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ABSTRACT Due to conflicts among objectives of multi-objective optimization (MO) problems, it remains
challenging to gain high-quality Pareto fronts for different MO issues. Attempt to handle this challenge and
obtain high-performance Pareto fronts, this paper proposes a novel MO optimizer via leveraging particle
swarm optimization (PSO) with evolutionary game theory (EGT). Firstly, a modified self-adaptive PSO
(MSAPSO) adopting a novel self-adaptive parameter adaption rule determined by the evolutionary strategy
of EGT to tune the three key parameters of each particle is proposed in order to well balance the exploration
and exploitation abilities of MSAPSO. Then, a parameter selection principle is provided to sufficiently
guarantee convergence of MSAPSO followed after the analytical convergence investigation of this optimizer
so as to assure convergence of the searched Pareto front toward the true Pareto front as far as possible.
Subsequently, a MSAPSO-based MO optimizer is developed, in which an external archive is applied to
preserve the searched non-dominated solutions and a circular sorting method is amalgamated with the elitist-
saving method to update the external archive. Lastly, the performance of the proposed method is examined
by 16 benchmark test functions against 4 well-known MOO methods. The simulation results reveal that
the proposed method dominates its peers regarding the quality of the Pareto fronts for most of the studied
benchmarks. Furthermore, the results of the non-parametric analysis confirm that the proposed method
significantly outperforms its contenders at the confidential level of 95% over the 16 benchmarks.

INDEX TERMS Multi-objective optimization, particle swarm optimization, evolutionary game theory,
convergence investigation, pareto front.

I. INTRODUCTION
Over the past two decades, multi-objective optimization
(MO) has aroused increasing research interest due to its
widespread real-world applications, such as energy dis-
patch [1], [2], job assembly [3] and controller optimiza-
tion [4]. However, the conflicts among different objectives
lead the issue of simultaneously gaining global optimum
to each objective to be challenging or even impossible [5].
To handle this challenge, a MO problem is usually addressed
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to obtain a set of non-dominated solutions by considering
trade-offs among different objectives [6]. Yet, since many
MO problems are highly nonlinear both in objectives and
constraints, gaining a series of non-dominated solutions with
superior qualities still remains difficult [7].

Due to their swarm-based features and promising per-
formances over nonlinear optimization problems, different
evolutionary algorithms (EAs) have been developed within
the last decade to handle MO issues [8], [9], [10]. Based
on the typical decomposition multi-objective evolutionary
algorithm (MOEA), Chen et al. have proposed a MO
framework named MOEA/D-SCC by integrating the novel
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offspring selection process according to semi-supervised
classification (SCC) [11]. To well balance the conver-
gence and diversity, a novel MOEA/D method, named
MOEA/D-AAP which applied an angle-based adaptive
penalty (AAP) scheme for MOEA/D has been developed by
Qiao et al. [12].

As one of the most remarkable EAs, particle swarm
optimization (PSO) has been extensively used to handle
different MO problems due to its easy implementation and
promising convergence speed [13], [14]. To diversify the
searched non-dominated solutions, an improved MOPSO
approach (named MOPSOhv) adopting a mutation operator
has been developed by García et al. [15]. According to R2-
indicator and decomposition strategy, Li et al. have proposed
a new PSO-based MO method called R2-MOPSO such that
the diversification of the particle could be increased [16].
Similarly, aiming at sufficiently handling complex MO
issues, a hybrid MOPSO based on R2 indicator has been
established in Ref. [17]. For promoting the quality of
the gained Pareto front, based on the MOEA/D and an
adaptive replace strategy (ARS), an improved MOEA/D-
ARS has been developed by Chen et al. [18]. For promoting
the effectiveness of R2-MOPSO on large-scale MO issues,
Li et al. have proposed R2-MOPSO-II by introducing a
new bi-level archive maintaining strategy, a leader selection
strategy, and a novel velocity updating strategy of the particle
in R2-MOPSO [19]. Some other terrific studies using PSO-
based MO algorithms to cope with different MO issues can
be referred to Refs. [20], [21], [22], and [23].
Generally, at least two crucial issues need to be addressed

in terms of applying PSO for MO problems. The first one
is to trade off the exploration and exploitation abilities since
the quality of the obtained front heavily relies on such two
capabilities of the optimizer. However, it has been discovered
that the standard PSO has difficulty in well balancing its
exploration and exploitation, the Pareto front found by this
algorithm could be a false one [24]. Due to the fact that the
three main parameters (i.e., the inertia weight, the cognitive
and social acceleration parameters) of the particle profoundly
affect these two abilities of PSO, there have been studies
concentrating on developing strategies to tune the three
key parameters in PSO-based MO algorithms [25], [26],
[27]. As different values of the three mentioned parameters
determine the convergence property of PSO, it is vital to
address and guarantee the convergence of PSO via renovating
the three parameters to enhance the convergence of the non-
dominated solution set toward the true Pareto front. This
could be the second vital issue regarding applications of PSO
on MO problems. Yet, the stochastic nature of PSO leads the
theoretical convergence analysis pertaining to this optimizer
to be difficult and challenging [28].
The aforementioned two deficiencies of PSO motivate

this study under the background of using PSO to handle
MO issues. The primary goal of this study is to efficiently
handle MO issues and obtain high-quality Pareto fronts
via remedying these two flaws of standard PSO noted

above. To achieve this target, this paper firstly proposes
a modified self-adaptive PSO (MSAPSO) by integrating
standard PSO with evolutionary game theory (EGT). In the
proposedMSAPSO, a novel self-adaptive parameter adaption
strategy determined by the evolutionary strategy of EGT
is presented to fine-tune the three key parameters of each
particle in order to well balance the exploration and exploita-
tion capabilities regarding MSAPSO. Afterward, followed
by the analytical convergence investigation of MSAPSO,
a parameter selection principle is provided to sufficiently
guarantee the convergence of MSAPSO. Next, an MSAPSO-
based MO method is established to handle different MO
problems based on the developed MSAPSO. For obtain-
ing a well-distributed Pareto front, an external archive is
designed in the developed MSAPSO-based MO approach.
Moreover, the circular sorting method [24] is combined
with the elitist-saving method [29] to update the external
achievement in the developed MO approach. The main
potential contributions of this study could be summarized
as follows:

(1) A novel self-adaptive parameter updating rule is
developed in the proposed MSAPSO through implementing
the evolutionary strategy of EGT, such that the exploration
and exploitation powers of MSAPSO can be well balanced.

(2) A convergence-guaranteed parameter selection rule
is proposed according to the analytical convergence inves-
tigation of MSAPSO in order to sufficiently assure the
convergence of this developed optimizer.

(3) A MO approach is completed based on the developed
MSAPSO, a size-fixed external archive designed beforehand,
the circular sorting method and the elitist-saving method.

