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ABSTRACT Extrinsic calibration of a 2D camera and a 2D LiDAR is necessary to fuse information from
two sensors by representing the information under the same frame. Various geometric constraints such
as point-plane, point-line, and point-point are used for the extrinsic calibration. Usually, these require a
manual step, including control points selection for camera calibration and LiDAR points. We propose a new
algorithm for automatic extrinsic calibration with point-line correspondences. A calibration structure with
two perpendicular planes having a chessboard on both sides is used for the extrinsic calibration. First, we use
predefined colors at specific locations on a chessboard to quickly find the origin of the coordinate system.
Second, we robustly detect three control points on LiDAR raw data using a geometric constraint that two end
points among three control points should lie on the same line. The initial linear solution is obtained by using
a point-line constraint. Finally, it is refined by nonlinear minimization, which gives a 15.3% improvement
compared to the linear solution. Experimental results show the feasibility of the proposed algorithm.

INDEX TERMS Extrinsic calibration, sensor fusion, camera, LiDAR.

I. INTRODUCTION

The first necessary step is extrinsic calibration between a
camera and a LiDAR to integrate information from them.
LiDAR directly offers 3D information compared to the cam-
era, which requires additional steps to provide depth informa-
tion. Meanwhile, the camera offers more diverse and dense
information about the scene. Sensor fusion aims to obtain
more information than only using a single sensor.

This paper presents a method for the automatic extrinsic
calibration of a camera and a LiDAR. We use a calibration
structure consisting of two perpendicular planes. Chessboard
patterns are used for the calibration of the camera. We use
some distinct colors on a chessboard to easily identify the
world frame on the chessboard. Conventional algorithms
use black and white chessboard. We use a point-line con-
straint [5] for the extrinsic calibration of a camera and a
LiDAR. We automatically detect control points from LiDAR
data using a geometric constraint that a calibration structure
lies on a plane. Also, we present a quantitative evaluation of
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the proposed method using a real trajectory of LIDAR. We use
an additional camera having no infrared cut filter to find the
real trajectory of LiDAR [30].

In our previous work [30], we presented an extrinsic cal-
ibration algorithm of a camera and a LiDAR, which uses
the real trajectory of the LiDAR. In [30], we improved the
performance of the Hu algorithm [12], which provides a
linear solution using one shot with 3D-3D correspondences
based on Perspective 3 Points (P3P) [31]. Our previous
work [30] involves the manual selection of control points.
In this paper, we propose an automatic algorithm for the
extrinsic calibration of the camera and LiDAR. We propose to
use a chessboard with distinct colors at predefined locations
for camera calibration. Also, we automatically detect control
points from LiDAR trajectories using a geometric constraint.
Finally, we use multiple datasets acquired under different
poses to improve the extrinsic calibration. We use a point-line
constraint [5] for the automatic extrinsic calibration, while
our previous work [30] used a constraint based on P3P.

The paper is organized as follows. Section II deals with
related works. Section III shows the proposed method, includ-
ing automatic camera calibration and LiDAR control point
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detection. Experimental results are presented in section IV.
Finally, the conclusion is in section V.

Il. RELATED WORKS
Methods for the extrinsic calibration of LiDAR and camera
can be categorized into target-based and targetless.

A. TARGET-BASED CALIBRATION

Wasielewski and Strauss [1] used a V-shaped calibration
structure for the extrinsic calibration of multiple cameras and
LiDARSs. Zhang and Press [2] proposed an algorithm based
on the constraint that LiDAR points should lie on a plane.
Li et al. [3] proposed an algorithm that uses a triangular struc-
ture at right angles to each other. The solution is computed
by a nonlinear minimization with constraints derived from
points and straight lines after the manual designation of the
initial solution. Kassir and Peynot [4] suggest an automated
method by automating the entire process of related LiDAR
data processing and camera calibration in the algorithm of
Zhang and Press [2].

Bok et al. [5] proposed an algorithm that gives a linear
solution using point-line constraints. Kwak et al. [6] used
a V-shaped structure, and they used constraints between
points and straight lines. Yang et al. [7] proposed an extrin-
sic calibration algorithm of a camera and a LiDAR using
a Perspective-n-Point (PnP) method [8] by using the
infrared filter to find a LiDAR trajectory on an image.
Gomez-Ojeda et al. [9] used triangular structure perpendicu-
lar to each other, which is typical at the corner side in indoor
environments. They used constraints derived from line-plane
and point-plane.

