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ABSTRACT The predictive business process monitoring mainly focuses on the performance prediction of
business process execution, i.e., predicting the next activity, the execution time of the next activity, and
the remaining time, respectively, for an ongoing process instance based on the knowledge gained from
historical event logs. Although there is a specific relationship between these three tasks, recent research has
focused on training separate prediction models for each task, resulting in high costs and time complexity.
Additionally, existing technologies are limited in their ability to capture long-distance dependent features
in process instances, further impeding prediction performance. To address these issues, this paper proposes
the MTLFormer approach, which leverages the self-attention mechanism of the Transformer network and
conducts multi-task parallel training through shared feature representation obtained from different tasks.
Our approach reduces the time complexity of model training while simultaneously improving prediction
performance. We extensively evaluate our approach on four real-life event logs, demonstrating its capability
to achieve multi-task online real-time prediction and effectively improve prediction performance.

INDEX TERMS Multi-task learning, predictive business process monitoring, self-attention, Transformer.

I. INTRODUCTION
Process mining, an indispensable and vital part of busi-
ness process management, bridges data mining and business
process management. As the core of enterprise operations
gradually shifts to the application of the Process-aware Infor-
mation System (PAIS), more andmore process execution logs
become available. Process mining technology extracts essen-
tial knowledge from these logs to provide effective means
for process discovery, monitoring, and improvement [1].
With the development of data mining and profound learning
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techniques, Predictive (business) Process Monitoring (PPM)
has become another hot research topic in process mining.
Unlike traditional business process monitoring techniques,
predictive business process monitoring aims to ensure the
smooth execution of business processes by predicting the
performance of executing process instances in real time [2].
Predictive business process monitoring techniques focus on
the prediction of the next activity [3], the execution time of
the next activity, the remaining execution time [4], and the
outcome [2], [5] for an executing process instance. This tech-
nology enables users to predictably perceive the current status
of business process execution and possible future situations in
real-time. In this way, they can make decisions and responses
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in advance to improve the company’s services’ efficiency,
reduce labor costs, and increase market competitiveness.

Most of the techniques currently used for PPM focus
on traditional machine learning-based techniques and deep
learning-based methods [2], [6]. No matter what you use,
it requires supervised learning of historical process execu-
tion instances, i.e., predictive models are obtained based
on historical process instances trained using some learning
technique. With the increasing intelligence, most scholars are
researching PPM techniques based on deep learning [6]. The
research object of this technique is the event log recorded in
PAIS, which is complex sequential data. To solve the feature
learning problem of sequential data, Hochreiter and Schmid-
huber [7] proposed a Long-short Term Memory (LSTM) net-
work in the development of deep learning technology. LSTM
is a variant of the Recurrent Neural Network (RNN) [8],
and it still inherits the drawback of RNNs that rely too
much on previous data states, which makes it slightly inad-
equate for training prediction models in the event log with
long sequences, as demonstrated in [9]. In response to the
limitations of LSTM, Vaswani et al. [10] proposed the Trans-
former sequence model based on the attention mechanism.
The model can be applied to long-distance dependent feature
learning and concurrent execution ofmultiple tasks in the data
and can well solve the problems of LSTM in training models,
thus improving the model’s prediction performance. On this
basis, Bukhsh et al. [11] proposed the ProcessTransformer
model, i.e., modifying the Transformer structure according
to the specific process prediction task, to achieve the desired
prediction effect.

As a branch of machine Learning, Multi-task Learning
(MTL) [12] can train multiple learning tasks simultaneously
and make good use of the commonalities and differences
between different tasks to improve the learning efficiency
and prediction performance of the model. Inspired by them,
we first introduceMTL in PPMby considering the strong cor-
relation between some tasks. This parallel migration model
can be used to share information between multiple tasks, i.e.,
it allows knowledge obtained from different tasks to migrate
to each other. In this case, it has the advantage of reduc-
ing the time complexity of model training and improving
prediction performance. Therefore, to further improve the
prediction performance of each task in PPM, we propose an
approach called MTLFormer (Multi-Task Learning Guided
for Transformer Network) driven by multi-task learning in
this paper. It utilizes the specific attention mechanism in the
Transformer network to capture the long-distance dependent
features in the data and share the feature representations
obtained from different tasks. Meanwhile, position coding
and residual networks are used in this approach to enhance the
model’s ability to perceive position information and solve the
problems of gradient disappearance and weight matrix degra-
dation, respectively. While providing higher performance for
the business process prediction, this paper also provides a
possible reference for combining multi-task learning and the
Transformer network in other fields.

In summary, this article makes the following contributions:

• We innovatively propose an approach called MTL-
Former by integrating the Transformer network with
multi-task learning to improve the prediction perfor-
mance and reduce the time complexity of model training
in PPM tasks.

• We investigate the specific self-attention mechanism of
the Transformer network in terms of the long-distance
dependencies feature representation for the input histor-
ical process instances in terms of the prediction tasks in
PPM.

• We focus on the three associated tasks, the next activ-
ity prediction, the next event time prediction, and the
remaining time prediction, and then explore the effect
of the hard-parameter sharing of multi-task learning for
parallel multiple task training.

The rest of this paper is organized as follows. Firstly,
we introduce the related research works and briefly discuss
them in Section II. Then, in Section III, we define some basic
concepts and research questions and introduce the multi-
task learning model. Secondly, in Section IV, we introduce
the proposed MTLFormer approach in detail. In Section V,
we conduct extensive comparative experiments and evaluate
the performance of MTLFormer. Finally, the paper is sum-
marized and future research direction is briefly discussed in
Section VI.