The performance of the proposedmethod is compared with
those of 4well-knownMOalgorithms over 16 benchmark test
functions. The simulation results confirm that the proposed
method outperforms its counterparts regarding the obtained
Pareto fronts with respect to the majority of the studied
benchmarks. Moreover, the results of the non-parametric
statistical analysis also confirm that our proposed method
significantly dominates its competitors at the confidential
level of 95% over the 16 benchmarks.

The remaining of this study is organized as follows. The
basic generality and formation of MO is given in Section II.
Section III mainly introduces the proposed MSAPSO and
the convergence-guaranteed parameter selection principle
pertaining to this optimizer. The MSAPSO-based MO
approach is stated in Section V. Section VI conducts the
numerical simulations and result analysis. Section VI shows
the parameter sensitivity study of MSAPSO. Section VIII
completes this study by drawing conclusions and suggesting
future works. The analytical convergence investigation of
MSAPSO is shown in Appendix A.

II. THE BASIC FORMATION OF MO
It is well-known that handling a MO problem needs
to optimize multiple conflicting objectives under several
equality /inequality constraints. Thus, the general formation

VOLUME 11, 2023 77567



K. Yin et al.: Multi-Objective Optimization Approach Based on an Enhanced PSO Algorithm

of a MO problem can be mathematically represented as
follows [5]:

Optimize : F(x) = [F1(x),F2(x), . . . ,FQ(x)] (1)

Subject to :


hi(x) = 0 i = 1, 2, . . . , cn1 (2)

gj(x) < 0 j = 1, 2, . . . , cn2 (3)

x lk ≤ xk ≤ xuk k = 1, 2, . . . , n (4)

where Fd (1 ≤ d ≤ Q) represents the d th objective.
Q is number of objectives needed to be optimized. x =

[x1, x2, . . . , xn] indicates the variable vector where n is the
dimension of the vector. hi(x) and gj(x) denote the ith equality
and jth inequality constraints, respectively. cn1 and cn2 are
the total number of equality and inequality constraints,
respectively. x lk and x

u
k are, respectively, the lower and upper

boundaries of the kth optimization variable.
Note that since some basic definitions are used in our

proposed MO method, they are recalled in the following
contents(for minimizing a MO problem).
Definition 1 (Pareto Dominance): Solution Sa dominates

solution Sb( denoted by Sa ≻ Sb), if and only if Fd (Sa) ≤

Fd1 (Sb) for each d ∈ [1, 2, . . . ,Q] and Fd (Sa) < Fd (Sb),
∃d ∈ [1, 2, . . . ,Q].
Definition 2 (Non-Dominated Solution): If there is no

solution dominating solution S, it can be considered as a non-
dominated one.
Definition 3 (Pareto Set): The set that composed by all

non-dominated solutions.
Definition 4 (Pareto Front): The image of the Pareto set in

the objective space.

III. INTRODUCTION OF STANDARD PSO
A. REVIEW OF STANDARD PSO
Inspired by birds flocking and homing, standard PSO
was first proposed by Kennedy and Eberhart [30]. Each
agent in PSO is regarded as a particle and represents a
candidate solution for an optimization problem. During the
search process, each particle dynamically updates its search
information based on its own experience and those of its
companions as follows [30]:

V k+1
m = ωV k

m + c1r1(pbestkm − X km) + c2r2(gbest − X km)
(5)

X k+1
m = X km + V k+1

m (6)

where ω is the inertia weight. c1 and c2 represent the
cognitive and social acceleration parameters of each particle,
respectively. pbestkm denotes the personal best position of the
mth particle at kth iteration. gbest indicates the global best
position founded by the swarm. r1 and r2 are two stochastic
numbers uniformly distributed in [0, 1]. Note that ω, c1 and
c2 are predefined constants in real domain in standard PSO.

B. STATEMENTS OF BASIC PHILOSOPHIES FOR
STANDARD PSO IMPROVEMENT
As a stochastic swarm-based algorithm, the standard PSO
has been found to suffer from two typical drawbacks,

namely, lower performance in trading-off its exploration and
exploitation capabilities, as well as divergence toward the
global optimum [31], [32]. These two flaws diminish its
optimization performances over different MO issues. Thus,
there exist strong necessities to surmount these deficiencies
of standard PSO in terms of developing PSO-based MO
optimizers.
It is notable that the exploration capability of PSO must

be promoted in the early evolution to encourage particles
to search through the entire solution space, so that the
likelihood of missing the global optimum could be reduced
possibly [31], [32], [33]. The exploitation ability needs to be
intensified in the latter evolution in order to hearten particles
to search carefully in a local area containing the global
optimum, so that the possibility of finding the global optimum
could be enhanced.
It is known that the three key control parameters of the

particle significantly affect the exploration and exploitation
powers of PSO. The basic philosophies with respect to
influences of the three parameters on such two abilities
can be summarized as follows [32]: (1) a large inertia
weight benefits the exploration, whereas a small inertia
weight consolidates the exploitation; (2) compared to the
social acceleration parameter, a greater cognitive acceleration
parameter fortifies the exploration ability; (3) compared to the
cognitive acceleration parameter, a larger social acceleration
parameter promotes the exploitation capability.
Evidently, the basic philosophies noted suggest a meaning-

ful insight on improving PSO via dynamically tuning its three
key parameters in a way of well balancing the exploration
and exploitation powers. Apart from the impacts on the
exploration and exploitation abilities, setting the three main
aforementioned parameters also influences the convergence
of PSO. In order to enhance the convergence of searched non-
dominated solutions set toward the true Pareto front as far
as possible, it remains paramount to analytically guarantee
the convergence of PSO. However, the stochastic nature of
PSO imposes difficulties in analytically investigating the
convergence of PSO.

IV. STATEMENT OF THE PROPOSED MSAPSO
In order to promote the performances of PSO over different
MO issues and gain high-quality Pareto fronts, this study
concentrates its interest on developing a more advanced PSO-
based MO algorithm by overcoming the two flaws of the
standard PSO stated above. To this end, this study proposes
a novel MSAPSO by leveraging standard PSO and EGT.
In the developed MSAPSO, particles stick to the moving
rule defined in standard PSO (referred to Eqs. (5)-(6)) to
update their velocity and position information, respectively.
Subsequently, a self-adaptive parameter updating principle
is proposed in MSAPSO in order to well trade-off the
exploration and exploitation abilities of this algorithm by
implementing the evolutionary strategy of EGT. Afterward,
a convergence-guaranteed parameter selection principle is
provided for MSAPSO in order to assure the convergence
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FIGURE 1. The main logical flow of the proposed MSAPSO.

of the found non-dominated solutions after the analyti-
cal convergence investigation of this developed algorithm.
Finally, a MASPSO-based MO method is completed based
on the proposed MSAPSO. The main logical flow of the
proposed MSAPSO is visualized in Fig. 1. The self-adaptive
parameter selection principle, the convergence investigation,
the convergence-guaranteed parameter selection principle
regarding MASPSO and the MSAPSO-based MO approach
are detailed in the following contents.