Vasconcelos et al. [10] used a correspondence relationship
between a plane and a straight line, giving a maximum of
eight solutions. A linear solution based on the PnP-based
method is presented. Zhou [11] proposed an extrinsic calibra-
tion method that uses correspondences among three planes
and three straight lines. Hu et al. [12] proposed a possible
algorithm using one shot with a PnP method using three
mutually perpendicular planes. Li et al. [13] used a V-shape
board with an adjustable angle between two planes and pre-
sented an analytical solution with a single observation.

Fan et al. [14] used a photogrammetric control field with
even distribution of control points for the extrinsic cali-
bration of a camera and a LiDAR. Briales and Gonzalez-
Jimenez [15] proposed an algorithm using corners in an
orthogonal trihedron structure. Zhu et al. [16] proposed an
extrinsic calibration algorithm for multiple LiDARs using
the corners of three perpendicular planes. Tian et al. [17]
proposed a three-step algorithm using a checkerboard trihe-
dron. Chen et al. [18] proposed an algorithm for automatic
extrinsic calibration by aligning the geometric corners on a
checkerboard. Fan et al. [19] proposed a two-stage algorithm
for the extrinsic calibration of the camera and LiDAR with a
specially designed calibration structure combining a sphere
with a calibration plate.
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B. TARGETLESS CALIBRATION

Targetless extrinsic calibration of camera and LiDAR usu-
ally uses scene information common for both sensors. They
estimate extrinsic parameters by evaluating the consistency
between LiDAR point clouds and camera images. Some
approaches [20], [21], [22] first extract characteristic features
like edge points from the camera and LiDAR and find extrin-
sic parameters by minimizing reprojection error between
2D-3D corresponding points. These approaches require that
the target scene should include rich geometric features. Other
approaches [23], [24], [25], [26] reflect the different modal-
ities of camera and LiDAR and use metrics based on mutual
information.

Koide et al. [27] presented an open source for a fully
automatic camera-LiDAR calibration toolbox that only uses
one shot of the camera and LiDAR data without a calibra-
tion target. Sun et al. [28] proposed an extrinsic calibration
algorithm that uses instance segmentation results of image
and point cloud. They extracted and correlated key tar-
gets from the segmented instances. Chen et al. [29] proposed
PBACalib for camera and LiDAR extrinsic calibration. They
used plane-constrained bundle adjustment that uses feature
points extracted from a prominent plane in the scene.

The proposed method belongs to the target-based calibra-
tion. We use a calibration structure consisting of two planes
with a chessboard. The proposed algorithm uses distinct
colors at predefined locations on the chessboard and uses a
geometric constraint in extracting control points on LiDAR
data to automate the extrinsic calibration.

ill. PROPOSED METHOD

Figure 1 shows the flow chart of the proposed method and
system’ configuration. It consists of two cameras and one
LiDAR. The dummy camera with the infrared cut-off fil-
ter removed is used for quantitative evaluation of extrinsic
calibration because it can detect the actual trajectory of
LiDAR. Our previous work [30] proposed an extrinsic cali-
bration algorithm using a dummy camera with an IR cut filter
removed. In [30], we manually extracted control points on
an image from a dummy camera and used them for extrinsic
calibration. This paper deals with automatic extrinsic calibra-
tion between a camera and a 2D LiDAR. We use a dummy
camera that can observe the actual trajectories of LiDAR for
evaluation.

A. AUTOMATIC EXTRINSIC CALIBRATION BETWEEN
WORLD AND CAMERA FRAME

The extrinsic calibration between the camera and the world
coordinate system must be done before extrinsic calibra-
tion between the camera and LiDAR. Automatic chessboard
detection and arrangement of coordinates corresponding to
each control point in the world coordinate system is required.
We use different colors to ease the problem of assigning world
coordinates on the chessboard, as shown in Figure 2. Figure 2
shows the calibration structure consisting of two planes.
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FIGURE 1. The schematic of the proposed method (a) flow chart of the
proposed method. (b) system configuration.

FIGURE 2. Calibration structure with two planes.

