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ABSTRACT This paper introduces T-detectability, which extends detectability to timed discrete event
systems within the context of communication networks. We propose network T-detectability to address
the challenges posed by observation delays and losses in network environments. Our approach involves
the construction of an augmented automaton to model delays and losses and an extended automaton to
calculate state estimates. We present a method for checking network T-detectability and T-detectability.
These findings contribute to a better understanding of system behavior in complex scenarios and provide
analytical techniques for assessing detection properties in timed discrete event systems operating within
communication networks.

INDEX TERMS Communication networks, detectability, observation delays, state estimation, observation
losses, timed discrete event systems.

I. INTRODUCTION
Discrete event systems theory is a vibrant research field,
with active efforts underway to tackle new challenges posed
by complex, large-scale, and distributed systems, and to
explore emerging applications in areas such as manufactur-
ing, transportation, communication networks, and robotics
[1], [2], [3], [4].

In manufacturing systems, such as fast assembly test and
pack-out process, determining the state of each produced
unit is crucial for tracking the overall manufacturing pro-
cess. In the event of failures, it becomes essential to quickly
locate and fix the problems to minimize downtime and ensure
the prompt resumption of normal operations. Such scenar-
ios can be effectively modeled as discrete event systems,
characterized by discrete states and event-driven behavior.
Consequently, the problem at hand can be framed as the state
estimation problem of discrete event systems. The study of
state estimation in discrete event systems has been a topic of
research for several decades, with early work conducted in [5]
and subsequent systematic works in [6] and [7]. Detectabil-
ity, defined as the ability to estimate the current state and
subsequent states of a system based on observations, plays
a critical role in state estimation. It refers to the ability to
detect the occurrence of faults or abnormal events in a system
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and involves determining whether a fault can be observed or
identified when it occurs. A system is considered detectable
if all faults or events occurring within the system can be
detected.

In the context of manufacturing systems, detectability
assumes great importance in identifying and promptly resolv-
ing problems. By ensuring timely detection of faults or
failures, manufacturing processes can be effectively mon-
itored. Additionally, high detectability facilitates the diag-
nosability process, which involves identifying the specific
fault or failure responsible for the observed abnormality.
Diagnosability, however, relies not only on detectability but
also on additional analysis, reasoning, and historical knowl-
edge or models of the system. Therefore, in manufacturing
systems, the relationship between detectability and diagnos-
ability becomes crucial. While detectability is a prerequisite
for diagnosability, diagnosability encompasses more than just
fault detection, requiring identification of the fault location
and potentially the fault type or nature. By considering both
detectability and diagnosability, manufacturing systems can
optimize their fault management and troubleshooting pro-
cesses, thereby minimizing downtime and ensuring efficient
operations.

It is worth noting that in the field of discrete event systems,
early research in detectability and subsequent systematic
works have contributed to advancing the understanding of
state estimation and fault management. The literature, such
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as the work done in [5] and the systematic works in [6]
and [7], provides valuable insights into the principles and
techniques involved in detectability and diagnosability of
discrete event systems. By leveraging the knowledge and
methodologies developed in these studies, manufacturing
systems can enhance their ability to estimate the current and
subsequent states of the system based on observations. This,
in turn, facilitates effective fault detection, localization, and
resolution, ultimately improving the overall performance and
productivity of the manufacturing processes.

With the increasing use of networks in practical systems,
the impact of communication delays, communication losses,
and their effect on discrete event system observation and diag-
nosis has become a significant research area. For example,
communication delays and losses have a significant impact
on the observability and state estimation of discrete event
system operating in communication networks. These delays
can occur when events are transmitted from the controlled
system to the supervisor or when observations are relayed
back to the system. They can result from network conges-
tion, transmission delays, and packet losses, among other
factors. As a consequence, the observed event sequence may
deviate from the actual event sequence, leading to potential
errors in state estimation and detectability analysis. To tackle
these challenges, recent research has focused on develop-
ing optimized estimation techniques for networked systems.
Notably, the work presented in [8] proposes an advanced
estimation approach that considers communication delays
and losses in the system model. Researches in [9], [10],
[11], and [12] have also investigated how to handle com-
munication delays and losses in fault diagnosis of discrete
event systems. Furthermore, the state estimation of net-
worked discrete event systems with communication delays
and losses between supervisors and plants has been system-
atically explored in studies conducted in [13], [14], [15], and
[16]. In these works, delays are typically measured by the
number of events that occur, often resulting in conservative
results.

In this paper, we address communication delays and losses
using a timed automaton proposed in [17]. This automaton
introduces a special event, called tick , which represents the
passage of time. It serves as a timing mechanism within
the timed discrete event system model and is not subject to
delays. By measuring communication delays using the num-
ber of tick , we provide a more accurate representation, to cap-
ture the effects of communication delays on the system’s
behavior and provide accurate state estimation. We assume
that communication delays are random but upper-bounded.
To handle observation delays and losses, we analyze their
mechanism and propose an augmented automaton technique.
Based on this technique, we construct an augmented automa-
ton that incorporates all possible observations and a corre-
sponding extended automaton. These automata enable us to
calculate state estimates and determine the detectability of
timed discrete event systems under communication delays
and losses.

Our work presents a significant and novel approach com-
pared to [18]. Our computational complexity is linear with
respect to the upper bound No on observation delays and
the number of states in the system. In compare with the
delayed detectability studies in [7], our focus in this paper is
to extend it to timed discrete event systems in the context of
communication networks. We aim to provide a comprehen-
sive framework that captures the effects of both observation
delays and losses on the detectability of timed discrete event
systems. To the best of our knowledge, no previous work has
investigated the detectability of timed discrete event systems
under observation delays and losses.

In our work, we primarily focus on addressing the
challenges associated with first-in-first-out (FIFO) systems,
as they are prevalent in various domains such as manufactur-
ing, transportation, and communication networks. By assum-
ing a FIFO order for delayed events, we aim to provide an
applicable solution for a significant number of real-world
systems. For systems observed from different channels where
FIFO may not be satisfied, the addition of a timestamp is
necessary to recover the order of event occurrences.