A. THE SELF-ADAPTIVE PARAMETER UPDATING
PRINCIPLE PROPOSED FOR MSAPSO
To well balance the exploration and exploitation capabil-
ities of MSAPSO, following the philosophies described
in Subsection III-B, we propose a self-adaptive parameter
updating principle for this algorithm by applying the evolu-
tionary strategy of EGT. Prior to introducing the proposed
parameter updating principle, we first state the analogy
between MSAPSO and EGT as follows: (1) each agent in
EGT corresponds to a particle in MSAPSO; (2) each particle
adopts three candidate strategies, namely, moving merely
based on its inertia weight, personal best flight experience and
the global best flight experience of the swarm, respectively;
(3) the average performance gained by each particle under a
given strategy among the three candidate strategies composes
the payoff matrix of EGT.

Suppose that E1, E2 and E3, respectively, denote the three
candidate strategies noted above. Then, the payoff matrix
used in our study can be computed as follows:

Pf =

 P(E1)
P(E1)−P(E2)

2
P(E1)−P(E3)

2
P(E2)−P(E1)

2 P(E2)
P(E2)−P(E3)

2
P(E3)−P(E1)

2
P(E3)−P(E2)

2 P(E3)

 (7)

where Pf stands for the payoff matrix. P(Ei) (i = 1, 2, 3)
indicates the payoff obtained by the particle via playing the
ith strategy.

The replicator dynamic equation of EGT used in this paper
is calculated by:

Ṗi = −Pi(Ei · Pf PT−PPf PT ) (8)

where Pi (i = 1, 2, 3) is the probability distribution of Pi over
the candidate strategy Ei. Pf represents the payoff matrix.

P = [P1,P2,P3] indicates the set of mixed strategies where
we have that

∑3
i=1 Pi = 1 and 0 ≤ Pi ≤ 1 (i = 1, 2, 3)

Assume that Es(k) denote the ratio of each candidate
strategy in the case where the swarm converges to a stable
position at iteration k . Then, Es(k) can be represented as
follows:

Es(k) = [Z1(k),Z2(k),Z3(k)] (9)

where we have that:
3∑
i=1

Zi(k) = 1 (10)

Then, at each iteration k , the value of P(Ei) in Eq. (7) can
be gained according to the pervious flight experience of each
particle in MSAPSO as:

P(Ei) =

k−1∑
k1=1

Zi(k1)
Q∑
l=1

| Fl(x(k1)) |

k
(11)

where k is the current iteration number of MSAPSO.
Fl(x(k1)) is fitness value of the lth objective of a MO issue
obtained by the particle at iteration k1. Q is the total number
of objectives contained in a MO issue.

Once the value of P(Ei) of each particle is generated by
Eq. (11), it is subsequently used to fill the payoff matrix
Pf based on Eq. (7). After obtaining the payoff matrix,
the corresponding ratio of each candidate strategy, namely,
Es(k) = [Z1(k),Z2(k),Z3(k)], can be then computed by
solving the replicator dynamic equation given by Eq. (8).
Note that when solving Eq. (8) to gain Es(k), we have that
Es(k) = P and Pi = Zi in this equation.

After obtaining the the three ratios Z1(k), Z2(k) and Z3(k)
in Es(k) following the way described above, they are then
implemented to renovate the three main parameters of each
particle in the proposed self-adaptive parameter updating
principle in MSAPSO as follows:

ωk+1
= (ωs − ωf )exp[−

(ωs − ωf )k
kmaxδ

] + ωf (12)

ck+1
1 = (c1s − c1f )exp[−

(c1s − c1f )k
kmaxδ

] + c1f (13)

ck+1
2 = (c2s − c2f )exp[

(c2s − c2f )k
kmaxδ

] + c2f (14)

where:

δ =
Z1(k) + Z2(k)
Z3(k) + △

(15)

where subscripts ‘‘s’’ and ‘‘f’’ in each parameter are the initial
and final values of the corresponding parameter, respectively.
kmax is the given maximum iteration number. k is the current
iteration number. Zi(k) (i = 1, 2, 3) is the ratio of the
ith strategy. △ is a sufficiently small positive real number
preventing the denominator in Eq. (15) becoming zero (△ =

1e − 04). It notable that ωs > ωf , c1s > c1f and
c2f > c2s in the above updating principle. Also, note that

VOLUME 11, 2023 77569



K. Yin et al.: Multi-Objective Optimization Approach Based on an Enhanced PSO Algorithm

particles in MSAPSO adopt the moving rules defined by Eqs.
(5)-(6) to renovate their velocity and position information,
respectively.

It is important to note that the three ratios Z1(k), Z2(k),
and Z3(k) in Es(k) represent a stable search direction of the
swarm. This hints that the three ratios potentially denote
the search stability nature of EGT. Thus, when these ratios
are implemented in the above parameter updating principle,
particles in MSAPSO could not only adapt the shape of the
search space to optimize the search direction of the swarm but
also may face the potential irregularity of the search space
to avoid some local optimums as far as possible. This may
imply that the applications of the three ratios in the developed
parameter updating principle could enhance the performance
of MSAPSO for solving MO issues.

Moreover, since PSO is a stochastic algorithm, the search
behavior of each particle presents a nonlinear manner. For
pandering to such search behavior, three key control param-
eters of particles are nonlinearly adjusted in the updating
principle defined by Eqs. (12)-(15). Also, as the exponential
function is known for its fast-growing nature, the three
parameters of each particle are exponentially updated.
This may promote the convergence speed of the proposed
MSAPSO.

B. PARAMETER ANALYSIS OF MSAPSO
From Eqs. (12)-(14), one can infer that ω and c1 decrease,
whereas c2 increases with the iteration number k increasing.
Thus, based on the basic philosophies summarized in
Subsection III-B, the exploration ability ofMSAPSO is likely
to be more preserved in the early phase of the evolution and
would be taken over by the exploitation ability in the latter
evolution.

Apart from the iteration number k , the trade-offs between
the exploration and exploitation abilities can be also adjusted
based on the value of δ. It is clear from Eq. (15) that a greater
δ indicates a larger value of (Z1(k)+Z2(k)). A bigger value of
(Z1(k) + Z2(k)) hints that the search direction of the swarm
is more stable in the case where the particle mainly adopts
the strategy of following its inertia and personal best flight
memory. In such a case, it is desirable to increase the inertia
weight and cognitive acceleration parameter to intensify the
exploration ability of MSAPSO. Contrarily, a smaller value
of δ represents a bigger value of Z3(k), which indicates that
the search direction of the swarm could be more stable when
the particle mainly plays the strategy of following the social
flight experience of the swarm. In this case, it is meaningful
to increase the social acceleration parameter of the particle to
strengthen the exploitation capability.