We sequentially detect control points on two chessboard
patterns in Figure 2. Figure 3 shows the intermediate results
according to the proposed procedure. First, we detect all
control points on one chessboard, as shown in Figure 3(a).
Then we mask image regions corresponding to the detected
chessboard, as shown in Figure 3(b). Finally, we detect con-
trol points on the second plane, as shown in Figure 3(c).
We use all control points on two planes to improve the quality
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FIGURE 3. Procedure of automatic detection of control points on the
chessboard (a) first detection on a plane (b) automated masking detected
plane (c) final detection on a second plane.

FIGURE 4. Automatically detected control points on the chessboard.

of the extrinsic calibration. Figure 4 shows all control points
detected on two planes.

After detecting control points on two planes, it is necessary
to represent them under the world coordinate system. We use
different colors along each axis of a chessboard pattern to
ease the identification of the world coordinate system. We use
red, green, and blue as the reference for the axis, as shown in
Figure 4.

A total of 36 control points are extracted from each plane.
The 15th, 16th, 21st, and 22nd indices represent the ver-
tices of the middle rectangle regardless of the rotation of a
plane. We use different colors at this position to differentiate
whether the current plane is left or right. We use red and blue
as the center rectangle of each plane, as shown in Figure 4.
Among 36 control points, points of the index (1, 6, 31, 36)
correspond to the outermost points. We assign different colors
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FIGURE 5. Extraction of four control points on the chessboard’s boundary.

FIGURE 6. Display of the whole LiDAR data (Red rectangle indicates the
location of calibration structure).

to these extreme points, as shown in Figure 5, to quickly
identify the origin of the coordinate system.

B. AUTOMATIC DETECTION OF LIDAR CONTROL POINTS
In this section, we deal with the automatic detection of control
points in LiDAR data which is used for the extrinsic calibra-
tion of the camera and LiDAR. We use the same calibration
structure in Figure 2, which is used for camera calibration.
This section aims to find three control points on LiDAR data
that lie on the three axes of the world frame, as shown in
Figure 9.

We use the HOKUYO UTM-30LX LiDAR in experiments,
and it provides coordinates for 1080 indices in the range
of —135° to 135° covering 270°. Figure 6 shows the plot
of the original LiDAR data. In Figure 6, the red rectangle
corresponds to the calibration structure of two planes.

We automatically find the region corresponding to the
red rectangle by searching 360 indices of -45° and 45°.
As shown in Figure 7, we compute an angle for each point
of 360 indices. We obtain two lines by fitting them using
10 points compared to the current point. In Figure 7, the left
vector is the unit vector obtained by points after the current
point, whereas the right vector is the unit vector obtained by
points before the current point. Finally, the angle between two
lines is computed, and we note it as 6, as shown in Figure 7.
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FIGURE 7. The computation of an angle at the candidate control point.
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FIGURE 8. The computed angle along the point index.

Figure 8 shows the computed angle along 360 points.
When a noticeable geometric change is near the projected
point, 8 will have a considerable value. Since the corner por-
tion of the calibration structure in Figure 2 causes significant
geometric change, 6 value will have an enormous value in the
corresponding index. The computation of 6 uses 20 control
points, 10 points each on the left and right, in the angle
calculation. We use 10 points for line fitting, which is a large
number of points for line fitting, to overcome noisy measure-
ments of raw LiDAR data. Contrarily, the computed angle has
a high value at the corner and surrounding points at the corner.
If we apply a threshold, we have multiple candidate points for
a control point. We find a point corresponding to the center
of the connected 1D cluster after threshold.

Throughout this step, we obtain multiple candidate points
larger than three. The final goal is to select three control
points in Figure 9. For this, we use an additional constraint.
We use the fact that the calibration structure lies on a plane.
Therefore, if we fit two lines each using red points and blue
points in Figure 9, the two lines should be equal. In reality,
the fitted two lines would show a slight difference, as shown
in Figure 10, due to noise in the measurement. Finally,
we choose (P1, P3, and P2) if the two lines are similar within
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FIGURE 9. The locus of LiDAR points on the calibration structure and
three control points on the world frame’s each axis.
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FIGURE 10. The line correspondence evaluation using the left and right
parts of the calibration structure.

the threshold. Figure 10 shows two cases of fitting two lines
acquired under different poses. The proposed algorithm finds
well three control points.

