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ABSTRACT In recent years, the SC FFT architecture has become popular for processing serial data.
It requires a small number of components and achieves full utilization of the butterflies, which improves
previous serial FFT architectures. By contrast, the MSC FFT architecture, which is the parallel version of
the SC FFT, has not been studied in depth in the literature and it has not been analyzed if this new type of FFT
architecture improves previous parallel FFTs. The aim of this paper is to provide a rigorous study of MSC
architectures that expands the field of FFT architectures by incorporating fundamental knowledge about this
promising FFT. With this goal, this paper proposes new MSC FFT architectures for any FFT size, radix,
and parallelization. In order to derive these architectures, efficient modules have been developed. These
modules are connected by permutation circuits to create the architectures. The optimization of the modules
results in a reduction in the number of rotators and their complexity compared to previous designs. As a
result, the proposed architectures not only achieve high throughput due to their parallel nature but also the
lowest hardware complexity among parallel pipelined FFT architectures so far. To verify the architectures
and compare the proposed approach to previous works, a 1024-point MSC FFT architecture has been
implemented. Experimental results show that the architecture achieves a throughput of 1.32 gigasamples
per second, and reduces the area and power consumption significantly with respect to previous designs.

INDEX TERMS Fast Fourier transform (FFT), multi-path serial-commutator (MSC), pipelined architecture,

radix-2%.

I. INTRODUCTION gate arrays (FPGAs), two main types of FFT architectures

The fast Fourier transform (FFT) is a key algorithm in the
field of digital signal processing. It plays an important role
in multiple applications such as digital communications [1],
[2], [3], [4], [5], [6], [7], radio astronomy [8], [9] and medical
imaging [10]. In order to meet the stringent requirements of
these and other modern applications, hardware designers are
constantly searching for new FFT architectures that improve
the state-of-the-art and provide highly efficient solutions.
For applications that are implemented on application-
specific integrated circuits (ASICs) or field-programmable
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can be used: iterative and pipelined. Iterative FFT architec-
tures [4], [11], [12] consist of a bank of memories and one
or several processing elements. The processing elements read
data from memory, process them, and store the results back in
memory until all the computations of the FFT algorithm have
been calculated. Conversely, pipelined FFT architectures [13]
process data by a set of stages connected in series in a
pipeline. Serial pipelined FFT architectures receive one sam-
ple per clock cycle. Among them, single-path delay feedback
(SDF) [14], [15], single-path delay commutator (SDC) [16],
[17] and single-path serial commutator (SC) [18], [19], [20],
[21], [22], [23] are the most common architectures. Par-
allel pipelined FFT architectures process several samples
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per clock cycle, which results in higher throughput. Among
them, multi-path delay feedback (MDF) [1], [2], [3], [5S],
[6], [24], [25], [26], [27], [28] and multi-path delay com-
mutator (MDC) [29], [30], [31], [32], [33], [34], [35] are
the most common architectures. Additionally, in a previous
work [36] we proposed the first multi-path serial commutator
(MSC) FFT architecture, which is the parallel version of
the SC FFT.

Among serial FFT architectures, SC FFTs [19], [20], [21],
[22], [23] have become popular in the last years due to the fact
that they require a small number of components and achieve
full utilization of the butterflies. Although SC FFTs are more
efficient than other architectures for the case of serial data,
no previous work has studied if MSC FFT architectures,
which are the parallel version of SC FFTs, are also more
efficient than other parallel pipelined FFT architectures in the
literature.

The aim of this paper is to provide a rigorous analysis of
MSC architectures that expands the field of FFT architectures
by incorporating fundamental knowledge about this promis-
ing FFT architecture. With this goal, this paper proposes
new MSC FFT architectures for any FFT size, radix-2*%, and
parallelization. In order to derive these architectures, efficient
modules for radix-22, 23, 24, and 2> have been developed.
These modules are connected by permutation circuits to cre-
ate the architectures. The optimization of the modules results
in a reduction in the number of rotators and their complexity
compared to previous designs. As a result, the proposed archi-
tectures not only achieve high throughput due to their parallel
nature but also the lowest hardware complexity among paral-
lel pipelined FFT architectures so far.

The contributions of this paper are:

o A thorough analysis of MSC FFT architectures, which is
anew type of FFT architecture that has not been studied
in depth in the literature yet.

« Derivation and explanation of MSC architectures for any
FFT size, radix-2%, and parallelization.

o A modular approach that allows for designing MSC
FFT architectures by connecting basic modules with
permutation circuits.

o« New MSC architectures that reduce the number of
rotators and their complexity with respect to previous
architectures in the state-of-the-art.

o Experimental results that show the improvement in area
and performance of the proposed approach with respect
to the state-of-the-art.

This paper is organized as follows. In Section II,
we review the background that is required to understand
this work. In Section III, we present the radix-2*¥ mod-
ules, which are the basic elements used to build the
proposed architectures. In Section IV, we present the pro-
posed architectures. In Section V, we provide implementation
results and compare them to previous approaches. Finally,
in Section VI, we summarize the main conclusions of the

paper.
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FIGURE 1. Flow graph of a 16-point radix-2 DIF FFT.

Il. BACKGROUND
A. THE FAST FOURIER TRANSFORM
The N-point discrete Fourier transform (DFT) of a signal

x[n]l,n=0,...,N — 1, is defined as
N—1
X[k]:Zx[n] Wk k=0,1,...,N—1, €))
n=0

where X[k] is the DFT coefficient for frequency k, and the
term W]Gk = e/ Fnk is called twiddle factor. In this work,
we assume that N is a power of 2.

The FFT reduces the computational complexity of the DFT
from O(N?) to O(N log, N). This is possible thanks to the
fact that the calculation of the DFT includes operations that
are repeated for different frequencies.