Briefly, through employing the proposed self-adaptive
parameter updating principle, the three control parameters of
particles in MSAPSO can be adjusted in a way of complying
with the basic philosophies of PSO development summarized
in Subsection III-B. Thus, the proposed PSO algorithm could
improve its performance in solving the MO issue.

C. CONVERGENCE-GUARANTEED PARAMETER
SELECTION PRINCIPLE FOR MSAPSO
Since the convergence property of MSAPSO significantly
affects its ability of finding high-quality non-dominated
solutions, it is essential to analytically investigate and
guarantee the convergence of this optimizer. To this end,
we have theoretically analyzed the convergence of MSAPSO
with respect to different values of the three main control
parameters of particles in Appendix A.
One can readily obtain from Appendix A that MSAPSO

converges, if and only if:{
0 < c1r1 + c2r2 < 2ω + 2
−1 < ω < 1

(16)

where ω denotes the inertia weight of the particle. c1 is the
cognitive acceleration parameter of the particle. c2 stands for
the social acceleration parameter of the particle. r1 and r2 are
two random numbers uniformly distributed in the range of
[0,1].

Note that Eq. (16) is the necessary and sufficient condition
for the convergence of MSAPSO. Despite obtaining this
convergence condition, it still remains unknown how to
set the initial and final values of the three parameters of
the particle to sufficiently guarantee the convergence of
MSAPSOmerely from this condition. Herein, this subsection
provides a convergence-guaranteed selection principle for
the proposed algorithm by simultaneously considering the
proposed self-adaptive parameter updating principle defined
by Eqs. (12)-(15) and the convergence condition given by
Eq. (16).
Lemma 1: The convergence of MSAPSO can be suffi-

ciently guaranteed, only if the initial and final values of the
three control parameters meet:

c1s + c1f < 2ωmin + 2
−1 < ωmin < ωmax < 1
0 < c1f = c2s < c1s = c2f

(17)

Proof: It is trivial from Eqs. (13)-(14) that c1 + c2 = c1s +
c1f for each particle at any iteration for the cases where c1s =

c2f and c1f = c2s. Moreover, it is evident from Eqs. (12)-(14)
that ωmin < ω < ωmax , c1f < c1 < c1s and c2s < c2 < c2f
in the proposed parameter updating principle. Since r1 and
r2 are two random numbers in [0,1], one can readily obtain
that:
c1s + c1f < 2ωmin + 2
−1 < ωmin < ωmax < 1
0 < c1f = c2s < c1s = c2f

⇒

{
0 < c1r1 + c2r2 < 2ω + 2
−1<ω < 1

(18)

Recall that the inequality on the right-hand side in Eq. (18)
is the necessary and sufficient convergence condition for
MSAPSO. Thus, the proof of Lemma 1 can be easily held.

It is worth to noting that the initial and final values of
ω, c1 and c2 are predefined constants in our proposed self-
adaptive parameter updating principle. This implies that the
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FIGURE 2. Convergence position and velocity trajectories of the particle in MSAPSO.

sufficient convergence condition given by Eq. (17) can be
easily satisfied via setting proper initial and final values of
ω, c1 and c2. For sufficiently guaranteing the convergence of
MSAPSO, we suggest that ωmax = 0.8, ωmin = 0.4, c1s =

c2f = 2 and c1f = c2s = 0.2 based on the results of parameter
sensitivity study as shown in the following Section VII.

Fig. 2 visualizes the convergent position and velocity tra-
jectories of the particle under the above-suggested parameter
selection. From this figure, it could be observed that the
particle in the proposed algorithm illustrates a harmonic
oscillation convergence behavior. This would imply that the
exploration ability of this algorithm could be strengthened
in the early stage of the evolution, whereas the exploitation
capability dominates in the latter evolution.

V. MSAPSO-BASED MO METHOD
Several key technologies must be addressed in terms of
applying PSO to solve a MO issue generally defined
by Eqs. (1)-(4). The key technologies mainly include:
(1) handling constraints of a MO problem; (2) updating the
global and local personal best solutions of the particle; (3)
preservations and renovations of non-dominated solutions
searched by particles. The thereafter contents of this section
first address these key issues in our MSAPSO-based MO
method. Subsequently, the algorithmic steps of the this
approach are stated at the end of this section.

A. HANDLING CONSTRAINTS OF A MO PROBLEM
Due to its easy implementation, the constraint handling
method developed in Ref. [34] is first adopted in our
developedMO approach to handle the equality and inequality
constraints of a MO issue as defined by Eqs. (2)-(3) as
follows:

VDm =

cn1∑
i=1

| hi(x) | +

cn2∑
j=1

max (0, gj(x)) (19)

where VDm denotes the violation degree of the mth particle
in MSAPSO. The definitions of cn1, hi(x), cn2 and gj(x) can

be referred to those given in Eqs. (2)-(3). | hi(x) | denotes the
magnitude of hi(x).

Notably, the handling technology given by the abovemodel
is used to handle the equality and inequality constraints of
a MO issue. For a MO issue unconstrained by any equality
and inequality constraints, it is unnecessary to use this
technology. After using Eq. (19) to calculate the violation
degree of each candidate solution, the dominance-based
rule [35] is then applied to select the non-dominated solution
among two different candidate solutions in the developed
MO method. The dominance-based rule can be described as
follows: (1) the solution having a smaller violation degree
dominates the one with a greater violation degree for any two
different solutions owing different violation degrees; (2) the
definition of Pareto dominance described in Section II is
implemented to choose the non-dominated solution among
two different candidate solutions having the same violation
degrees.

From the above dominance-based rule, it can be seen that
some infeasible solutions may allow us to enter into the next
iteration. This could be interpreted by the fact that some
infeasible solutions may contain valuable information about
the solution space even if theymay violate several constraints.
When they are allowed to the next iteration, the diversification
of the non-dominated solutions found by the swarm could
be maintained as far as possible, which may thus enhance
the possibility of finding superior-quality non-dominated
solutions. Thanks to this advantage of the dominance-based
rule, it is applied in our proposed MO method.

For handling the boundary constraints given by Eq. (4) of a
MO problem, the following saturation mechanism is applied
to modify any optimization variable xj in our MO method
as [36]:

xj =


x lj if xj < x lj
xuj if xj > xuj
xj otherwise

(20)
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where j is the number of variables to be optimized for
a given MO issue. x lj and xuj are the lower and upper
boundaries of xj.