Further, we refine three points, P1, P2, and P3, using
line fitting. In experiments, we show the effectiveness of the
refinement of control points. Figure 11 shows the process
involving line fitting. We fit a line /; using points in P1 and
P3. We fit a line /; using points before P1 and points after P2.
We fit a line /3 using points in P2 and P3. We find a cross
point of two lines, /; and /; and consider it as a refined point
of P1. The same processing is done for lines /; and /3 and for
lines /1 and /3. Finally, we obtain refined three control points
which gives a better extrinsic calibration.
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FIGURE 11. The computation of the line with regression and control
points by finding the crossing point of two lines.

C. COMPUTATION OF LINEAR SOLUTION
The proposed automatic extrinsic calibration algorithm of
a camera and a 2D LiDAR consists of two steps. We first
compute a linear solution using a point-line constraint [5].
Then, nonlinear minimization is applied to improve the linear
solution.

In this section, we briefly review the point-line con-
straint [5]. The conversion between the camera and LiDAR
coordinate systems is as follows.

Xe r1 r2  rns X] Ix
Ye |=|r21 rn 3 i |+ 5 1)
Ze r31 r3 133 0 Iz

(xc, Ve, zC)T and (x7, yy, zl)T represents a point under camera
and LiDAR frame. r;;(i,j = 1,2, 3) represents elements of
3 x 3 rotation matrix and (f, ty, tZ)T is the translation vector
between the camera and LiDAR frame. We use a 2D LiDAR
therefore the point of LiDAR has the form of (7, y;, 0.
Eq. (1) can be arranged as follows.

Xe =T11X + 112y + Iy
Ye = r21x; + rayi + 1y 2
Ze = 131X + 132y + 17
A line in 3D under the camera frame can be represented as
follows.
X—=X) Y=Y Z—20
I m n

3

({, m, n)T is a direction vector of the line. (xg, yo, zO)T is
a point on the line. Eq. (3) can be represented into two

equations.
X — X0 Y=Y
= “)
m
— )0 I—20
y—Yo _ (5)

m n

If a point under the camera frame lies on a line, it should
satisfy the Eq. (4) and Eq. (5). If we insert Eq. (2) into Eq. (4)
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and Eq. (5), we can have the following.

TUX] + Ty e — X0 121X + 122yl + 1y — Yo )

l m
r1x; +royi+ty—yo  r3ix + 3y +t—20

= (N

m n

Eq. (6) and Eq. (7) can be represented as follows, as in (8),
shown at the bottom of the next page.

One pair of point-line gives two constraints as Eq. (8).
Therefore, if we have more than five pairs of point-line cor-
respondences, we could have a linear solution using Eq. (8).

D. FINDING A SOLUTION USING NONLINEAR
MINIMIZATION

We apply nonlinear minimization to improve the solution
using a linear solution as the initial solution. For nonlinear
minimization, the average distance of point-line correspon-
dence pairs in the world frame used is used as cost. The cost
term is defined as follows.

L=, ZJ; dij (pij> 1) )

d(p, ) represents a distance between a point p and a line [
in 3D Euclidean space. Index i is related to the dataset, and
index j is related to control points in the i-th dataset. We use
three control points for each dataset. Nonlinear minimization
is done using an algorithm similar to MATLAB’s fmincon
function.

In the point-line correspondence pair used for extrinsic
calibration, LiDAR control points P1, P2, and P3 are located
on the world frame’s X, Y, and Z axis, as shown in Figure 9.
P1, P2, and P3 under the LiDAR frame are converted into
a world frame, denoted as Q1, Q2, and Q3. The distances
between Q1, Q2, and Q3 and the X-axis, Y-axis, and Z-axis
are computed and used as cost. We use five sets for extrinsic
calibration. We extract three control points from each set.
Therefore 15 control points are used in the nonlinear mini-
mization.

IV. EXPERIMENTAL RESULTS

The evaluation of extrinsic calibration is done using a sep-
arate dummy camera that can observe the actual trajectory
of LiDAR by removing the infrared filter [30]. If we remove
the infrared filter from the camera, we can detect the actual
point the lidar is projecting. This enables a more accurate
evaluation of extrinsic calibration.