FFT algorithms are generally represented by their flow
graph. Fig. 1 shows the flow graph of a 16-point FFT [37]
decomposed according to the radix-2 decimation in frequency
(DIF) algorithm. It consists of n = log, N = log, 16 =
4 stages. Each stage includes butterflies and rotations. The
butterflies calculate additions and subtractions, whereas the
rotations calculate the multiplications by the twiddle factors,
which are represented by the numbers ¢ in between stages.
A rotation by ¢ corresponds to a multiplication by

Wl = eI, @

B. RADIX-2k ALGORITHMS

Apart from radix-2 DIF, there exist other FFT algo-
rithms [37]. Fig. 2 shows the flow graphs to build radix-22,
23 and 2* DIF FFTs. The radix-2? DIF algorithm is obtained
by breaking down the angle ¢ at each odd stage into a trivial
rotation by ¢9 = N /4 and a remaining angle, ¢/, i.e., ¢ =
¢’ + N /4. Then the rotation by ¢’ is moved to the following

VOLUME 11, 2023



G.-T. Deng et al.: Radix-2 MSC FFT Architectures

IEEE Access

Stage 1  Stage 2
x[n] X[4k]

x[n+N/4] X[4k+2]

x[n+2N/4] X[4k+1]

x[n+3N/4] X[4k+3]

(@)
Stage 1  Stage2  Stage 3
x[n] X[8k]

x[n+N/8] X[8k+4]
x[n+2N/8] X[8k+2]
x[n+3N/8] X[8k+6]
x[n+4N/8] X[8k+1]
x[n+5N/8] X[8k+5]
x[n+6N/8] X[8k+3]
x[n+7NR] 2 X[8k+7]

(d)

Stage 1 Stage2 Stage3  Stage 4
x[n] X[16k]

x[n+N/16] X[16k+8]
x[n+2N/16] X[16k+4]
x[n+3N/16] X[16k+12]
x[n+4N/16] X[16k+2]
x[n+5N/16] X[16k+10]
x[n+6N/16] X[16k+6]
x[n+7N/16] X[16k+14]

X[16k+1]
X[16k+9]
X[16k+5]
X[16k+13]
X[16k+3]
X[16k+11]
X[16k+7]
X[16k+15]

e “Mﬁmﬁvmm
A +1ON/16] /iy Q\Vlb"', ~
x[n+11N/16] ”’A l\\‘m“ WA»

x[n+12N/16] ”A\‘\!’.‘ (X%
/ANSAY WM

I.\UIA\DAOA
AN

x[n+13N/16]
x[n+14N/16]
x[n+15N/16]

()

FIGURE 2. Flow graphs for radix-2K DIF FFT. (a) Radix-22. (b) Radix-23.
() Radix-24.

stage according to [30]
A e—./zﬁnlﬁ’ +B. e—j%(¢’+%) = (A¥/B)- e—j%”dﬂ’ (3)

where A and B represent the input data of the butterfly. As a
result, in radix-22 algorithms, odd stages only include trivial
rotations. These trivial rotations represent a multiplication
by —j, which can be calculated by exchanging the real and
imaginary parts of the data and changing the sign of the
resulting imaginary part. This simplifies the rotators in odd
stages of the FFT architecture, placing the most complex
rotations in even stages. Likewise, higher radices such as
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FIGURE 3. Permutation circuits in FFT architectures. (a) Circuit for
serial-serial EBE. (b) Circuit for serial-parallel EBE.

radix-23, radix-24, and radix-2° place the most complicated
rotations every three, four, and five FFT stages, respectively.

C. SYMMETRIC ANGLE SETS

In FFT architectures, the components that calculate the rota-
tions by the angles ¢ according to (2) are called rotators.
Generally, the same rotator calculates rotations by several
angles. In order to reduce the complexity of the rotators,
it is desirable that the rotated angles can be obtained by
symmetries. In this context, a symmetric angle set (SAS) [31],
[38], [39] is defined as a set of angles mm /2 + o, where m =
{0,1,2,3} and @ € [0, r/4]. Any rotation in a symmetric
angle set can be calculated as a rotation by an angle in the
range [0, /4], plus a trivial rotation and/or an exchange of
the real and imaginary parts of the rotation coefficient.

D. M-ROTATOR

Based on the idea of SAS, an M -rotator or M -rot is defined as
arotator that can rotate angles in M different SAS. This is an
indication of the complexity of the rotator, as larger M leads
to higher complexity due to the fact that a larger number of
different SAS must be integrated into the same rotator.

Note that a twiddle factor with the angles Wy = e Zfﬂq’,
for¢p = 0,...,L — 1is an (L/8 + I)-rot, which means
that it includes L/8 + 1 angles in [0, 7/4]. From them, the
rest of the angles can be calculated by utilizing symmetries.
For instance, for the twiddle factor Wg only the angles 0 and
/4 are in [0, /4], whereas the rest of the angles can be
obtained by symmetries. As a result, Wy is a 2-rot. Similarly,
Wig is a 3-rot and W3y is a 5-rot.

E. PERMUTATION CIRCUITS IN FFTs
Apart from rotations and butterflies, FFT architectures
include permutation circuits. These permutation circuits are
based on the theory of bit-dimension permutations explained
in [40].