The remainder of the paper is organized as follows:
Section II reviews timed discrete event systems. Section III
extends the definition of detectability to the timed case
and introduces T-detectability for timed discrete event sys-
tems. In Section IV, we discuss communication delays
and losses and propose network T-detectability. We estab-
lish that T-detectability is a special case of network
T-detectability, with our focus primarily on network
T-detectability. Section V presents a method to construct
an augmented automaton and an extended automaton for
calculating state estimates. We also propose a method to
check network T-detectability and T-detectability. Finally,
we conclude the paper in Section VI. Due to page limitations,
some proofs are omitted but are available from the author.

II. TIMED DISCRETE EVENT SYSTEMS
A timed discrete event system can be represented by its
activity transition graph (ATG) or its timed transition graph
(TTG). Here, we adopt the TTG G̃ to describe a timed discrete
event system as in [17]:

G̃ = (Q, 6̃, ρ, q0),

where Q is the set of states, 6̃ = 6 ∪ t is the set of events
including tick , denoted by t , representing the elapse of a unit
of time. 6 is the set of activity events. ρ : Q × 6̃ → Q
is the (partial) state transition function, and q0 is the initial
state. For a given timed discrete event system, the TTG can
be constructed from its ATGmodel. For more details, readers
are referred to [17] and [3, Ch. 9].

In the usual way, we extend the transition function to ρ :

Q × 6̃∗
→ Q. Additionally, we use ρ(q, s)! to indicate that

the transition ρ(q, s) is defined. We assume that some activity
events in 6 are observable, while the other activity events are
unobservable. The tick event t is always observable. We use
6o and 6uo to denote the set of observable activity events
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and the set of unobservable activity events, respectively. For
a given timed discrete event system, the set of observable
events is denoted by 6̃o = 6o∪ t , and the set of unobservable
events is denoted by 6̃uo = 6̃ − 6̃o = 6uo. The observation
is defined by the natural projection P : 6̃∗

→ 6̃∗
o as

P(ε) = ε,P(sσ ) =

{
P(s)σ σ ∈ 6̃o

P(s) σ /∈ 6̃o.

The behavior of a timed discrete event system G̃ is
described by the language generated by G̃. This language is
defined as

L(G̃) = {s ∈ 6̃∗
: ρ(q0, s)!}.

For an event sequence s, we use Pr(s) to denote its prefix
set, |s| to denote its length, and |t|(s) to denote the number
of tick events t in s. For a set of states Q′, we use |Q′

| to
denote the number of elements in Q′. The prefix closure of
a language is the set of prefixes of event sequences in that
language. A language is considered (prefix) closed if it is
equal to its prefix closure. In this paper, we focus only on
closed languages.
For a given system, a possible trajectory is represented by

an infinite sequence of events that the system may generate.
The set of all trajectories is denoted as the ω language. Given
a timed discrete event system G̃, the set of trajectories is
defined on the set of events 6̃ in G̃ and is denoted as Lω(G̃).
Specifically, Lω(G̃) is defined as

Lω(G̃) = {s ∈ L(G̃) : |s| = ∞}.

In an automaton, we refer to the transitions between any
two states as paths. A path contains information about the
states and events involved, and it is denoted as

q0σ1q1 · · · σiqi · · · σnqn,

where qi(i = 1, 2, · · · , n) is a state transferred from state qi−1
by transitions labeled with event σi.
We use an example to show a timed discrete event system

and how the above mentioned notations and operations work.
Example 1: Given a timed discrete event system modeled

as TTG, denoted by G̃, which is shown as an automaton in
Fig. 1.

FIGURE 1. TTG model for a timed discrete event system G̃.

The set of states is given as Q = {0, 1, 2, 3, 4, 5, 6, 7}, and
its cardinality is |Q| = 8. The set of events is denoted as
6̃ = {α, β, µ, λ, t}. The initial state is q0 = 0. Assuming that
event β is unobservable, we have the set of observable events
as 6̃o = {α, µ,λ, t}, and the set of unobservable events as

6̃uo = {β}. Starting from the initial state 0, the event α can
occur, causing a transition from state 0 to state 3. Therefore,
the transition ρ(0, α) is defined in G̃, and ρ(0, α) = 3.

We use L(G̃) to denote the language generated by G̃.
It is evident that the event sequence s = tαtβ ∈ L(G̃),
and ρ(q0, s) = 6. The prefix set of s is Pr(s) =

{ε, t, tα, tαt, tαtβ}, where ε denotes the empty event
sequence. The length of s is |s| = 4, and the number of
tick events in s is |t|(s) = 2. The observation of s can be
calculated as P(s) = tαt . One of the trajectories generated
by G̃ is (αtβλ)∗ = αtβλαtβλ · · · . Additionally, the path
0t 1α3 is a path in G̃.
As discussed in [17], for timed discrete event systems,

we have the following two assumptions.
Assumption 1: Only a finite number of events can occur in

one unit of time, that is, G̃ is 6-loop free:

(∀q ∈ Q)(∀s ∈ 6∗
\ {ε})ρ(q, s) ̸= q.

Assumption 2: G̃ is deadlock free, that is,

(∀q ∈ Q)(∃σ ∈ 6̃)ρ(q, σ )!

Note that Assumption 1 excludes the physically unrealistic
possibility of infinite occurrences of activity events within
one unit of time. Assumption 2 assumes that at any given
state, there are either defined transitions with activity events
or at least the t transition is defined, as the flow of time cannot
be halted.

III. T-DETECTABILITY
In [6], the authors investigate the state estimation prob-
lem of discrete event systems and introduce the concept of
detectability. A discrete event system is considered detectable
if it is possible to determine the current state and subsequent
states after a finite number of observations for all trajectories.
In this section, we extend the definition of detectability to
the timed case and further investigate the state estimation
problem.

For a timed discrete event system G̃ with an initial state
denoted as q0, when an event sequence w ∈ P(L(G̃)) is
observed, we denote the set of states in which G̃ may reside
as

E(w) = {q ∈ Q : (∃s ∈ 6̃∗)P(s) = w ∧ q ∈ ρ(q0, s)}.

We call the states set E(w) the current state estimates.
When observing an event sequence w, we can determine the
current state of a timed discrete event system if the state
estimate set contains only one state. In other words,

|E(w)| = 1.

We then formally define the T-detectability of timed dis-
crete event systems as follows:
Definition 1 (T-Detectability): A timed discrete event sys-

tem G̃ is T-detectable if for all trajectories Lω(G̃), after a finite
of number observation w ∈ P(Pr(s))(∈ 6̃∗

o ), we can always
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determine the current state and the subsequent states of the
system, that is,

(∀s ∈ Lω(G̃))(∀w ∈ P(Pr(s)))(∃n ∈ N+)

|w| ≥ n ⇒ |E(w)| = 1.