We evaluate the accuracy of extrinsic calibration with the
validation set acquired by a dummy camera. The calibration
structure of Figure 2 is located at a predefined distance of
seven locations at 0.5m, 1m, 1.5m, 2m, 3m, 4m, and 5Sm.
Then we acquire three images per location by varying the
location of the calibration structure on the image. For each
image, we find one true location of actual LiDAR and use it
for evaluation.

Figure 12 shows three images acquired at a predefine
distance, and the green point corresponds to one selected
ground-truth LiDAR point for evaluation. We additionally

VOLUME 11, 2023

TABLE 1. Result of automatic extrinsic calibration using control points by
line regression.

Computed R Computed T Validation
(6, 6, 6,) [deg] (tetyt,) [mm] | Error [mm]
Linear (-86.63,-0.53, 0.26) (81.04, -49.04, - 40.36
solution 80.16)
Nonlinear | (-86.60,-0.46, 0.61) (73.97,-49.01, - 34.20
solution 71.86)

used a reflective tape to find a projected point of the LIDAR
at a long distance. We use the upper part of the calibration
structure for verification by attaching a chessboard pattern,
as shown in Figure 12. Also, extrinsic calibration between
the world and the camera frame is possible using the upper
chessboard.

Figure 12 shows ground-truth control points for each
image. We use one LiDAR point on the cross line of two
planes for evaluation. We convert the control point under the
camera frame into a world frame using extrinsic parameters
between LiDAR and a dummy camera. We consider the Z
coordinate of each control under the world frame as a ground-
truth one, as shown in Table 3.

The evaluation of extrinsic calibration with ground-truth
control point is done as follows. The location of the con-
trol point for evaluation is found in LiDAR data. Then the
coordinate under the LiDAR frame is transformed into the
coordinate under the camera frame using computed extrinsic
parameters between LiDAR and the camera. Finally, it is
converted into coordinates in a world frame using extrin-
sic parameters between the camera and the world frame.
We compute the 3D Euclidean distance between the ground
truth and the converted one and consider it an error.

We use five sets acquired by varying poses between the
calibration structure and camera for the automatic extrin-
sic calibration of the camera and LiDAR. For each data,
we extract three control points from the LiDAR trajectory.
In total, 15 control points from five sets are used as point-line
constraints for the automatic extrinsic calibration.

Table 1 shows computed extrinsic parameters by the pro-
posed algorithm. Evaluation using the dummy camera is also
presented. We notice that the nonlinear solution gives an
improved result compared to the linear solution by comparing
validation errors.

In this paper, when performing external correction, the
lidar control points P1, P2, and P3 are calculated using lin-
ear regression instead of the lidar’s raw data. As shown in
Figure 12 below, there is a difference of 10 mm between the
coordinates calculated through linear regression and the raw
data.

Table 2 shows the external correction results when using
LIDAR data as it is without using linear regression. It can be
seen that the projection accuracy is lower than that of Table 1.
Therefore, when performing external calibration, it can be
seen that higher results can be obtained if the coordinates

76909



IEEE Access

J.-Y. Kim, J.-E. Ha: Automatic Extrinsic Calibration of a Camera and a 2D LiDAR

TABLE 3. Comparison of computed world point by nonlinear solution.