A bit-dimension permutation considers a set of n dimen-
sions x;_1,...,xo that can take the values O or 1. These
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Radix-2° Module

< Radix-2* Module >
«————— Radix-2’ Module ———>
<«— Radix-2? Module —>
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
PE_0-2-4-6-8-10-12-14 PE_0-4-8-12 PE_0-8 PE_O
H lro -EE?— III 1l 1 fra _g_ II. UM e II. 11 fro L
2 0 2 0 2 0 2 3R: 3-Rot
2R: 2-Rot
PE_ 1-3-5-7-9-11-13-15 PE_2-6-10-14 PE_4-12 PE_8 R2 1R: 1-Rot
2R .0 I l 1R L 0 I l 1R W 0 I ' TR TR: Trivial Rot
H ra Illl A lra LR IIIl 1 lr2 III JARTHS 3! || CR: Constant Rot
2 0 2 0 2 0 2
3214 4213 4312 4321 4321

s, 0

FIGURE 4. Radix-2X modules for 2-parallel FFT architectures.

values can move to other dimensions creating a permutation,
and this permutation of n elements infers a permutation of
N = 2" data [40]. The simplest possible permutation is
called elementary bit-exchange (EBE). An EBE exchanges
the elements in two dimensions and is represented as o : x; <>
xi, where x; and x; represent the j-th and k-th dimensions,
and j > k. The circuits used to calculate bit-dimension per-
mutations are classified into serial-serial (ss), serial-parallel
(sp), and parallel-parallel (pp) [40]. Fig. 3(a) shows the basic
circuit used to calculate a serial-serial EBE. It includes a
buffer of length L and two multiplexers, where the length of
the buffer is calculated as
2 — 2k
7 “

and p is the number of parallel dimensions, which is related to
the number of parallel paths of the architecture, P, according
to p = log, P.

Fig. 3(b) shows the basic circuit used to calculate a serial-
parallel EBE. In this case, the length of the buffer is

2

L= (5)

Finally, a parallel-parallel EBE is simply an interconnection
circuit that permutes the parallel paths of the architecture.

’

F. DATA ORDER IN FFT ARCHITECTURES
The circuits for data permutations explained in Section II-E
transform the data order. To model the data order at the
different stages of the architecture, parallel branches of the
flow graph of the FFT are identified by an index I, being [ =
0 for the upper branch and I = N — 1 for the lower branch.
For instance, in the flow graph of Fig. 1, I = 3 corresponds
to x[3] at the input of the FFT, and I = 1 corresponds to X [8]
at the output of the FFT.

The binary representation of the index is defined as I =
bn—1, ..., by, where the symbol (=) is used to relate a number
to its binary representation.
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FIGURE 5. Processing element of an SC FFT.

As aresult, the data flow at any stage of an FFT architecture
can be defined by indicating the placement of the bits b;.
As an example, Fig. 4 include arrows under the architecture.
Each set of arrows shows the order at the corresponding stage
of the FFT. For instance, at stage 2 the arrow includes the
numbers 4213]0, which corresponds to bsbab1b3|by and the
vertical bar distinguishes between data that flow in series and
data that flow in parallel at this point of the circuit. The part
to the left of the bar indicates the time of arrival relative to the
arrival of the first value, 7, and the part to the left the parallel
terminal, 7', being in this example t = bybyb1b3 and T = by.
For instance, at the second stage of Fig. 4, the value with index
I =11 = 01011 = bab3byb1bg in the flow graph is received
at time t = bybob1b3 = 0011 = 3 atterminal T = by = 1.
Likewise, this can be applied to identify the position of other
indexes in the data flow of the architecture, which defines
the exact order of the data at any place of the circuit. Further
information on this notation can be found in [13] and [40].

G. THE BIT b,_s IN FFTs
In the previous sections of the background, we have discussed
important considerations for the rotators and for the permuta-
tion circuits in FFT architectures. In this section, we analyze
the butterflies.

In a flow graph of the FFT, butterflies operate on pairs
of values whose index differ in the bit b,,_; [13], [30], [41],
where n is the total number of stages and s is the stage. If two
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TABLE 1. Rotations at the Stages of the Radix-2K modules.

Stage
Path
‘ 1 [ 2 [ 3 [
2-parallel
0 2 4 6 0 4
O | il W | whwh | e | W
W312’ W332 i W352 i W%Z W(%Z’ W%Q
| e W B Wag | Tan Wan | s waz | ows,
W3z Waz. Wa5, Wiy | Wsp, Wap
4-parallel
0 4 8 12 0 8 0 0
A T e e
N A A
s W W W T
3 W32’ W32’ W32 i WS? W32’ W32 W32 W32
8-parallel
0 8 0 0
s AN e
1 W312’ W392 W322 W%? W%?
s e e
. T W
; . e
‘ e e
Y e T
7 W32’ W32Q W32 W32 W32
St
: :
IN ! Sz OUT
1 0
o 4—{DHD}->>!
So

FIGURE 6. General structure for 1-rots in the PEs of the proposed MSC
FFT architectures.

indexes Iy and Iy differ in b,_g, their binary representations
are similar except for the bit b,,_;. As the weight of b,_; is
2" =S then I} — Iy = 2"5.

If we consider the flow graph in Fig. 1, it represents a
16-point FFT, so n = 4. For stage s = 1, 2"~° = 24-1 _ g,
which corresponds to the separation between values that are
processed together in the butterflies of the first stage: x[0] and
x[8], x[1] and x[9], etc. For stage s = 2,2"~ = 2*"2 = 4 and
it can be observed that pairs of values into a butterfly of the
second stage differ in 4. Likewise, b, holds for other stages
and for any FFT size.

Ill. RADIX-2¥ MODULES FOR THE PROPOSED MSC FFTs
The design of the proposed MSC FFTs is based on a set of
modules for radix-2* that calculate 2€-point FFTs efficiently.
By combining these modules and connecting them with per-
mutation circuits, the proposed MSC FFTs are obtained.
In this Section, we present the radix-2¥ modules for 2, 4, and
8-parallel data, whereas the proposed MSC FFT architectures
are described in Section IV.