We then use an example to show how we estimate the
current state for a given timed discrete event system.
Example 2: We continue with the timed discrete event

system shown in Fig. 1. If we assume that all events in G̃ are
observable, then regardless of the observation, we can always
determine the current state. For instance, when observing αt ,
we can conclude that the system is in state 4. This holds true
for all other observations as well. In this case, according to the
definition of T-detectability, the timed discrete event system
G̃ is T-detectable.
However, if we assume that not all events are observable,

specifically, the event β can never be observed, the situa-
tion changes. If an event sequence from (αtλ)∗ is observed,
we can still determine that the system is in state 0. However,
if an event sequence from(αtλαt)∗ is observed, the actual
sequence of events that occurred could be from (αtβλαt)∗ or
(αtβλαt)∗β.. Since we cannot determine whether the event
β occurred or not after the last t , the state estimates become
nondeterministic. The system could be in state 4 or state
6. Therefore, under the assumptions of this case, G̃ is not
T-detectable.

IV. NETWORK T-DETECTABILITY
In practical systems, the information exchange between
the controlled system and the supervisor often takes place
through communication networks. As a result, network
delays and packet losses are inevitable. When considering
these delays and losses, the state estimation problem becomes
more complex.

We first focus on observation delays. In a timed discrete
event system with communication delays, we need to con-
sider two types of delays. (1)When an event is enabled, it may
not occur instantly but with some delay. These delays, known
as occurrence delays, have been studied in [17], and they
are already included in the model of timed discrete event
systems. (2) After an event occurs, it may not be observed
immediately but with some delay. These delays are referred
to as communication/observation delays. It is important to
note that communication/observation delays are distinct from
occurrence delays. In this paper, we specifically address com-
munication/observation delays.

We use the tick event t to measure observation delays and
assume that these delays are random but upper-bounded by
No.1 It is worth mentioning that the tick event t will always
be observed without any delay. This implies that when an
activity event occurs, it will be observed within a maximum
of No units of time. To illustrate this concept, we provide the

1When we mention that delays are upper-bounded or bounded by No,
it means that they are limited byNo units of time. In this paper, it corresponds
to No ticks.

following example, which presents one possible observation
for a given sequence of events that occurred.
Example 3: We continue with the timed discrete event sys-

tem in Fig. 1. Suppose all events are observable and currently,
the event sequence αttβλ occurs. The occurrence time of
each activity event as well as the tick event t is shown in
Fig. 2.

FIGURE 2. Occurrence and one possible observation of event sequence
αttβλ with No = 1.

In Fig. 2, t occurs at every 1, 2, 3, · · · units of time. Event
α, β and λ occur at tα , tβ and tλ, respectively. When there are
no observation delays, the occurrences of event α, β and λ
will be observed instantly, the observation will be αttβλ.
We then assume that random observation delays exist and

the delays are upper bounded by 1. In this example, event α

is observed with delay. Specifically, α occurs before the first
tick but is actually observed after the first tick (before the
upper bound of its observation delay). Event β and λ are also
observed with delay. Before the shown observation point in
Fig. 2, β is observed whereas λ has not been observed yet.
The length of observation delays for each event is denoted
in Fig. 2. For this case, at the shown observation point, the
actual event sequence that is observed is tαtβ. In other words,
when observation delay is upper bounded by 1, tαtβ is one
the possible observations of αttβλ. Note that we assume that
the observation channel is FIFO, so α will always be observed
before β and β will always be observed before λ. Following
this strategy, we can enumerate the set of all the possible
observations as

{αttβλ, αttβ, αtt, tαtβλ, tαtβ, tαt}.

Now let us consider the package losses in the observation.
To model communication losses in observation, we denote
the observation mapping under communication losses by8L .
We assume that only observable events may be lost. With a
slight abuse of notations, we use ρ to denote the set of all
possible transitions as ρ = {(q, σ, q′) : ρ(q, σ ) = q′

}. The
set of observable transitions is denoted by ρo = {(q, σ, q′) :

ρ(q, σ ) = q′
∧ σ ∈ 6o}. Let ρloss ⊆ ρo denotes the set of

transitions that may be lost in communication. Note that tran-
sitions labeled with t will never be lost. For example, given
an event sequence tαttβλ ∈ L(G̃), assume that transitions
labeled with event β may be lost in the observation channel.
That means once event β occurs, it may be observed if the
event is not lost in the observation channel. Another possible
case is that it may not be observed because the event is lost
in the observation channel. Assume no observation delays
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exist in this case, the set of all possible observations after the
occurrence of α and β will be {tαttβλ, tαttλ}.
If we consider both observation delays and losses, for event

sequence tαttβλ ∈ L(G̃), assume that observation delay is
upper-bounded by No = 1 and all transitions labeled with β

may be lost. The set of all possible event sequences will be

{αttβλ, αttλ, αttβ, αtt, tαtβλ, tαtβ, tαt}.

We then show how to model the observation delays and
losses. We first model observation delays. We use 2i(s) to
denote the set of observations with respect to i ticks fixed
delays when all events are observable.

For a given event sequence s ∈ L(G̃), we re-write it as

s = u1tu2t · · · ul tul+1,

where uk ∈ 6∗(k = 1, 2, · · · , l + 1) does not include any
ticks. Note that uk may be empty, that is, uk = ε.
Assume there exists one tick observation delay. For any

uk = σ1σ2 · · · σn, any event in uk may be delayed for 1 tick
and the observation, denoted as θ (uk t), is defined as

θ (uk t) = {σ1 · · · σnt, σ1 · · · tσn, · · · , tσ1 · · · σn}.

Particularly, if uk = ε, we have θ (uk t) = {t}. The operation
θ has the following property:

θ (σ1 . . . σjt) = θ (σ1 . . . σj−1t)σj ∪ {σ1 . . . σjt}.

We then define the set of observations with respect one tick
delay as

DELAY 1(s) = θ (u1t)θ (u2t) · · · θ (ul t)ul+1.

The set of observations with respect to j tick delays can be
obtained from DELAY 1(s) recursively as

DELAY j(s) = DELAY 1(DELAY j−1(s)).

Finally, for any s ∈ L(G̃), we have

2i(s) = DELAY i(s)/6∗.