Distance Ground-truth Back-projected Error
(Location) (X,Y,Z) [mm] (X,Y,Z) [mm] [mm]
0.5m (L) (0, 0, 665.6) (14.5,4.7, 669.4) 15.7
0.5m (M) (0, 0, 658.6) (6.4,4.2,660.9) 8.0
0.5m (R) (0, 0, 654.9) (5.2,6.7,657.2) 8.8
Im (L) (0,0, 582.3) (-7.7,-9.5,585.4) 12.6
Im (M) (0,0,574.7) (-7.2,-8.1,576.9) 11.1
Im (R) (0,0, 568.3) (-10.6, -8.8, 570.4) 139
1.5m (L) (0, 0, 646.6) (-13.1,-13.6, 650.1) 19.2
1.5m (M) (0,0, 622.2) (-10.6, -14.6, 624.9) 18.2
1.5m (R) (0, 0, 605.5) (-7.9, -15.9, 608.7) 18.0
2m (L) (0,0, 661.4) (-21.3,-25.0, 666.2) 33.2
2m (M) (0, 0, 643.8) (-13.3,-22.8, 647.2) 26.6
2m (R) (0, 0,599.7) (-10.6, -30.3, 601.8) 322
3m (L) (0, 0, 670.9) (-39.9,-38.8, 680.4) 56.5
FI(EUR_E 12. The dataset for evaluating extrinsic calibration (The green 3m (M) (0,0, 630.9) (3308, 46.0, 636 4) 556
point is the ground truth).
3m (R) (0, 0,596.4) (-19.8, -54.0, 601.0) 57.7
4m (L) 0,0,716.3) (-36.8,-26.2, 734.9) 48.9
TABLE 2. Result of automatic extrinsic calibration using control points 4m (M) (0,0, 656.9) (:21.0, -40.4, 665.9) 6.4
from raw data.
4m (R) (0,0,618.9) (9.4, -45.9, 630.0) 48.2
Computed R Computed T Validation 5m (L) (0,0, 665.6) (-44.5,-26.9, 686.0) 55.5
(9x o, 92) [deg] (tx t, tz) [mm] Error [mm] Sm (M) (0, 0, 708.0) (-19.0,-57.5,719.4) 61.6
Linear (-86.75, -0.10, (43.56, -40.57, - 42.80 5m (R) (0,0, 536.8) (-0.59, -69.0, 550.9) 70.4
solution 0.91) 76.75)
Nonlinear (-86.73,-0.78, (58.59, -41.73, - 40.78
solution 1.23) 74.00) TABLE 4. The error of extrinsic calibration according to the distance.

of the control points are calculated through linear regression
without using raw data.

The extrinsic calibration results are quantitatively evalu-
ated in the 3D world frame. Also, we present the result by
projecting the LiDAR point onto the image for qualitative
evaluation, as shown in Figure 14. In Figure 14, the green
circle represents the ground-truth point, and the red cross is
the projected point. It can be seen that the final RT, which
has undergone nonlinear minimization for various distances,
shows an accurate projection.

Table 3 shows the comparison result of the ground truth
world point and computed one by nonlinear minimization.
We obtained three datasets at a fixed distance. A total of
21 points from seven locations are used in the evaluation.

Table 4 shows the error according to the distance of the
evaluation set. We can notice that error increases as the

Error at distance Mean Error
(0.5m, 1.0m, 1.5m, 2m, 3m, 4m, [mm]
Sm) [mm]
Linear solution (4,21,27, 34, 66, 55,70) 40.36
Nonlinear solution (11, 13,18, 31,57, 48, 63) 34.20

TABLE 5. The comparison of the proposed method with our previous
method [30].

3D error [mm]
46.34 £ 10.79
34.43 +21.60

Our previous method [30]
Proposed method

distance get large. In all distances, the nonlinear solution

gives improved results compared to the linear solution.
Table 5 compares the proposed method’s result to our

previous method [30]. Our previous method [30] requires

mxj my; — lxl - lyl 0 0
0 0 nx;
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FIGURE 13. Comparison of control points obtained by line fitting and
from raw data (the black cross shows the control point obtained by line
fitting, and the red cross indicates the control point from raw data).

FIGURE 14. Projection results with computed extrinsic calibration on
validation sets(green circle is the ground truth, and red cross is the
projected point at distances of 0.5m, 1m, 1.5m, 2m, 3m, 4m, 5m).

a manual selection of control points. Therefore, the whole
procedure is not automatic. Also, it used a constraint of the
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Hu algorithm [12], while the proposed method uses a point-
line constraint. The proposed method gives a smaller error
though the standard deviation is higher than our previous
method [30]. Also, the proposed method can automate the
whole procedure of extrinsic calibration.

V. CONCLUSION

This paper proposes a method for the automatic extrinsic
calibration of LiDAR and a camera. The calibration structure
consisted of two planes with a chessboard is used. We use
predefined colors at predefined positions on the chessboard
to easily identify the world frame on the calibration structure
under diverse poses. Control points from LiDAR data are
automatically detected using a geometric constraint. A linear
solution is obtained using a point-line constraint. Finally,
nonlinear minimization improves the linear solution using
datasets acquired under different poses. The accuracy of the
extrinsic calibration was evaluated using a dummy camera
removing the IR cut filter, which provides a real trajectory
of LiDAR. We can conclude that nonlinear minimization
gives an improved solution than a linear solution through
quantitative evaluation.
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