Fig. 4 shows the radix-2¥ modules when the number of
parallel paths is 2. These modules consist of processing ele-
ments (PEs) that include half butterflies (%RZ), radix-2 but-
terflies (R2), rotators, and permutation circuits. Throughout
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TABLE 2. Timing diagram of the rotator in Fig. 6.

Time | IN | So 81 So ouT Multiplicand
0 X0 0 - - - -
1 Yo 0 0 0 x0C + yoS .
C —jS
2 X1 1 0 1 —x0S + yoC
1 )

3 y1 0 0 x18 +y1C s—jc
4 X2 1 0 1 —x1C +y18
5 y2 1 1 0 | —x28+y2C .
6 |x3| 0 1 1| —x2C—ya8 §-ic
7 ) 0 1 0 —x3C S

y3 x3C +y3 —Cc—js
8 - - 1 1 —x35 — y3C

IN ouT

B!
=i

P —

;

FIGURE 7. Rotator by W:’?z’ ¢=0,4,8,12.

—
IN (1)

0 ouT
1

FIGURE 8. Trivial rotator in radix-2¥ modules.

the paper, diamond-shaped rotators are trivial rotators (TR);
rotators in a square are constant rotators (CR), 1-rots (1R),
2-rots (2R), or 3-rots (3R); and general rotators (GR) are
illustrated as (®).

The modules that are used for different radices are high-
lighted at the top of Fig. 4. Note that the radix-2> module
corresponds to the last two stages. Likewise, the radix-23,
2% and 2° modules correspond to the last three, four, and five
stages, respectively.

As explained in Sections II-F and II-G, arrows at the
bottom of the figure define the order of the data at the cor-
responding stage of the circuit and data that differ in bit b,,_;
must be placed together at the input of the butterfly. As the
PEs of the proposed approach operate on pairs of data that
arrive to them in consecutive clock cycles, the bit b,_s must
be placed in the LSB of the horizontal arrow at the stages
that include PEs. Conversely, for butterflies that process two
data in parallel, as in stage 5 of Fig. 4, the bit b,_; must be
placed in the LSB of the vertical arrow, which is the bit closer
to the intersection of the arrows. These rules hold for all the
proposed designs.

The structure of a PE is shown in Fig. 5 and follows the
structure of the PEs in the SC FFT [18]. The PEs consist of a
half-butterfly and a half-rotator. In the figure, D stands for
delay and consists of a register that delays data one clock
cycle.
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< Radix-2° Module >
< Radix-2* Module —>
<«—————— Radix-2’ Module ———>
<«—— Radix-2> Module —>
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
PE _0-4-8-12 PE_0-8 PE_0
; 2R lll - . TR 0 -~ [
— -R2 1 1 —R2 1 {1 —R2 =
2 0 2 0 2
PE_2-6-10-14 PE_4-12 PE 8 R2 R2
1] 11 —R2 — -R2 — —
Lu2 JUETTH S#e b w2 [
PE 1-5-9-13 PE_2-10 PE_4
i 2R 0 I' 1R 0 = CR
11 “Rr2 1 1 fgra X o1 11 Lgra _E L] | 3R: 3-Rot
= 0 Z 0 2 2R: 2-Rot
PE_3-7-11-15 PE_6-14 PE_12 R2 R2 | | 1R:1-Rot
e |5 I' N e M s & CR: Constant Rot
—t —R2 i _R2 —~ —R2 — :
L2 L e amal 'R2 19 N
324 423 432 432 432

FIGURE 9. Radix-2k modules for 4-parallel FFT architectures.

The PEs in the proposed architectures differ in the rotation
angles. Table 1 shows the rotation angles for different parallel
paths and stages. The case of 2-parallel data is the first one in
the table. For instance, the PE at the upper path of the second
stage rotates by Wég for ¢ = 0,4,8, 12, which is a 2-rot,
whereas the PE at the lower path of the second stage rotates
by W4, for ¢ =2, 6, 10, 14, which is a 1-rot.

The general structure for the 1-rots in the PEs of the
proposed MSC FFT architectures and their timing diagram
are shown in Fig. 6 and Table 2, respectively. The rotator
receives the real and imaginary parts of the input x + jy in
consecutive clock cycles. First, they are multiplied by the real
and imaginary part of the coefficient C + jS that represents
the angle. Then, the corresponding pairs of values are added
to provide the real and imaginary parts of the outputs in
consecutive clock cycles. The multiplications by C and S are
constant multiplications, so they are easily implemented as
shift-and-add. In fact, as the input is multiplied by both C
and S simultaneously, they are implemented as a multiple
constant multiplication (MCM) [42], [43].

The 2-rots in the proposed architectures are similar to
the 1-rots, with the only difference being that the rotator
multiplies by two constants, Cyp + jSo and C; + jS;. These
multiplications create a reconfigurable MCM (RMCM) prob-
lem that is solved according to [44]. Likewise, the constant
multiplications in M -rots with M larger than two are designed
by solving an RMCM problem.

A special case is the rotator by W;Z with¢ = 0,4, 8, 12 at
the upper path of the second stage in Fig. 4. W302 is a rotation

81502

by 0° whose imaginary part is zero; W382 is arotation by —90°
whose real part is zero; and Wg‘z and W3122 are rotations by
—45° and —135° whose real and imaginary parts are equal
in magnitude, i.e, |C| = |S]|. All these properties allow for
simplifying the rotator to the structure in Fig. 7. It can be
observed that this rotator only requires one real multiplier,
which is only used for the rotations by —45° and —135°. This
is possible due to the fact that the adder is moved before the
multiplier, which allows for calculating (x + y)C instead of
xC + yC, and (x — y)C instead of xC — yC.