B. UPDATING THE PERSONAL AND GLOBAL BEST
SOLUTIONS OF PARTICLES
Similar to some other PSO-based MO algorithms, the
personal best solutions of particles in our MSAPSO-based
MO method are updated based on the conventional method
as follows [37]:

pbestk+1
m =

{
X km if F(X km) ≻ F(pbestkm)
pbestkm otherwise

(21)

where k is the current iteration number of the swarm.
pbestk+1

m is the personal best solution of particlem at iteration
(k+1). F(X km) and F(pbest

k
m), respectively, denote the fitness

values of the current solution and personal best solution of
particle m. ‘‘≻’’ denotes the dominance operator using the
dominance-based rule described in Subsection V-A.
Due to conflicts among different objectives, a set of

non-dominated solutions are yielded in the MO problems.
Referring to some currently-existing studies focusing on
solving MO problems via PSO [37], this paper designs an
external archive to preserve non-dominated solutions found
by particles at each iteration. The global best solutions of
particles are non-trivial from the designed archive based on
the geographically-based strategy [24].
In the geographically-based strategy, the search objective

explored by the current swarm is divided into different grids.
Each divided grid contains several different non-dominated
solutions. After selecting a grid using the roulette wheel by
a density estimation operator, a non-dominated solution is
randomly selected as the global best solution of the particle
from this grid. Note that the number of non-dominated solu-
tions involved in a grid determines the likelihood of this grid
being selected. The more non-dominated solutions contained
in a grid, the less likely the grid can be selected [24].
By using such a strategy, particles could be encouraged
to search towards the less crowded solution spaces. This
may decrease the possibility of missing some unknown
solution spaces containing high-quality non-dominated
solutions.

C. MAINTAIN OF THE EXTERNAL ARCHIVE
Similar to some other PSO-based MO algorithms, a fixed-
size external archive is also designed in our MSAPSO-based
MO method to iteratively save the non-dominated solutions
found by the particle swarm [36]. At each iteration, the sorting
method [29] is first used to renovate and check the allowance
of entrance regarding each newly-searched solution to the
external archive. After computing the values of objectives
and violation degree of new solutions found by the swarm,
the entrance of a newly-produced solution is allowed into the
archive by the sorting method only if: (1) all non-dominates
solutions in the archive cannot dominate the new solution; or

(2) the new solution dominates any solution in the archive.
Note that solutions dominated by the new solution need to be
removed from the archive.

Because multiple non-dominated solutions could be simul-
taneously found by the swarm at each iteration, the size of
the external archive increases explosively if all searched non-
dominated solutions are preserved in the achieve, which not
only leads to being computationally expensive to update the
archive but also is not beneficial to balance the convergence
and diversity of the swarm. To alleviate this problem, the
elitist-preserving method [29] is implemented to prune the
archive in the case where the size of the archive is full at
each iteration. The algorithmic steps of the elitist-preserving
method can be depicted as follows:

Step1: Sorting the non-dominated solutions saved in the
archive in an ascending order according to the fitness values
of the non-dominated solutions.

Step2: Computing the crowding distance of each non-
dominated solution based on its fitness values.

Step3: Preserving Na non-dominated solutions with the
largest crowding distances in the archive where Na is the
predefined size of the archive.

Since the non-dominated solutions owing the greatest
crowding distances are kept in the archive via the elitist-
preserving approach, the preserved non-dominated solutions
in the archive could be widely spread, which indicates that
a well-distributed Pareto front with more diversifications
could be gained by the elitist-preserving approach. After
pruning the external archive following the sorting method
and the elitist-preserving approach at each current iteration,
the global best solution of the swarm for the next iteration is
selected based on the geographically-based strategy depicted
in Subsection V-B for the next iteration in order to well
trade-off the exploration and exploitation of the swarm.
The flow chart of the maintaining process concerning the
external archive in our MSAPSO-based MO approach is
displayed in Fig. 3. More detailed information on the sorting
method and the elitist-preserving approach can be referred
to Ref. [29].

D. ALGORITHMIC STEPS OF MSAPSO-BASED
MO METHOD
The Algorithm 1 summarizes the algorithmic steps of the
proposed MSAPSO-based MO approach. In this table, NP,
k and km denote swarm size, the current iteration number
and the maximum iteration number, respectively. Also, it is
notable that the main loop the of the developed approach
exists until the current iteration number reaches the given
maximum iteration number.

VI. NUMERICAL SIMULATIONS
The proposed method is verified via 16 benchmark test
functions (as depicted in Table 1) extracted from [5], [24],
and [29]. The performance of the proposed method is
compared with those of MMOABC [5], SAMOPSO [25],
NSGA-II [29], and MOEA/D [38]. Attempt to conduct a
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FIGURE 3. The maintaining process of the archive in MSAPSO-based MO
method.

quantitative evaluation of the performance of each method,
three commonly-used metrics described in Ref. [24] are
adopted in this paper. The three metrics are the number of
non-dominated solutions (NNS), generation distance (GD),
and space metric (SM), respectively. Note that the quality of
the Pareto front obtained by a given method is better with
larger values of NNS and smaller values of GD and SM . For
detailed ways of computing these metrics, the reader can be
referred to [24].

For reducing the affects of randomness, we execute a
Monte-Carlo test with 20 runs for each studied benchmark
under a given method. In the Monte-Carlo experiment, the
statistical results concerning each of the above metrics for
each studied test function are reported and the average result
with respect to each metric is examined. The swarm size and
maximum iteration number of each method are set to 100 and
400, respectively. Moreover, the size of the external archive
is set to 100 for each method in each run of the Monte-
Caro experiment. The simulation parameters of our proposed
method are set to be ωmax = 0.8, ωmin = 0.4, c1s = c2f =

2 and c1f = c2s = 0.2 based on the analysis results shown
in Subsection IV-C. The simulation parameters of the four
comparedMOmethods are referred to their original literature
and shown in Table 2.

A. SIMULATION RESULTS OVER 16 TEST FUNCTIONS
After conducting the Monte-Carlo experiment for each
considered MO method over each studied benchmark test
function, the statistical results with respect to the aforemen-
tioned performance metrics are summarized in Tables 3-5.
Note that the best average results gained concerning each
metric are highlighted in boldface in these tables. The Pareto
fronts searched by different methods for each test function are
visualized in Appendix B.