Note that, due to observation delays, activity events at the
end of DELAY i(s) (after the last t) may not be observed yet.

For language L(G̃), assuming that observation delays are
upper-bounded by No. The set of all possible observations is
given by

2No (L(G̃)) = ∪s∈L(G̃)2
No (s).

Now we extend observation to a general case in which
some events are unobservable by natural projection P. We use
8
No
D (s) to denote the observation set with partial observation.

We then have

8
No
D (s) = P(2No (s))(= 8D(s)),

where (= 8D(s)) means that, if No is understood, we use
the simplified notation 8D for 8

No
D , and similarly for other

notations to be introduced later.

We further extend the definition 8
No
D (·) from event

sequences to language L(G̃) as

8
No
D (L(G̃)) = ∪s∈L(G̃)8

No
D (s)(= 8D(L(G̃))).

The inverse mapping of 8
No
D is denoted as (8No

D )
−1

. For an

observation w, (8No
D )

−1
(w) is defined as

(8No
D )

−1
(w) = {s ∈ L(G̃) : w ∈ 8

No
D (s)}(= 8D

−1(w)).

To model communication losses in observation, let s =

σ1σ2tσ3 · · · σit · · · σk , (σi ∈ 6). 8L(s) is obtained by replac-
ing σi with ε or σi for all events of which the transitions may
be lost. We extend 8L(·) from event sequence to language as

8L(L(G̃)) = ∪s∈L(G̃)8L(s).

For an event sequence s, to consider both observation
delays and losses, we use8

No
DL to denote the set of all possible

observations under communication delays and losses, the
observation delays are bounded by No. For an event sequence
s ∈ L(G̃), 8

No
DL(s) is obtained by the composition of two

mappings 8D and 8L :

8
No
DL(s) = 8

No
D (8L(s))(= 8DL(s)).

Therefore, observation delays and losses are completely cap-
tured by observation mapping 8

No
DL . We extend 8

No
DL from an

event sequence to a language in the same way.
The inverse mapping of 8

No
DL is denoted as (8No

DL)
−1

.
For an observation w under observation delays and losses,
(8No

DL)
−1

(w) is defined as

(8No
DL)

−1
(w) = {s ∈ L(G̃) : w ∈ 8

No
DL(s)} (= 8DL

−1(w)).

We use an example to illustrate the results.
Example 4: We still consider the timed discrete event

system shown in Fig. 1. Assume that observation delay is
bounded by No = 1. We first assume that all events in G̃
are observable and no events may be lost. Given an event
sequence s = αttβλ, we calculate 2D(s) as follows:

Firstly, we re-write s as s = u1tu2tu3, where u1 = α,
u2 = ε, u3 = βλ. Secondly, we calculate θ (u1t) =

{αt, tα}, θ (u2t) = {t}. Thirdly, we calculate DELAYNo (s) =

{αttβλ, tαtβλ}. Finally, we calculate 2D(s) as

2D = {αttβλ, αttβ, αtt, tαtβλ, tαtβ, tαt}.

We then assume all events are observable, but all transi-
tions labeled with β may be lost in the observation channel.
Following the above calculation steps, we calculate 8DL(s)
as:

8DL(s) = {αttβλ, αttλ, αttβ, αtt, tαtβλ, tαtβ, tαt}.

The result is the same as what we obtained in Example 3.
We then consider the state estimation and detectability

problem under observation delays and losses. Given a timed
discrete event system G̃, the initial state is q0. Assume that
there exist observation delays and losses in the observation
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channel. The observation delays are upper-bounded by No.
After observing event sequence w, the set of the states that G̃
may be in is denoted as

TENoDL(w) = {q ∈ Q : (∃s ∈ L(G̃))8No
DL(s)

= w ∧ q ∈ ρ(q0, s)}(= TE(w)).

We call the states set the current state estimates of timed
discrete event systems under observation delays and losses.

Similarly, for an observation w, if the state estimate set
TE(w) has only one state, we can determine the current state
of the system. That is

|TE(w)| = 1.

Under communication networks, with the consideration of
the influences of both observation delays and losses, we fur-
ther extend T-detectability to networked cases and define
network T-detectability as follows:
Definition 2 (Network T-Detectability): Give a timed dis-

crete event system G̃ under observation delays and losses, the
observation delays are upper-bounded byNo and the observa-
tion losses are denoted by ρloss. G̃ is networked T-detectable
if we can determine the current state and the subsequent states
after a finite number of observations for all trajectories, that
is

(∀s ∈ Lω(G̃))(∀w ∈ 8
No
DL(Pr(s)))(∃n ∈ N+)|w| ≥ n

⇒ |TE(w)| = 1.

In other words, for any trajectory s in the language Lω(G̃)
and any observation sequence w in the set 8No

DL(Pr(s)), there
exists a positive integer n such that if the length ofw is greater
than or equal to n, then the number of reachable states from
the set of timed events TE(w) is equal to one, indicating a
unique determination of the system’s state. This definition
captures the notion of network T-detectability, emphasizing
the requirement for a finite number of observations to yield
a unique determination of the system’s state, even in the
presence of observation delays and losses.
Remark 1: When there are no communication delays and

losses in the observation channel, for any occurred event
sequence s ∈ L(G̃), the observed event sequence will be P(s).
Then Definition 2 will be reduced to Definition 1. Therefore,
T-Detectability is a special case of network T-Detectability.
We will focus on network T-Detectability.
Remark 2: Network T-detectability differs from the tradi-

tional notions of weak detectability and strong detectability.
While weak and strong detectability primarily address the
general ability to detect faults or events in a system, network
T-detectability specifically considers the impact of observa-
tion delays and losses in a networked environment.

V. CHECKING NETWORK T-DETECTABILITY
A. AUGMENTED AUTOMATON
In order to check network T-detectability, we need to calculate
the current state estimate of the timed discrete event system
considering observation delays and losses. Assuming that the

currently observed event sequence is denoted as w, let’s dis-
cuss the procedure for determining the current state estimate
TE(w) in the presence of observation delays and losses.
We firstly construct an augmented automaton as a tool to

calculate the state estimates. The augmented automaton G̃No

is constructed as

G̃No = (Z , 6̃, ρNo , z0),

where z = Q× {0, 1, 2, · · · ,No}. Every state z = (q, n) in Z
is a pair, of which the first element is the state that the system
is in, the second element is the number of tickswhich denotes
the current specific observation delays. The initial state is
z0 = (q0, 0). The transitions of the augmented automaton are
defined as follows.