Another special case is the trivial rotator at the upper path
of the third stage of the radix-2¥ modules in Fig. 4. According
to Table 1, this rotator rotates by W302 and W382, which are
rotations by 0° and —90°, respectively. The corresponding
circuit is shown in Fig. 8. For the rotation by 0°, the circuit
simply passes the data unchanged by selecting the input O in
the multiplexers. For the rotation by —90°, the real part of the
input is first stored in the register and then the control signal
of the multiplexers is set to 0. This changes the sign of the real
part and, then, swaps the real and imaginary parts of the data,
which calculates the desired rotation as (x 4 jy)(—j) = y — jix.

Fig. 9 shows the radix-2¢ modules when the number of
parallel paths is 4. The higher parallelization of these modules
reduces the complexity of the shuffling circuits with respect
to 2-parallel ones. Furthermore, the rotations at the same
stage are distributed among all the rotators in parallel. This
can be observed by comparing the rotation angles in 2-parallel
and 4-parallel radix-2F modules in Table 1. Thus, although the
number of rotators increases, their complexity is reduced. For
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Radix-2> Module

< Radix-2* Module >
«—— Radix2’ Module —— »
<«— Radix2> Module —>
Stage 1 Stage 2 Stage 3 Stage 4 Stage 5
PE_0-8 PE_O
R '|| I
—H TR2 Ol ;‘--- ‘R
PE 4-12 .ﬁ PE 4 R2 R2 R2
—H g2 1>§ 1 LRZ—% a u |
2 0 2
PE_1-9 PE_1
IR l' ~ [ R
- £R2 1 }-— ;RZ HX - -
PE 5-13 PE 5 R2 R2 R2
1R 0 . CR CR TR
1 1 1 1
— “ra2 1 g2 i |
e Ly L o
PE_2-10 PE_2
1R 0 CR
1
| %Rz HI— ¢ 1] }- %R?. |5 i B
PE 6-14 PE 6 R2 R2 R2
1R 0 . CR TR
1 1 1 1
— -R2 —{ -R2 P |
SR ol } - X —&>
PE_3-11 PE_3
1R 0 . CR
: L ! 3R: 3-Rot
—1 "R2 1 “Rr2 | - | 3R:
- 5 Tl—} 2 % 2R: 2-Rot
PE 7-15 PE 7 R2 R2 R2 | IR:1-Rot
1 1R 0 1 CR CR TR TR: Trivial Rot
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FIGURE 10. Radix-2k modules for 8-parallel FFT architectures.

instance, the second stage of the 2-parallel radix-2% modules
requires a 2-rot and a 1-rot, whereas the second stage of the
4-parallel case requires 3 1-rots and 1 trivial rotator. Apart
from these considerations, the 4-parallel radix-2% modules are
based on the same ideas presented for the 2-parallel radix-2
modules.

For 8-parallel data, the radix-2¥ modules are shown in
Fig. 10. These modules reduce the complexity of the permu-
tation circuits and the rotators even further with respect to
the 4-parallel case. The exact rotation angles for each rotator
are shown in Table 1. The 8-parallel radix-2* modules are
based on the same ideas presented for the 2-parallel radix-2¢
modules.

IV. PROPOSED MSC FFT ARCHITECTURES

In this section, we describe the proposed MSC FFT archi-
tectures. These architectures are obtained by combining the
modules shown in Section III.
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For sizes smaller than or equal to 32, the proposed MSC
FFT architectures correspond to the radix-2¢ modules pre-
sented in Section III. Note that any of the proposed radix-2*
modules calculates an N-point FFT, where N = 2X. This
holds for the 2, 4, and 8-parallel modules in Figs. 4, 9 and 10.

Fig. 11 shows two architectures to calculate a 64-point 2-
parallel radix-2> MSC FFT. They consist of two 2-parallel
radix-23 modules like the module shown in Fig. 4, two
general rotators, and permutation circuits that connect the
modules. The architectures in Figs. 11(a) and 11(b) differ in
the data order at the FFT stages, which is shown at the bottom
of the figures. As a consequence, the lengths of the buffers
in both architectures are different, although the number of
components is the same. The exact EBEs carried out at the
stages of the architectures are indicated under the corre-
sponding permutation circuits. As for the 64-point 2-parallel
radix-23 architectures in Fig. 11, FFT architectures with other
sizes and radices also allow for different data orders at the
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FIGURE 11. Proposed 64-point 2-parallel radix-23 MSC FFT architecture with different data orders.
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FIGURE 12. Proposed 64-point 4-parallel radix-23 MSC FFT architecture.

input, output, and through the FFT. In fact, the number of For the proposed MSC FFTs, the only considerations for
alternatives is large, as happens for MDC FFTs [45]. the data order are:
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FIGURE 13. Proposed 256-point radix-2% MSC FFT architectures. (a) 2-parallel. (b) 4-parallel.
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FIGURE 14. Proposed 1024-point 4-parallel radix-25 MSC FFT architecture.

o Bit b,_; is used for dealing with the butterfly operation.
This bit is placed at the smallest serial dimension, i.e.,
Xp, for the stages in which SC PEs are used; and in
the smallest parallel dimension, i.e., xo, for the stages
where R2 butterflies are used, as they operate on two
contiguous parallel paths.

o The bits b; have been placed in serial or parallel
dimensions by following the rotator allocation prin-
ciple [31]. This allows for simplifying the rotators’
complexity.