Algorithm 1 The Algorithmic Steps of the MSAPSO-Based
MO Method
1: Set needed simulation parameters and initialize the

particle swarm
2: Compute the initial function values and violation degree

of each particle
3: Set the initial solution of each particle as its pbest at the

initial iteration
4: Renovate the external archive using circular sorting

method at the initial iteration
5: if the size of the archive is full do then
6: Remove some non-dominated solutions from the

archive using the elitist-preserving approach
7: end if
8: while k ≤ kmax do do
9: for m = 1 : NP do

10: Select gbest for particle m from the archive via the
geographically-based method

11: Update the velocity vector of particle m based on
Eq. (5)

12: Update position vector of particlem based on Eq. (6)

13: Correct the position vector of particle m based on
the saturation strategy given by Eq. (20)

14: Calculate cost functions of particle m
15: Compute the violation degree of particlem based on

Eq. (19)
16: Calculate the values of three ratios( i.e, Z1(k), Z2(k)

and Z3(k)) for particle m based on Eqs. (7)-(11)
17: Update ω, c1 and c2 of particle m based on by Eqs.

(12)-(15)
18: Update pbest of particle m based on Eq. (21)
19: Save pbest to the archive and renovate the archive

by circular sorting method
20: end for
21: if the archive is full do then
22: Remove some solutions from the archive using the

elitist-preserving approach
23: end if
24: Increase the iteration number k by one
25: end while
26: Output non-dominated solutions saved in the archive

B. RESULT ANALYSIS
1) OVERALL ANALYSIS
It is clear from Tables 3-5 that all the five consid-
ered approaches cannot efficiently deal with DTLZ1 and
ZDT4 probably due to complexities of objectives and
multiple local optimums contained in these two benchmarks.
This may indicate that despite being vital to balance the
exploration and exploitation abilities of MO algorithms via
parameter adaption strategies, it remains insufficient over
some complicated MO issues with multiple local optimums.
Combining parameter adaption strategy with some more
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TABLE 1. Benchmark test functions.

TABLE 2. Simulation parameters for compared methods.

advanced decomposition strategies, such as R2 indicator [19],
could be a promising remedy to the issue noted above. Thus,
we are considering the possibility of integrating our proposed
MO method with some other outstanding decomposition
strategies to further balance its convergence and diversity
over more complicated MO issues in the coming future.

However, it is of great importance to note from Tables 3-5
that despite showing insufficient performances onDTLZ1 and
ZDT4, the proposed method is still ranked the second and
first among the five methods regarding the average NNS, GD
and SM over these two functions, respectively. Moreover,
apart from DTLZ1, our proposed method shows the best
performances over the rest 15 benchmarks in comparison
with its peers. Thus, it allows us to generally conclude that
the proposedmethod is highly competitive than its contenders
for solving the 16 test functions.

It is worth noting that the above result analysis merely
allows us to judge the average performance differences of
the five methods over the 16 test functions. As shown in
Tables 3-5, since the performances of different methods
diversify from different test functions in terms of the mean
NNS, GD, and SM metrics, a non-parametric analysis needs
to be conducted to statistically investigate whether or not
the five considered methods perform significantly different
for solving the 16 benchmarks. To this end, we execute a
non-parametric analysis and comparison in the following
contents.

2) NON-PARAMETRIC ANALYSIS AND COMPARISON
It can be seen from Tables 3-5 that a better average NNS
metric of a method for a test function corresponds to
better average, GD and SM metrics of this method for this
test function. Thus, only the NNS metric is regarded as
an example in the conducted non-parametric analysis and

TABLE 3. Statistical results of NNS obtained by each method for each
test function.

comparison. Adopting the same analysis process, one can
easily investigate the degrees of the fivemethods significantly
differ from each other for the metrics of GD and SM .

In the non-parametric analysis and comparison, we first
conduct a rank-based investigation to test the mean rank
value of each considered approach over the 16 test functions.
Afterwards, the non-parametric Friedman examination based
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TABLE 4. Statistical results of GD obtained by each method for each test
function.

on the average rank value of each method is executed
followed by the pairwise post hoc Bonferroni-Dunn to
evaluate the average performances of the five methods over
the 16 test functions.

Table 6 summarizes the mean rank value of NNS obtained
by each method over the 16 test functions based on the

TABLE 5. Statistical results of SM obtained by each method for each test
function.

numerical results reported in Table 3. It is apparent from
Table 6 that the proposed method is followed by SAMOPSO,
MMOABC, MOEA/D, and NSGA-II in terms of the average
NNS performance over the 16 test functions. However,
the average rank analysis depicted here is insufficient to
confirm the significant differences between the proposed
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FIGURE 4. Obtained Pareto fronts and computation time for Function F1 under different swarm size settings.

method and its four encounters. Attempting to examine the
significant distinctions between the proposed method and the
four compared methods, the statistical comparisons based on
more advanced non-parametric analysis need to be executed.
To this end, the Friedman test based on the average rank
values summarized in Table 6 is implemented followed by
the pairwise post hoc Bonferroni-Dunn test in the thereafter
contents.

Since the performances of 5 approaches over 16 test
functions are compared in this paper, the F-statistic value
of the Friedman test with the confidential level of 95% is
2.52 based onMatlab command: finv(aN−1, (N−1)(K−1)),
where a,N andK are the confidential levels, the total number
of test methods and functions, respectively. According to the
numerical results shown in Table 6, we can readily obtain that
the Friedman statistic value is 18.86. Due to the fact that the
Friedman statistic value is greater than the F-statistic value,
the null hypothesis that each method performs equally for all
test functions can be rejected. Thus, we can conclude that the
five considered methods significantly differ from each other
for solving the 16 benchmarks with regard to the mean NNS
metric at the confidential level of 95%.

It is noticeable that the non-parametric Friedman test
depicted above only allows us to infer that the five methods
are significantly different over the 16 test functions at a
confidential level of 95%, rather than that the proposed
method significantly outperforms the rest 4 methods at
the given confidential level. Herein, the pairwise post hoc
Bonferroni-Dunn test is conducted to detect whether the
proposed method significantly dominates the other four
compared methods in terms of the average NNS performance
over the 16 test functions at the given confidential level. Note
that a given approach significantly outperforms another one
at a given confidential level if the mean rank distinctions
between this method and its competitor are no less than the
critical difference value of the Bonferroni-Dunn test.

Recall that 5 methods are used to deal with 16 benchmarks
in this paper. Therefore, it can be obtained that the critical
difference value equals 1.5038. It can be observed from

TABLE 6. Mean rank values of NNS gained by different methods for
16 test functions.

Table 6 that the distinctions of average rank value between
MSAPSO, SAMOPSO,MMOABC,MOEA/D, andNSGA-II
are 1.69, 2.37, 2.69, 2.94, respectively. Since these distinction
values are all greater than the critical difference value (Cd =

1.5038). Consequently, it can be conclusive that the proposed
method is significantly better than the four compared
methods over the 16 test functions at the confidential level of
95%. This indicates that the proposedmethod can be regarded
as an efficient alternative in the field of dealing with MO
problems.