1. For any state (q, n) ∈ Z , n ≤ No, for any event σ ∈

6̃, if ρ(q, σ ) = q′, the transition ((q, n), σ, (q′, n)) is then
defined. Hence, we have

ρ
No
1 = {((q, n), σ, (q′, n)) : (q, n) ∈ Z ∧ n ≤ No

∧ρ(q, σ ) = q′
}. (1)

It describes the case in which the current delays do not
change.

2. For any state (q, n) ∈ Z , one more tick delay can occur
if n < No. Hence, we have

ρ
No
2 = {((q, n), t, (q, n+ 1)) : (q, n) ∈ Z ∧ n < No}. (2)

It describes the case in which the current delays increase.
3. For any state (q, n) ∈ Z , if n > 0 and ρ(q, t)!, events

at state ρ(q, t) may be observed with delays reduced by one
tick , that is,

ρ
No
3 = {((q, n), ε, (q′, n− 1)) : (q, n) ∈ Z

∧ 0 < n ≤ No ∧ ρ(q, t) = q′
}. (3)

It describes the case in which the current delays decrease.
We then formally define the transitions ρNo as

ρNo = ρ
No
1 ∪ ρ

No
2 ∪ ρ

No
3 .

Note that G̃No is nondeterministic.
Property 1: For any path tr generated by G̃No such that

tr = (q0, 0)σ1(q1, n1)σ2 · · · σm(qm, nm),

there exists an event sequence s ∈ L(G̃) such that

σ1σ2 · · · σm ∈ DELAYNo (stnm ) ∧ qm = ρ(q0, s).

Property 2: For any event sequence s ∈ L(G̃), any nm ≤

No and any observation w = σ1σ2 · · · σm ∈ DELAYNo (stnm ),
there exists a path tr generated by G̃No such that

tr = (q0, 0)σ1(q1, n1) · · · σm(qm, nm) ∧ qm = ρ(q0, s).

Theorem 1: The language generated by G̃No equals the
language obtained by performing the operation 2No on L(G̃),
that is,

L(G̃No ) = 2No (L(G̃)).
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Proof: In this proof, we aim to demonstrate the equiva-
lence between the event sequences in L(G̃No ) and2No (L(G̃)).
To establish this equivalence, we split the proof into two parts:
the ‘‘if’’ part and the ‘‘only if’’ part, to prove thatw ∈ L(G̃No )
if and only if w ∈ 2No (L(G̃)).
(If part) Suppose there exists an event sequence w =

σ1σ2 · · · σm ∈ L(G̃No ), and (qm, nm) ∈ ρNo ((q0, 0),w),
we prove that w ∈ 2No (L(G̃)) as follows.

w ∈ L(G̃No )
⇒ (∃tr ∈ Tr(w))tr = (q0, 0)σ1 · · · σm(qm, nm)

⇒ (∃s ∈ L(G̃))w ∈ DELAYNo (stnm ) ∧ qm = ρ(q0, s)
(By Property 1)

⇒ (∃s ∈ L(G̃))w ∈ DELAYNo (stnm )

∧ (qm, nm) ∈ ρNo ((q0, 0),w)
(By Equation (1) and Equation (2))

⇒ (∃s ∈ L(G̃))(∃s′ ∈ 6̃∗)|t|(s′) = nm ∧ ss′ ∈ L(G̃)

∧ w ∈ DELAYNo (stnm ) ∧ (qm, nm) ∈ ρNo ((q0, 0),w)
(By Assumption 2)

⇒ (∃s ∈ L(G̃))(∃s′ ∈ 6̃∗)(∃q ∈ Q)|t|(s′) = nm
∧ w ∈ DELAYNo (stnm )

∧ (qm, nm) ∈ ρNo ((q0, 0),w) ∧ ρ(qm, s′) = q
⇒ (∃s ∈ L(G̃))(∃s′ = u1tu2t · · · unm tunm+1)

(∃q ∈ Q)w ∈ DELAYNo (stnm )

∧ (qm, nm) ∈ ρNo ((q0, 0),w)
∧ ρ(qm, u1tu2t · · · unm tunm+1) = q
⇒ (∃s ∈ L(G̃))(∃s′ = u1tu2t · · · unm tunm+1)

(∃q ∈ Q)w ∈ DELAYNo (stnm )

∧ (q, 0) ∈ ρNo ((q0, 0),wu1u2 · · · unmunm+1)
(By Equation (1) and Equation (3))

⇒ (∃s′′ ∈ L(G̃))s′′ = ss′ = su1tu2t · · · unm tunm+1

∧ wu1u2 · · · unmunm+1 ∈ DELAYNo (s′′)
∧ q = ρ(q0, s′′)
(By Property 1 and nm = 0)

⇒ (∃s′′ ∈ L(G̃))w ∈ DELAYNo (s′′)/6∗

⇒ (∃s′′ ∈ L(G̃))w ∈ 2No (s′′)

⇒ w ∈ 2No (L(G̃)).

(Only if part) Suppose there exists an event sequence w ∈

2No (L(G̃)), we prove that w ∈ L(G̃No ) as follows.

w ∈ 2No (L(G̃))

⇒ (∃s ∈ L(G̃))w ∈ 2No (s)

⇒ (∃s ∈ L(G̃))w ∈ DELAYNo (s)/6∗

⇒ (∃s ∈ L(G̃))(∃u ∈ 6∗)wu ∈ DELAYNo (s)

⇒ (∃u ∈ 6∗)wu ∈ L(G̃No )

(By Property 2)

⇒ w ∈ L(G̃No ).

Remark 3: Although automaton G̃ is deterministic, the
proposed method to construct an augmented automaton is
also applicable to a nondeterministic automaton. In addition,
if there are no observation delays and losses, the augmented
automaton will be the same as G̃.

We now demonstrate how to handle partial observa-
tions and observation losses using the augmented automaton
method. To accommodate observations under observation
delays and losses, we define the set of all observations as
8DL(L(G̃)). Our objective is to construct an automaton G̃DL
that can represent all observations in8DL(L(G̃)). The concept
is illustrated in Fig. 3.

FIGURE 3. The process for calculating 8DL(L(G̃)).

