TABLE 5. Mean Average Precision (mAP) is the measure used for comparison, and it is calculated by aggregating the values for Average Precision (AP) for
each query image to retrieve the 20 most relevant images. The metric is denoted as mAP@20 to signify the number of images to be retrieved as a query
response.

images in the dataset is 32 × 32. For the experiments, the
number of images chosen was 10000, almost equally dis-
tributed for all the 10 different classes. The data distribution
adheres to an 80:20 ratio, allocating 80% of the data for
training the model and reserving 20% for testing and eval-
uating its performance. This partitioning scheme ensures a
substantial amount of data is utilized for training purposes
while reserving an independent subset specifically for com-
prehensive testing and rigorous assessment of the model’s
effectiveness.

B. PERFORMANCE METRICS
The success of a content-based image retrieval system can be
evaluated based on how well it retrieves the intended images
and rejects those that are irrelevant. One such metric used is
Precision.

FIGURE 5. Performance comparison of P@20 for different state of art
methods from [16] and proposed method.

Definition 2: The precision of a CBIR system is mea-
sured by how well it selects only the most pertinent images
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FIGURE 6. Sample images from CIFAR-10 dataset.

for retrieval.

Precision =
Number of relevant images retrieved
Total number of images retrieved

(5)

Definition 3: Precision at rank K (P@K): It assesses the
system’s capacity to retrieve only relevant Images when the
number of images retrieved is K.

P@K =
Number of relevant images retrieved

K
(6)

Definition 4: Average Precision at rank K (P@K): Aver-
age Precision at a rank K is calculated by taking the average
of P@K values across a particular class of images.

AP@K =

∑
I∈C P@K (I )

|C|
(7)

here C indicates the set of query images, which belong to a
single category and |C| indicates the cardinality of the set C.

VOLUME 11, 2023 77461



G. V. R. M. Kumar, D. Madhavi: SSiNN on Neural Codes for CBIR

TABLE 6. The Mean Average Precision (mAP) of the SSiNN approach for
the retrieval of top-K similar images is presented for different values of K.

Definition 5: The Mean average precision (mAP): Mean
of AP@K, calculated across all the query images.

mAP@K =

∑N
n=1 AP@K (n)

N
(8)

here N indicates the number of distinct categories of query
images present in the entire set of query images.

C. PERFORMANCE COMPARISION
The proposed CBIR framework’s performance was assessed,
and the performance metrics for extracting K-Images with
varied values of K are shown in Table 3.We use mean average
precision (mAP) as a metric to compare the performance
of the proposed method to that of the existing ones. The
CBIR system requires two input parameters: a query image
and a numeric value K denoting the number of images to
be retrieved. At a specific fixed K-value, we input query
images from the test dataset into the proposed CBIR sys-
tem. We then evaluate the precision values for the individual
queries by comparing the retrieved images to the ground
truth. We compute the mean average precision (mAP) for the
given K-value by aggregating the individual precision values
obtained from the evaluation process using Equations 7 and 8.
This mAP@K metric provides a comprehensive assessment
of the overall retrieval performance, considering the precision
achieved across multiple queries.

Table 4 exhibits the performance of the proposed method
in comparison with state-of-the-art methods by evaluating
mAP for the retrieval of 1, 5, 10, and 20 relevant images.
Table 5 and Figure 5 present the results of analyzing retrieval
performance compared to another set of existing approaches
for K = 20. In terms of performance, the comparison shows
that the suggested method outperforms the existing methods.
The mean average precision (mAP) for different K-values is
presented in Table 6. We observe that the retrieval perfor-
mance hasn’t degraded with an increased K-value.

V. CONCLUSION
In this paper, we introduce a powerful content-based image
retrieval algorithm that can be applied to any dataset. We take
a two-staged approach to content-based image retrieval
task, first constructing a latent space representation and
then applying a deep learning-based image differentiating

strategy based on a Siamese network architecture. Although
the CIFAR-10 dataset was used for the described experi-
ments, the framework is easily adaptable to other datasets.
The outcomes prove that the method outperforms the current
options.

The proposed model exhibits two key limitations. Firstly,
it requires a substantial amount of labeled training data,
specifically pairs of images with corresponding similarity
labels, which can be a laborious and costly process, particu-
larly when working with extensive image datasets. Secondly,
the interpretability of the model is constrained, particularly
in the second stage, where a Siamese neural network is
employed to transform the initial feature representations.
Understanding and interpreting the acquired representations
and similarity metrics can present challenges, impeding
effective debugging and enhancement of the model.

This paper presents a novel approach that tackles the
content-based image retrieval (CBIR) problem by separating
the encoding and differentiating stages. To showcase the
concept’s applicability, we employed straightforward archi-
tectures; however, there is room for experimentation with
more advanced architectures, advanced loss functions, and
hyper-parameter tuning to enhance the practical applications
of CBIR in future work.
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