VII. PARAMETER SENSITIVITY STUDY OF MSAPSO
This section conducts a sensitivity investigation of different
parameter settings regarding the swarm size, maximum
iteration number, inertia weight, and cognitive and social
acceleration parameters in MSAPSO. In the conducted
sensitivity study, only Function F1 is used as a pilot test
function thanks to its simplicity. Moreover, the Monte-Carlo
test stated in Section VI is implemented for each single
sensitivity investigation. Besides, the remaining parameters
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FIGURE 5. Obtained Pareto fronts and computation time for Function F1 under different maximum iteration number
settings.

FIGURE 6. Obtained Pareto fronts for Function F1 under different settings of the three control parameters.

have remained as recommended in Section VI for the case
where one given parameter is studied.

Also, the three performance metrics depicted in the above
section are adopted in the sensitivity study. Note that since the
swarm size and maximum iteration number also significantly
affect the computation time (denoted by CT in this work)
of the proposed optimizer, the computation time is used
as an extra metric to study the sensitivities of these two

parameters on the performance of our proposed method. The
descriptions and numerical simulation results with respect
to different parameter settings are detailed in the following
contents.

A. SWARM SIZE
The swarm size (denoted by NP) is the total number
of particles contained in MSAPSO, which profoundly
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TABLE 7. Simulation results of different performance metrics for
Function F1 under different settings of swarm size in MSAPSO.

TABLE 8. Simulation results of computation time (CT in second) for
Function F1 under different settings of swarm size in MSAPSO.

affects the performance and computation complexity of this
optimizer. To study the influences of NP on the performance
and computation time of MSAPSO, this parameter is set to
linearly vary from 40 to 120 with a step size of 20. The
numerical simulation results of different metrics for Function
F1 under different settings of NP are reported in Tables 7-8.
Fig. 4 displays the obtained Pareto fronts and computation
time of different NP settings for Function F1.
It can be observed from Table 7 that the four performance

metrics are averagely better with the increasing of NP. This
indicates that the obtained Pareto front exhibits an average
better performance with a greater value of NP. However,
one can readily note from Table 8 that the computation time
of the optimizer increases significantly with a bigger value
of NP. It is noticeable from Table 7 that the differences in
average values of the three performance metrics between
the case where NP equals 100 and that of 120 could
be negligible. Yet, as shown in Table 8, the computation
time consumed by the optimizer is significantly less when
NP = 100, compared to that of the case where NP =

120. Thus, the swarm size is empirically set to 100 for
MSAPSO by compromisingly considering the quality of the
obtained Pareto front and the computation burden of the
optimizer.

B. MAXIMUM ITERATION NUMBER
The maximum iteration number (represented by Kmax) is a
predefined constant in MSAPSO, which can simultaneously
affect the quality of the Pareto front and the computation
time of the optimizer. In the conducted parameter sensitivity
study, Kmax is linearly changed from 100 to 600 with a

TABLE 9. Simulation results of different performance metrics for Function
F1 under different settings of the maximum iteration number in MSAPSO.

TABLE 10. Simulation results of computation time (CT in second) for
Function F1 under different settings of the maximum iteration number in
MSAPSO.

TABLE 11. Simulation results of different performance metrics for
Function F1 under different settings of inertia weight in MSAPSO.

step size of 100. Tables 9-10, respectively, summarize the
simulation results of the four metrics and computation time
with respect to different values of Kmax for solving Function
F1 using the proposed MSAPSO. The gained Pareto front
and computation time under different settings of Kmax are
visualized in Fig. 5.

One can note from Tables 9-10 that the quality of
the obtained Pareto front is generally better, whereas the
optimizer is more computationally expensive in the case
where Kmax grows bigger. Since the decision maker would
prefer to obtain an acceptable Pareto front within a given
tackling time in real-world applications, the maximum
iteration number is suggested to be 400 in MSAPSO by
simultaneously considering trade-offs between the quality of
the Pareto front and the computation time.
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C. THREE MAIN CONTROL PARAMETERS
The three main control parameters, namely, the inertia
weight (denoted by ω), the cognitive acceleration parameter
(represented by c1), and the social acceleration parameter
(denoted by c2), profoundly affect the exploration and
exploitation abilities of particles in MSAPSO. Thus, the
quality of the Pareto front heavily relies on these three
parameters. It is worth noting in the parameter sensitivity
study that: (1) ω decreases from 0.8 to 0.4 with a step size
of 0.1; (2) c1 decreases from 2 to 0.2 with a step size of
0.2 and (3) c2 increases from 0.2 to 2 with a step size of
0.2. Also, for the case where one parameter is investigated,
the remaining two parameters are updated based on the self-
adaptive parameter updating rule defined by Eqs. (12)-(15) in
Section IV-A.
Tables 11-13 summarize the simulation results of the three

performance metrics for Function F1 under different settings
of the three control parameters, respectively. Fig.6 displays
the obtained Pareto fronts for Function F1 under different
settings of the three control parameters. We can observe
from Tables 11-13 that the average performance of the
proposed optimizer heavily relies on values of the three main
control parameters of each particle. The proposed MO PSO
approach can provide a formidable performance when the
inertia weight and cognitive acceleration parameter decrease,
whereas the social acceleration parameter increases. Such
an observation could be probably interpreted by the facts
that: (1) the exploration ability of the proposed method may
benefit more from small values of inertia weight and the
cognitive acceleration parameter; (2) the exploitation ability
of the proposed approach could be more likely promoted for
greater values of the social acceleration parameter.

Note that the observation noted above complies with
discoveries of some currently-existing works concentrating
on improving PSO algorithms by setting different parameter
updating strategies [31], [32], [33]. Thus, simultaneously
considering the convergence condition given by Eq. (17) and
the above simulation results given above, we have empirically
set that ωmax = 0.8, ωmin = 0.4, c1s = c2f = 2 and c1f =

c2s = 0.2 for our proposed PSO optimizer. This parameter
setting can not only sufficiently ensure the convergence of
our proposed PSO algorithm, but may well balance the
exploration and exploitation capabilities of the proposed
optimizer.

VIII. CONCLUSION AND FUTURE WORKS
To obtain high-quality Pareto fronts for MO problems,
a novel PSO algorithm (called MSAPSO) is first proposed
in this study. Attempt to well balance the exploration and
exploitation abilities of the proposed algorithm, a self-
adaptive parameter updating rule is developed to tune the
three key control parameters of each particle. Also, we have
investigated the convergence of MSAPSO with respect to
different values of the three control parameters due to the fact
that the convergence is of great importance in applications
of PSO on MO issues. Subsequently, a parameter selection

principle is provided to sufficiently ensure the convergence
of the proposed PSO.