In detail, for a given timed discrete event system G̃ =

{Q, 6̃, ρ, q0}, assume that delays upper bounded by No and
there exist observation losses described by ρloss. We construct
G̃DL to describe all the observations under observation delays
and losses as the following steps.

For any transition (q, σ, q′) ∈ ρloss, we add another
ε−transition from q to q′ as (q, ε, q′). We then construct the
automaton G̃L , which is denoted as:

G̃L = (Q, G̃, ρL , q0),

where ρL = ρ ∪ {(q, ε, q′) :∈ ρloss}.
In the next step, we construct the augmented automaton for

G̃L according to our proposed methods and get the automaton
(G̃L)No . The (G̃L)No is denoted as

(G̃L)No = (Z , G̃, ρ
No
L , z0).

We then consider and partial observation and add the nat-
ural project to construct the automaton G̃DL from (G̃L)No .
We complete this step by replacing any event σ in (G̃L)No with
their natural project P(σ ). The automaton G̃DL is denoted as

G̃DL = (Z , G̃, ρ
No
DL , z0),

where ρ
No
DL = {(z,P(σ ), z′) : (z, σ, z′) ∈ ρ

No
L }.

Consolidating all the constructing processes together,
we can get the relations between constructed automatons and
operations as

L(G̃L) = 8L(L(G̃)),

L((G̃L)No ) = 2No (L(G̃L)),

L(G̃DL) = P(L((G̃L)No )).

Remark 4: When there are no observation delays and
losses, the G̃DL will be obtained by simply applying the
natural project on G̃.
Corollary 1: For any path tr generated by (G̃L)No such that

tr = (q0, 0)σ1(q1, n1)σ2 · · · σm(qm, nm),
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there exists an event sequence s ∈ L(G̃L) such that

σ1σ2 · · · σm ∈ DELAYNo (stnm ) ∧ qm = ρL(q0, s).

Corollary 2: For any event sequence s ∈ L(G̃L), any nm ≤

No and any observation w = σ1σ2 · · · σm ∈ DELAYNo (stnm ),
there exists a path tr generated by (G̃L)No such that

tr = (q0, 0)σ1(q1, n1) · · · σm(qm, nm) ∧ qm = ρL(q0, s).

The following theorem shows automaton G̃DL generates all
the observations in 8DL(L(G̃)).
Theorem 2: The language generated by G̃DL is equal to

8DL(L(G̃)), that is,

L(G̃DL) = 8DL(L(G̃)).

Proof: To demonstrate this equality, we start by observ-
ing that L(G̃DL) can be expressed as P(L((G̃L)No )). This
follows from the definition of G̃DL , which represents the
timed system under observation delays and losses. It is clear
that

L(G̃DL) = P(L((G̃L)No ))

= P(2No (L(G̃L)))

(By Theorem 1 )

= 8D(L(G̃L))

(By the definition of 8D)

= 8D(8L(L(G̃)))

= 8DL(L(G̃)).

(By the definition of 8DL)

Remark 5: Let us consider the computational complexity
of constructing G̃DL . The number of states in G̃DL equals the
number of states in (G̃L)No . It equals |Q| × |No + 1|. Hence,
the computational complexity of constructing G̃DL is linear
with respect to the number of states in G̃ and the upper bound
of No.

We use an example to illustrate the result.
Example 5: We still consider the timed discrete event sys-

tem shown in Fig. 1. Assume that observation delays are
bounded by No = 1 and all events are observable. All the
transitions labeled with β may be lost. We then construct the
automaton G̃DL as in Fig. 4.

FIGURE 4. The automaton G̃DL.

With the augmented automaton G̃DL at our disposal,
we can effectively track the observations and estimate the
states of the timed discrete event system. For example, if the
event sequence ttα is observed, from the initial state, follow-
ing the path in G̃DL , the augmented automaton is transferred
to state (3, 1), which means the current observation has one
tick delay. The actual state that the system may be in is the
states that can be reached after one tick from state 3, following
the path in Fig. 1, they are the states 4, 6, 0 and 3.

Note that if No > 1, we can still apply the same method-
ology by iterating the process for each unit of observation
delay. Instead of directly considering a single observation
delay of No, we can divide the overall delay into multiple
units of observation delay, each of which corresponds to a
delay of one time unit. We will discuss about more details in
the next section.

B. METHOD TO CHECK NETWORK T-DETECTABILITY
We first show how to calculate the state estimates after
observing w ∈ 8DL(L(G̃)). Since automaton G̃DL is non-
deterministic, we convert it into an equivalent deterministic
automaton by constructing the observer G̃DL,obs as

G̃DL,obs = (X , 6̃o, ξ, x0) = Ac(2Z , 6̃o, ξ,UR(z0)),

where the set of marked states contains all the singleton states
in the observer. Ac(·) denotes the accessible part, and UR
denotes the unobservable reach, defined for x ⊆ Z as

UR(x) = {z′ ∈ Z : (∃z ∈ x)ρDL(z, ε) = z′}.

The transition function ξ is defined for x ∈ X and σ ∈ 6̃o as

ξ (x, σ ) = UR({z ∈ Z : (∃z′ ∈ x)ρDL(z′, σ ) = z}).

For an observed event sequence w that lead to state (q, n),
there may exist observation delays of n ticks. So the state that
system may be in after observing w is not state q, but one of
these states reached by event sequences including n ticks from
state q. We define an operation DR on state z = (q, n) as

DR(z) = {q′
∈ Q : (∃s ∈ 6̃∗)|t|(s) = n ∧ ρ(q, s) = q′

}.

We extend the operation DR to a set of states. For a set of
states Zi ⊆ Z , the set of states reachable from Zi with respect
to the corresponding current observation delays, is defined as

DR(Zi) = ∪z∈ZiDR(z).

To consider current observation delays, we extend every
state set Zi ∈ X to DR(Zi) and use y to denote the resulting
states set. Furthermore, we use Y to represent all the exten-
sions. In other words, if X = {x0, xq, · · · , xm}, we always
have Y = {y0, yq, · · · , ym}. For every xi, the corresponding yi
is obtained by yi = DR(xi). We then set all state yi ∈ Y which
have only one state element as marked states and define the
new extended automaton G̃exd as

G̃exd = (Y , 6̃o, ζ, y0,Ym),
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where Y ∈ 2Q. The transition function is defined for yi, yj ∈

Y and σ ∈ 6̃o as ζ = {(yi, σ, yj) : (xi, σ, xj) ∈ ξ}.
Remark 6: When there are no observation delays and

losses, then we can firstly follow Remark 4 to construct G̃DL ,
then the extended automaton G̃exd is actually the observer of
G̃DL .
Given an extended automaton G̃exd , we use Yloop to denote

all the states in loops, which is denoted as

Yloop = {y ∈ Y : (∃s ∈ 6̃∗)s ̸= ε ∧ ζ (y, s) = y}.