VOLUME 11, 2023

e—————— Radix-2® Module ——————————»

Stage 6 Stage 7 Stage 8 Stage 9 Stage 10
PE_ THoskermd e LISHZ R be o |
0-4-8-12 of| o8 of] PE- B
R2 R2
PE_ sk | e [ 1°H 7 Ryr PE 8 B
2-6-10-14 of] 412 of] PE-
pe_ | OHsslemm pe_ [1SHZ B pe 4 |
1-5-9-13 of] 210 of] -
R2 R2
0 0
PE_ 1s|ey | PE_ 7 |efy
3.7-11-15[ T2 of] 6-14 of] PE-12 ®

98732654 98742653 98743652 98743652 98743652

Once we comply with the principles described above, the rest
of the bits can be arranged arbitrarily, leading to different data
orders. Then, the length of the permutation circuits inside the
modules is determined by the EBEs that are calculated, and
the permutation circuits between the radix-2¥ modules are
obtained according to the methodology presented in [40].
Fig. 12 shows the proposed 64-point 4-parallel radix-23
MSC FFT architecture. The architecture consists of two 4-
parallel radix-2° modules like the module shown in Fig. 9,
four general rotators, and permutation circuits that connect
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both modules. Compared to the 2-parallel cases, the 64-point
4-parallel radix-2°> MSC FFT does not include serial-serial
permutation circuits in the radix-23 modules. By contrast, the
number of EBEs in between the radix-2> modules is larger.
The data order at the FFT stages is shown at the bottom of
the figure and the exact dimensions that are swapped by the
permutation circuits are shown at the bottom of these circuits.

The proposed architectures can be extended to different
number of parallel paths, radix, and FFT size by using the
modules described in Section III and connecting them with
general rotators and permutation circuits to adapt the data
orders. As examples of larger MSC FFT architectures, Fig. 12
shows two 256-point radix-2* MSC FFTs for 2 and 4-parallel
data, whereas Fig. 14 shows a 1024-point 4-parallel radix-2>
MSC FFT architecture. Note that the 256-point MSC FFTs
combine radix-2* modules, and the 1024-point MSC FFT
combines two radix-23 modules.

In general, a P-parallel N-point radix-2¢ MSC FFT archi-
tecture has a number of complex adders in the butterflies
equal to

Complex Adders = P - log, N, ©6)

which can be derived easily since each stage has P complex
adders regardless of the type of PE used for the stage. The
calculation of the complex memory can be split into the
memory in permutation circuits (Mpc) and the memory in
MSC PEs (Mpg). For the latter, we consider 2.5 complex
memory elements (5 real) per MSC PE according to Fig. 5.
This leads to:

Total Complex Memory = Mpc + Mpr = Mpc + 2.5 - PE,

)
where PE is the total number of processing elements. This
results in:

Total Complex Memory = (Mpc + PE)+ 1.5-PE, (8)

where the term in parenthesis is equal to N — P. By substitut-
ing this value and calculating the total number of processing
elements, the total memory in MSC FFT architectures can be
obtained as

Total Complex Memory = (N — P)
3P
+ 5 - (n—logy P-n/k1),  (O)

where [-] is the ceiling operation, n = log, N is the number of
stages, and P-(n—log, P-[n/k1) is the number of processing
elements in the architecture.

The calculation of the latency is analogous to the calcu-
lation of the total memory. The latency of an MSC PE is 2,
which results in

PE PE
Latency = Lpc + Lpg = | Lpc + 3 + 7 (10)

The latency in the term inside the parenthesis is (N /P — 1),
leading to a total latency of

Latency (cycles) = (]% — D+ (m—logy, P-[n/k]). (11)
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The throughput of the proposed architectures is equal to
the number of parallel data of the architecture, i.e.,

Throughput (samples/cycle) = P. (12)

V. COMPARISON AND IMPLEMENTATION RESULTS

Table 3 compares the proposed architectures with previous
radix-2% pipelined FFTs. The table is divided into architec-
tures for 2, 4, and 8 parallel paths. The first two columns
show the type and the radix of the architectures. The third to
seventh columns show the number of general rotators, 3-rots,
2-rots, 1-rots, and constant rotators. Columns eight and nine
show the number of complex adders in butterflies and the
total memory size considering complex data. Finally, the last
columns show the performance in terms of latency in cycles
and throughput in samples per cycle (S/c).

Regarding rotators, the proposed architectures reduce the
total number of rotators and their complexity. Whereas pre-
vious 2-parallel radix-2* FFT architectures require 2|n/4]
or more non-general rotators, the proposed 2-parallel radix-
2% architecture needs only a total of 1.5|n/4 . This represents
a saving of 25% in terms of non-general rotators. Regard-
ing the complexity of non-general roators, the proposed
2-parallel radix-2* MSC FFT architecture uses 2-rots and
1-rots, but no 3-rot. Conversely, previous 2-parallel radix-2*
FFT architectures use 3-rots [26], [30], [31] and in some cases
also 2-rots [31].

The simultaneous reduction in the number of non-general
rotators and their complexity can also be observed by com-
paring 4-parallel radix-2* FFT architectures. The number of
non-general rotators is 4|n/4] in [2] and [25], and 3|n/4]
in [30] and [31]. Conversely, in the proposed radix-2% 4-
parallel MSC FFT the total number of non-general rotators is
approximately 2.5|n/4], which represents a saving of 17% in
terms of non-general rotators. Additionally, the non-general
rotators in the proposed radix-2* 4-parallel MSC FFT have
lower complexity than those in previous 4-parallel FFTs. The
architectures in [2], [25], and [30] use 3-rots for non-general
rotators, the architecture in [31] uses 2-rots and 1-rot, and
the proposed architecture uses 1-rots and CRs, which are the
simplest ones.

The proposed 8-parallel radix-2* MSC FFT also reduces
the number and complexity of the rotators with respect to
previous works. In the proposed radix-2* 8-parallel MSC
FFT, the number of non-general rotators is approximately
5|n/4], and all of them are CRs. This improves [27] and [30],
which use 8|n/4| and 6[n/4] 3-rots, respectively. Compared
to [31], the proposed radix-2* FFT reduces the complexity
of the rotators, as it only requires CRs, while the number of
rotators is similar in both designs.