Utilizing the proposed algorithm, this paper designs an
MSPAO-based MO approach, in which a fixed-size external
archive is designed to preserve the non-dominated solutions
searched by particles. To well distribute the Pareto front,
the circular sorting method is combined with the elitist-
preserving approach to renovate the external archive. The
performance of the proposed method is evaluated by 16 MO
test functions against 4 well-known MO methods. The simu-
lation results confirm that the proposed method significantly
dominates the four compared MO methods at a confidential
level of 95% over the 16 test functions. This indicates that
the proposed method can be regarded as an alternative for
handling MO problems.

The proposed method and results shown in this paper
raise several interesting aspects that deserve some future
studies. Firstly, the proposed method could be compared
with more state-of-the-art versions of MOEA/D (such as
MOEA/D-AAP andMOEA/D-SSC) in order to further verify
its effectiveness. Secondly, the proposed could be integrated
with more advanced decomposition strategies, such as R2
indicator [19], to promote its convergence and diversity over
some complicated MO issues, such as DLTZ problems with
more than three objectives. Last but not least, the second-
order convergence of the proposed PSO could be investigated
in order to provide some insights on improving the proposed
method.

APPENDIX A
This Appendix analytically investigates the convergence of
MSAPSO. Note that since each dimension in velocity and
position vectors of each particle inMSAPSO is independently
updated from others, the motion rule as shown by Eqs. (5)-
(6) in this algorithm can be simplified into a one-dimensional
dynamic system as follows:[

Xm(k + 1)
Vm(k + 1)

]
=

[
1 − c ω

−c ω

] [
Xm(k)
Vm(k)

]
+

[
c
c

]
P (22)

where:

c = c1r1 + c2r2 (23)

P =
c1r1 · pbestkm + c2r2 · gbest

c1r1 + c2r2
(24)

Let λ1,2 be the characteristic roots to the above dynamic
system. Then, we can readily obtain that the characteristic
equation and roots to this system as:

λ
2
− (1 + ω−c)λ + ω = 0 (25)

λ1,2 =
1 + ω−c±

√
(1 + ω − c)2 − 4ω
2

(26)

Clearly, the dynamic system represented by Eq. (22)
converges, if and only if:

Max{| λ1 |, | λ2 |} < 1 (27)
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FIGURE 7. Pareto fronts searched by different methods for different test functions.

Since the characteristic roots λ1,2 can be real or complex,
both these two cases are, respectively, discussed in the
following contents.

(a) For the case where λ1,2 are complex, namely, λ1,2 ∈ C,
where C is the imaginary domain.
Lemma 2: For the dynamic system defined by Eq. (22),

λ1,2 ∈ C, if and only if:{
1 + ωm − 2

√
ωm < c < 1 + ωm + 2

√
ωm

ωm ≥ 0
(28)

Proof: It is clear from the characteristic equation given by
Eq. (25) that λ1,2 are two complex roots, if and only if:

(1 + ωm − c)2 − 4ωm < 0 (29)

Lemma 2 is easily proved by expanding Eq. (29).
Lemma 3: For the case where λ1,2 ∈ C, the dynamic

system given by Eq. (22) converges, if and only if:{
1 + ω − 2

√
ω < c < 1 + ω + 2

√
ω

0 ≤ ω < 1
(30)
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FIGURE 8. Pareto fronts searched by different methods for different test functions.

Proof: It is clear from Eq. (26)that, for λ1,2 ∈ C, we have:

Max{| λ1 |, | λ2 |} =| λ1 |=| λ2 |=
√

ω (31)

Thus, in such a case, Max{| λ1 |, | λ2 |} < 1 holds, if and
only if:

√
ω < 1 (32)

Considering conditions given by Lemma 2 andMax{| λ1 |

, | λ2 |} < 1, it can be easily concluded that the dynamic

system denoted by Eq. (22) converges for the case where
λ1,2 ∈ C, if and only if:{

1 + ω − 2
√

ωm ≤ c ≤ 1 + ω + 2
√

ω

0 ≤ ω < 1
(33)

This completes the proof of Lemma 3.
(b) For the case where λ1,2 are real roots, namely, λ1,2 ∈ R,

where R means the real-valued domain.

77582 VOLUME 11, 2023



K. Yin et al.: Multi-Objective Optimization Approach Based on an Enhanced PSO Algorithm

FIGURE 9. Pareto fronts searched by different methods for different test functions.

Lemma 4: For the dynamic system given by Eq. (22), λ1,2
are two real roots, if and only if:{

c ∈ R, ω < 0
c ≤ 1 + ω − 2

√
ω or c ≥ 1 + ω + 2

√
ω, ω ≥ 0

(34)

Proof: It is evident from Eq. (25) that λ1,2 are two real
roots, if and only if:

(1 + ω − c)2 − 4ω ≥ 0 (35)

The proof of Lemma 4 can be readily completed by
expanding Eq. (35).
Lemma 5: For λ1,2 ∈ R, the dynamic system given by

Eq. (22) converges, if and only if:
0 < c < 2ω + 2, −1 < ω < 0
0 < c ≤ 1 + ω − 2

√
ω or

1 + ω + 2
√

ω ≤ c < 2ω + 2, 0 ≤ ω < 1
(36)

Proof: For any λ1,2 ∈ R, it is trivial from Eqs. (26)-(27)
that Max{| λ1 |, | λ2 |} < 1 meets, if and only if:

−1 <
1 + ω−c±

√
(1 + ω − c)2 − 4ω
2

< 1 (37)

It is clear that, for λ1,2 ∈ R, Eq. (37) can be rewritten as
follows:

c− ω − 3 < ±

√
(1 + ω − c)2 − 4ω < c− ω + 1 (38)

By expanding Eq. (38), we can have that Max{| λ1 |,

| λ2 |} < 1 holds in the case where λ1,2 ∈ R, if and only
if: {

2ω + 2−c > 0
c > 0

(39)

Simultaneously considering conditions given byLemma 4
and Max{| λ1 |, | λ2 |} < 1 given by Eq. (39), it can be easily
proven that Lemma 5 is satisfied in the case where λ1,2 ∈ R.
Lemma 6: The dynamic system given by Eq. (22) con-

verges in any value domain, if and only if:{
0 < c1r1 + c2r2 < 2ω + 2
−1 < ω < 1

(40)

Proof: Integrating conditions given by Lemma 3 and
Lemma 5 together, it is trivial that the dynamic system given
by Eq. (22) converges in any value domain, if and only if:{

0 < c < 2ω + 2
−1 < ω < 1

(41)

Substituting Eq. (23) into Eq. (41), the proof of lemma 6
can be easily completed.

APPENDIX B
This Appendix shows the obtained front of each method for
each test function, as illustrated in Figs. 7-9.
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