For any state y of an extended automaton G̃exd , we use
QR(y) to denote the set of states that can be reached from
y after number of events. QR(y) is denoted as follows.

QR(y) = {y′ ∈ Y : (∃s ∈ 6̃∗
o )ζ (y, s)!}.

QR(·) can also be extended from state to state set. We use
Y to denote a states set, QR(Y ) is then defined as

QR(Y ) = ∪y∈YQR(y).

We then have the following theorem to show that under
network environment where observation losses exist and
observation delays are upper-bounded by No, the extend
automaton G̃exd can be used to calculate the state estimate
for any given observation.
Theorem 3: Given a timed discrete event system G̃ with

observation losses described by ρloss and observation delays
upper-bounded by No, for any given observation w, the state
estimate TE(w) can be obtained by the extend automaton G̃exd
as

TE(w) = ζ (y0,w). (4)

Proof: In this proof, we aim to establish a connection
between the extended observer G̃exd and the transition behav-
ior of the observation sequence w. We first prove that for any
given observation w, the transition ζ (y0,w) is defined in the
extend observer G̃exd . Actually, for any w ∈ 6̃∗

o ,

w ∈ 8DL(L(G̃))

⇔w ∈ L(G̃DL)

(By Theorem 2.)

⇔w ∈ L(G̃DL,obs)

(Since G̃DL,obs is the observer of G̃DL)

⇔w ∈ L(G̃exd )

⇔ζ (y0,w)!.

Next, we proceed to prove the theorem by showing that for
any state q ∈ Q, q ∈ TE(w) if and only if q ∈ ζ (y0,w). We go
through a series of equivalences to establish this result. On the
one hand,

q ∈ ζ (y0,w)

⇔ q ∈ Q ∧ (∃(q′, n) ∈ ξ (x0,w))(∃s′ ∈ 6̃∗)|t|(s′) = n

∧ ρ(q′, s′) = q

⇔ q ∈ Q ∧ (∃(q′, n) ∈ ρDL(z0,w))(∃s′ ∈ 6̃∗)

|t|(s′) = n ∧ ρ(q′, s′) = q

(By the definition of G̃DL,obs)

⇔ q ∈ Q ∧ (∃s ∈ P−1(w))(q′, n) ∈ ρ
No
L (z0, s)

∧ (∃s′ ∈ 6̃∗)|t|(s′) = n ∧ ρ(q′, s′) = q

(By the definition of ρDL)

⇔ q ∈ Q ∧ (∃s ∈ P−1(w))(q′, n) ∈ ρ
No
L (z0, s)

∧ (∃s′ = u1tu2t · · · untun+1 ∈ 6̃∗)

ρ(q′, u1tu2t · · · untun+1) = q

(Because |t|(s′) = n)

⇔ q ∈ Q ∧ (∃s ∈ P−1(w))(∃u = uiu2 · · · unun+1 ∈ 6∗)

(q′, n) ∈ ρ
No
L (z0, s)

∧ (q, 0) ∈ ρ
No
L ((q′, n), u1u2 · · · unun+1)

(By Equation (1) and Equation (3))

⇔ q ∈ Q ∧ (∃s ∈ P−1(w))(∃u ∈ 6∗)

(q′, n) ∈ ρ
No
L (z0, s) ∧ (q, 0) ∈ ρ

No
L ((q′, n), u)

⇔ q ∈ Q ∧ (∃s ∈ P−1(w))(∃u ∈ 6∗)

(q, 0) ∈ ρ
No
L (z0, su).

On the other hand,

q ∈ TE(w)

⇔ q ∈ Q ∧ (∃s′ ∈ L(G̃))w ∈ 8DL(s′) ∧ q = ρ(q0, s′)

⇔ q ∈ Q ∧ (∃s′ ∈ L(G̃))w ∈ 8D(8L(s′)) ∧ q = ρ(q0, s′)

⇔ q ∈ Q ∧ (∃s′ ∈ L(G̃))w ∈ P(2No (8L(s′)))

∧ q = ρ(q0, s′)

⇔ q ∈ Q ∧ (∃s′ ∈ L(G̃))(∃s ∈ P−1(w))(∃s′′ ∈ 8L(s′))

∧ s ∈ 2No (s′′) ∧ q = ρL(q0, s′′)

⇔ q ∈ Q ∧ (∃s′ ∈ L(G̃))(∃s ∈ P−1(w))(∃s′′ ∈ 8L(s′))

s ∈ DELAYNo (s′′)/6̃∗
∧ q = ρL(q0, s′′)

⇔ q ∈ Q ∧ (∃s ∈ P−1(w))(∃s′′ ∈ L(G̃L))

s ∈ DELAYNo (s′′)/6̃∗
∧ q = ρL(q0, s′′).

(By the definition of G̃L)

Hence, it remains to prove

(∃u ∈ 6∗)(q, 0) ∈ ρ
No
L (z0, su)

⇔(∃s′′ ∈ L(G̃L))s ∈ DELAYNo (s′′)/6̃∗

∧ q = ρL(q0, s′′)

as follows.
On one hand, under both communication delays and losses,

suppose there exists an event sequence su = σ ′

1σ
′

2 · · · σ ′
nu ∈

L((G̃L)No ), and (q, 0) ∈ ρ
No
L ((q0, 0), su), we then have

(∃u ∈ 6∗)(q, 0) ∈ ρ
No
L (z0, su)

⇒(∃u ∈ 6∗)(∃tr ′
∈ Tr(su))tr ′

= (q0, 0)σ ′

1 · · · σ ′
nu(q, 0)

⇒(∃u ∈ 6∗)(∃s′′ ∈ L(G̃L))su ∈ DELAYNo (s′′)

∧ q = ρL(q0, s′′)
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(By Corollary 1 with nm = 0)

⇒(∃s′′ ∈ L(G̃L))s ∈ DELAYNo (s′′)/6∗

∧ q = ρL(q0, s′′)

On the other hand,

(∃s′′ ∈ L(G̃L))s ∈ DELAYNo (s′′)/6̃∗

∧ q = ρL(q0, s′′)

⇒(∃s′′ ∈ L(G̃L))(∃u ∈ 6∗)su ∈ DELAYNo (s′′)

∧ q = ρL(q0, s′′)

⇒(∃u ∈ 6∗)(∃tr ′
∈ Tr(su))tr ′

= (q0, 0)su(q, 0)

∧ su ∈ L((G̃L)No )

(By Corollary 2 with nm = 0)

⇒(∃u ∈ 6∗)su ∈ L((G̃L)No ) ∧ (q, 0) ∈ ρ
No
L (z0, su)

(Because tr ′ is a path of (G̃L)No )

⇒(∃u ∈ 6∗)(q, 0) ∈ ρ
No
L (z0, su).