The proposed radix-2* and radix-2° MSC architectures
are also compared in Table 3. It can be observed that the
number of general rotators in the proposed radix-2> FFTs
depends on [n/5], whereas for radix-2* they depend on
[n/4]. By contrast, radix-2° FFTs include a larger number of
non-general rotators. Thus, the selection between radix-2* or
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TABLE 3. Comparison of radix-2X pipelined FFT architectures for an N-point FFT.
PIPELINED AREA PERFORMANCE
ARCHITECTURE Rotators Complex Complex Latency Th.
Type ‘ Radix GR 3-rot 2-rot 1-rot ‘ CR Adders Memory (cycles) (Sfc)
2-PARALLEL ARCHITECTURES
MDF [24] 2 2[n/2] |, 0 0 | 0 | 0 2n ON-1 T 3N /2 + 3n — 1 11 2
MDF [1] 22 2fn/2] =21 0 0 ! 0 ! 0 4n N N/2 2
MDF[26] | 24 2[n/a1 —2 | 2[n/4] | 0 | 0 | 0 4n N N/2 2
MDC [30] | 2% 2[n/4] —2 | 2\n/4] | 0 ! 0 ! 0 2n N N/2 2
MDC [31] | 2% 2/l =2 | /4] | [n+1)/4] | 0 ; 0 2n N N/2 2
22 2[n/2] =2 1 0 I 0 I 0 I 0 2n N —2+3(n—[n/2]) N/2—1+n—[n/2] 2
23 2fn/31-2 ] 0 | 0 | 05[n/3] | 0 2n N —2+3(n—[n/3]) N/2—1+n—[n/3] 2
Proposed | 2t || 2fa/4l—2, 0 | 05[n/4] | +E’(IJ/§)JA | 0 n N—2430n—[n/d]) || N2—14n—[n/4] | 2
2> || 2[n/51 -2 | 0.5(n/5] | ﬁ(’;{?)* : L(i?;);))/:J : 0 on N—2+3m—[n/5) || N2—1+n—T[n/5] | 2
‘ ‘ T 4-PARALLEL ARCHITECTURES
MDC [35] 4 3[n/21-3, 0 0 | 0 | 0 4n 8N/3 N/3 4
MDF 2] 24 4fn/4] —4 1 4ln/4] | 0 ! 0 ! 0 8n N N/4 4
MDF[25] | 24 A[n/4] -4 | 4ln/a] 0 } 0 } 0 8n N N /4 4
MDC [30] 24 4[n/4] —4 1 3n/4] 0 | 0 | 0 4n N N/4 4
[ [ [ [
MDC[31] | 2* 4n/4] — 4 : 0 : [n/4] : i%‘g : 0 4n N N/4 4
23 4fn/31—41 0 1 0 ! 0 L n/3) 4n N—4+6(n—2[n/3]) || NJA—1+n—2[n/3] | 4
Proposed 24 4[n/4] — 4 : 0 : 0 : 1.5[n/4] : [(n+1)/4] 4n N — 4+ 6(n—2[n/4]) N/4—1+n—2[n/4] 4
25 || 4fm/51—4, 0 | L15[n/5] | i(L;’/;J* | Lin+2)/5) 4n N—4+6(n—2[n/5]) || NJA—1+n—2[n/5] | 4
‘ " 8-PARALLEL ARCHITECTURES
MDF[27] | 2* 8[n/4]—8 | 8[n/4] | 0 | 0 | 0 16n N N/8 8
MDC [30] 24 8[n/4] —8 | 6ln/4| ! 0 ! 0 ! 0 8n N N/8 8
MDC [31] | 24 8[n/41-8, 0 | 0 | 8ln/4l | 2((n+1)/4) 8n N N/8 8
2t || 8faa]-8, o0 0 : 0 : 5W‘g 8n | N—8+12(n—3[n/4]) || N/S—1+n—23[n/a] | 8
Proposed L L L L +(2)
5 | | | 1 5l(n+1)/5]
25 8fn/51-8 , 0 0 , 35[n/5] @) 8n N—8+12(n—3[n/5]) || N/8—14+n—3[n/5] | 8

/A\: When (n mod 4)=3. *: When (n mod 5)=4. {: When (n mod 5)=3. 11: The increases in memory and latency are justified by the processing of two FFT channels.

TABLE 4. Comparison of the rotators complexity in 4-Parallel 128-Point
MSC FFTs.

FFT Rotators
Architecture | GR  2-rot 1-rot CR ‘ Total

[36] 4 4 3 2 1 13
Proposed 4 0 3 4 1 11

radix-2> mostly depends on the FFT size. For instance, for
N = 1024 points, [rn/5] = 2 and [n/4] = 3. This results in
fewer general rotators for radix-2°, being this radix preferable
for this FFT size. Conversely, for N = 4096, [n/5] = 3 and
[n/4] = 3, so radix-2* is preferred, as it requires the same
number of general rotators and less non-general rotators than
radix-2°.

Regarding complex adders in butterflies, the proposed
architectures achieve the theoretical minimum number of
adders, which is also achieved in other previous designs. This
theoretical minimum corresponds to one adder per parallel
branch in each stage and is due to the fact that, at each
stage, all branches in the flow graph include one adder.
As a consequence, data flowing through any branch of the
architecture must encounter at least one adder at each stage.
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The complex memory and the latency of the proposed
architectures increase slightly with respect to previous
approaches. This is the price that the proposed architectures
must pay in order to achieve the improvement in the number
of rotators and their complexity. However, the increase in
memory and latency is small and it is almost negligible for
medium-size and large FFTs. For instance, the proposed 2-
parallel radix-2* MSC FFT for 1024 points increases the
memory from 1024 to 1043, which is only 1.8 %, and the
latency from 512 to 518, which is an increase of 1.1 %. These
increases are small compared to the reduction of up to 25%
in the number of rotators and their complexity.