With the state estimation result, we then use the following
theorem to show how to check network T-detectability.
Theorem 4: For a timed discrete event system G̃ =

{Q, 6̃, ρ, q0}, considering observation delays upper-bounded
by No and observation losses described by ρloss. G̃ is network
T-detectable if and only if all loops in G̃exd and the reachable
states from all loops are entirely within Ym.

Proof: To prove the network T-detectability of the timed
discrete event system G̃, the proof is divided into two parts:
the ‘‘if’’ part and the ‘‘only if’’ part.
If part. Assume that all loops in G̃exd and the reachable

states from all loops are entirely within Ym. Then the follow-
ing equation holds.

(∀y ∈ Yloop)y ∈ Ym ∧ QR(y) ⊆ Ym

Meanwhile,

(∀s ∈ Lω(G̃))(∀w ∈ 8
No
DL(Pr(s)))(∃n ∈ N+)|w| ≥ n

⇒ζ (y0,w) ∈ Yloop ∪ QR(Yloop)

⇒TE(w) ∈ Yloop ∪ QR(Yloop)

(By Equation (4))

⇒TE(w) ∈ Ym
(Because (∀y ∈ Yloop)y ∈ Ym ∧ QR(y) ⊆ Ym)

⇒|TE(w)| = 1

Therefore, the current states and the subsequent states can
always be determined after finite observations, which means
that the system is network T-detectable.
Only if part. We prove this by contradiction. Assume

that the given timed discrete event system G̃ is network
T-detectable and there exists at least one state in the loop, that
state is not marked. Therefore,

(∃y ∈ Yloop ∪ QR(Yloop))y /∈ Ym

⇒(∃s ∈ Lω(G̃))(∃w ∈ 8
No
DL(Pr(s)))(∀n ∈ N+)

|w| ≥ n ⇒ ζ (y0,w) /∈ Ym

⇒(∃s ∈ Lω(G̃))(∃w ∈ 8
No
DL(Pr(s)))(∀n ∈ N+)

|w| ≥ n ⇒ TE(w) /∈ Ym
(By Equation (4))

⇒(∃s ∈ Lω(G̃))(∃w ∈ 8
No
DL(Pr(s)))(∀n ∈ N+)

|w| ≥ n ⇒ |TE(w)| > 1

This contradicts the definition of network T-detectability.
Remark 7: In Theorem 4, for a given automaton G̃exd , the

complexity of traversing and checking the reachable states
from all loops is polynomial in the number of states in G̃exd .
However, to obtain the extended automaton G̃exd , we actually
need to construct both the augmented automaton G̃DL and
its observer G̃DL,obs from G̃. As mentioned in Remark 5,
the complexity of constructing G̃DL is linear in the number
of states in G̃. On the other hand, when constructing the
observer, the number of states increases from |Z | to |2Z |,
resulting in an exponential complexity. Subsequently, the
number of states changes from |X | to |Y | during the construc-
tion of the extended automaton, which has only linear com-
plexity. Therefore, the complexity of checking T-detectability
is exponential.
We use an example to illustrate the results.
Example 6: We use a simplified model to illustrate our

results. Given another timed discrete event system as shown
in Fig. 5. Assume that all events are observable. The obser-
vation delay is bounded by No = 1.

FIGURE 5. A simplified timed discrete event system G̃′ .

We first construct the observer G̃′
DL,obs, which is shown in

Fig. 6.

FIGURE 6. The observer G̃′

DL,obs.

We construct its corresponding extended automaton G̃′
exd

as shown in Fig. 7. Assume the observed event sequence w =

tαt , we calculate the state estimate TE(w) by Theorem 3 as

TE(w) = ζ (y0,w) = {4, 5, 6}.

Therefore, oncew = tαt , under observation delay bounded
by 1. The system actually stays in state 4, 5 or state 6.

We proceed to check whether the system depicted in Fig. 5
is network T-detectable. By examining the extended automa-
ton G̃′

exd illustrated in Fig. 7, we observe that all loops and
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FIGURE 7. The extended automaton G̃′

exd of G̃′ .

the reachable states from these loops are confined within Ym.
To be precise, all loops and the reachable states from these
loops are entirely contained within state 6. As a result, we can
conclude that the system in Fig. 5 is network T-detectable.

VI. CONCLUSION
This paper focused on the theoretical investigation of
detectability in timed discrete event systems under observa-
tion delays and losses. The main contributions of this work
can be summarized as follows: (1) We provide a precise
description of observations in the presence of communi-
cation delays and losses. (2) We introduce the concepts
of T-detectability and network T-detectability. We demon-
strate that T-detectability can be viewed as a specific case
of network T-detectability. (3) We propose an augmented
automaton that incorporates the effects of observation delays
in timed discrete event systems, providing a structured repre-
sentation of the system’s behavior under varying observation
conditions. (4) We develop an extended automaton which
facilitates the estimation of the system’s state for each obser-
vation, accounting for the specific delays and losses incurred.
(5)We present amethod for checking network T-detectability,
enabling the evaluation of whether a timed discrete event
system remains detectable even in the presence of observation
delays and losses.

There are several avenues for future research in this area.
Some potential directions for further investigation include:
(1) Expanding the scope to multi-channel observation sys-
tems. (2) Experimental validation and industrial case studies.
(3) Incorporating more complex communication delay and
loss models. By exploring these future research directions,
we can further enhance our understanding of detectability
and its implications in timed discrete event systems under
observation delays and losses. These investigations will con-
tribute to the development of more robust fault management
and diagnosis techniques for practical applications.
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