Finally, for all architectures in the table, the throughput in
terms of samples per cycle only depends on the parallelization
and is equal to P.

As a conclusion, compared to the state-of-the-art, the pro-
posed architectures are the most efficient ones in terms of
rotators. They reduce both the number and also the complex-
ity of non-general rotators with respect to previous designs.
The number of non-general rotators is reduced up to 25%
and the complexity is reduced by using simpler M -rots than
in previous approaches. This improvement comes at the cost
of slight increases in latency and memory, which are small
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TABLE 5. Comparison of parallel pipelined architectures on ASICs.

[33] [34] [28] [7] | Proposed
Architecture MDC MDC MDF MDC MSC
FET Size (V) 1024 1024 1024 2048 [ 1024 | 512 [ 128 1024
Radix Radix-4 Radix-22 Mixed radix Radix-4/8 Radix-2°
Parallel Streams (P) 8 2 4 4 4
Word Length (WL) 16 In: 32/ Out:40 16 In:8 / Out:12 16
Technology (nm) 65 65 65 90 40
Voltage (V) 0.6 0.6 0.45 1.0 0.9
Clock Rate (MHz) 290 400 20 40 330
Throughput (GS/s) 2.32 0.80 0.08 0.16 1.32
Core Area (mm?) 8.30 3.60 3.34 3.10 0.18
Power (mW) 82.00 60.30 13.83 6372 [ 6292 | 5751 [ 51.69 30.90
@ throughput rate @ 2.32 GS/s @ 0.80 GS/s @ 0.08 GS/s @ 0.16 GS/s @ 1.32 GS/s
Normalized Area (mm?2) 1.57 1.21 1.26 0.38 0.18
Normalized Power (mW) 64.60 68.87 561.66 11828 [ 11678 [ 106.73 [ 95.95 30.90
@ throughput rate @ 1.32 GS/s @ 1.32 GS/s @ 1.32 GS/s @ 1.32 GS/s @ 1.32 GS/s
SQNR (dB) NP NP NP NP 40.58
NP: Not provided.
compared to the savings in the number and complexity of the have been normalized according to
rotators. A 2
In order to show the improvement of the proposed Ay [mm?] = rea [mzm ] (13)
approach with respect to [36], Table 4 compares the rotators’ Tech. [nm] WL P
complexity in 128-point MSC architectures. The table divides ( 40 ) 16 4’

the rotators into general rotators, 2-rots, 1-rots, and constant
rotators. The last column of the table is the total number of
non-trivial rotators in each approach. The architecture in [36]
includes 4 2-rots in the first stage, 4 GR in stage 3, 3 1-rots in
stage 4, and 2 constant rotators in stage 5, leading to a total of
13 non-trivial rotators. To calculate a 128-point FFT, the pro-
posed approach combines the radix-23 and radix-2* modules
in Fig. 9. The former includes 2 constant rotators, whereas the
latter uses 3 1-rots and 2 constant rotators. The connection of
these modules requires 4 general rotators, leading to a total
of 11 non-trivial rotators. As a result, the proposed approach
reduces both the total number of rotators and their complexity
with respect to [36].

To validate the architectures and compare them with the
implementations in previous works, a test chip for the 4-
parallel 1024-point radix-23 MSC FFT in Fig. 14 has been
designed by using the TSMC 40 nm CMOS Logic technol-
ogy. The architecture has a word length of 16 bits for each
real and imaginary part of the data. Table 5 shows the experi-
mental results and compares them to previous approaches on
ASICs. For a fair comparison, the table only considers post-
layout results.

The experimental results for the proposed architecture
show that the core size of the test chip is 0.18 mm?,
the throughput is 1.32 GS/s at a clock frequency
of 330 MHz, and the power consumption at this high rate is
only 30.9 mW.

In order to make results from different technologies com-
parable, the area and power consumption of the architectures

81508

where Ay denotes the normalized area with respect to the
technology process (Tech.), word length (WL), and number
of parallel branches. Likewise, the power is normalized as

Power [mW]
Py [mW] = 7
Tech. [nm] Th. [GS/s] WL V [V]
40 1.32 16 0.9

(14)

where Py denotes the normalized power consumption
according to the technology process, throughput (Th.), word
length, and working voltage (V). For the normalization of [7]
and [34], we have considered their average word lengths of
36 and 10 bits, respectively.

In Table 5, it can be observed that the proposed architecture
is the first MSC FFT among 1024-point FFTs on ASICs.
Among them, it is the only one that uses radix-23, being this
radix the most efficient one in terms of rotations. Regarding
area and power, the proposed architecture reduces the nor-
malized area and power consumption by more than 50% with
respect to previous approaches.

VI. CONCLUSION

In this paper, we have proposed a new family of multi-path SC
FFT architectures for 2, 4, and 8 parallel data, radix-2*, and
any power-of-two size. The proposed architectures consist of
efficient radix-2F modules that are connected by permutation
circuits. In this paper, we have proposed a new family of
multi-path SC FFT architectures for 2, 4, and 8 parallel data,
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radix-2%, and any power-of-two size. The proposed architec-
tures consist of efficient radix-2 modules that are connected
by permutation circuits.

Compared to previous approaches, the proposed MSC FFT
architectures reduce the number of non-general rotators up to
25% and their complexity. They also have a slight increase in
data memory and latency, which is negligible for large FFTs.

Finally, implementation results show that the proposed

radix-23

4-parallel 1024-point MSC FFT architecture

achieves a throughput of 1.32 GS/s. The FFT core has an
area of 0.18 mm? and a power consumption of 30.9 mW. The
normalized values of area and power are significantly smaller
than the values reported in previous approaches.
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