II. RELATED WORK
Predictive (business) process monitoring belongs to busi-
ness process execution/monitoring. Its research scope can be
mainly divided into predicting future execution events in the
process [3], predicting the execution time of future events and
the remaining execution time of the process [4], and predict-
ing the final execution result of the business process [2], [5]
and so on. We performed an analysis and classification of
these methods based on the specific method type, the pre-
diction target, and the input data in Table 1. Especially,
to demonstrate the motivation behind our work, we use the
separate and joint to distinct whether the prediction model
is trained on a single task or on multiple tasks. Especially,
we divide the predictive business process monitoring tech-
nology into the following two types according to different
learning methods.

A. PREDICTION BASED ON TRADITIONAL MACHINE
LEARNING
Regarding business process prediction, different researchers
have put forward different views at different times. Van der
Aalst et al. [13] proposed a method to predict the remain-
ing execution time of business processes by constructing
a Transition System (TS). However, only predicting the
remaining time of the business process cannot monitor the
future execution of the business process well. On this basis,
Polato et al. [14] improved the Transition System and pro-
posed a method based on Data-aware Transition System
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TABLE 1. The studies collected for predictive business process monitoring.

(DATS). At the same time, the SVR+TS method is proposed
based on the traditional transition system and Support Vector
Regression (SVR) to predict the future execution activity
sequence and the remaining execution time, respectively.
In addition, Breuker et al. [15] also proposed a method to
predict future execution events of business processes using
probabilistic finite automaton, which provided some fea-
sible schemes for business process monitors to a certain
extent. Similarly, Lakshmanan et al. [16] proposed using a
Markov chain to construct an instance-specific Probabilis-
tic Process Model to predict future execution activities of
business processes. In addition, Conforti et al. [17] used the
decision tree model to estimate the remaining execution time
of business processes and predict the events of future process
execution to support risk-informed decisions during business

process execution. Similarly, Leontjeva et al. [18] also pro-
posed using a random forest model to predict the final execu-
tion results of business processes. Besides, Appice et al. [4]
investigated facets of shallowmachine learning as an accurate
data-centric approach to predict business process behaviour.
Shallow machine learning is part of a holistic approach that
combines feature construction, local and global learning,
classification and regression algorithms. However, one draw-
back of such methods is that, in the case of low-level feature
representation, their performance heavily relies on manual
feature engineering [2], [19].

B. PREDICTION BASED ON DEEP LEARNING
Deep learning algorithms have gradually replaced the method
of selecting and extracting features manually in the past two
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decades due to the continuous development of deep learning
technology research. Due to the autonomous learning charac-
teristics of neural networks, deep learning techniques applied
in predictive business process monitoring can significantly
improve the process prediction performance of business pro-
cess execution logs with large amounts of data. In [20],
Rama-Maneiro et al. provided both a systematic literature
review of these approaches and performed an exhaustive
experimental evaluation. For example, Evermann et al. [21]
proposed using a recurrent neural network (RNN) to predict
the next business activity to be executed, composed of two
hidden RNN layers. However, RNN has some performance
defects due to its network structure, such as the inability to
capture the long-distance dependence features in sequential
data and the easy occurrence of gradient explosion and dis-
appearance [22]. Therefore, the LSTM network, a variant
of RNN, was proposed, Tax et al. [9] proposed the method
of using an LSTM network to predict the type of event to
be executed next in the process and its duration. In addi-
tion, Teinemaa et al. [23] analyzed and evaluated existing
methods for predicting process results based on machine
learning and LSTM. At the same time, Camargo et al. [24]
also proposed a way to predict the event sequence, time,
and related resource pool of future execution based on the
LSTM network architecture. Similarly, Navarin et al. [25]
utilized LSTMnetwork to predict the remaining time in PPM.
Francescomarino et al. [26] also leveraged knowledge about
the structure of the process execution traces as well as a-
priori knowledge about how they will unfold in the future for
predicting the sequences of future activities based on LSTM.

In contrast to the starting point of the above approaches,
Hinkka et al. [27] point out that existing RNN-based process
prediction studies do not sufficiently use event attribute infor-
mation. They believe that for attributes and attribute values of
events in a process, the length of the encoded vector is often
substantial, affecting the performance of process prediction
methods based on RNNs to a certain extent. Therefore, they
proposed a new clustering technology, which clustered the
event attributes and their values before coding. Then, they
input the obtained vector into the RNN before training the
prediction model to realize the model training that can allow
the trade-off of prediction accuracy, model training, and time
required for prediction.

Based on these mainstream process prediction meth-
ods based on RNN and LSTM networks, some stud-
ies still use the attention mechanism as an optimization
strategy to improve the performance of prediction mod-
els. For example, Bukhsh et al. [11] proposed the Process
Transformer model, that is, to modify the structure of the
Transformer network according to specific process predic-
tion tasks to achieve ideal prediction results. Similarly,
Wickramanayake et al. [28] proposed two types of attention
for the prediction task of future activities: the event-level
attention to capturing the impact of specific events on the
prediction task and the attribute-level attention to reveal
which attributes of events affect the prediction task. And

they designed two different attention models, the shared and
specialized attention-based models. The difference between
them is that the attribute-level attention value is calculated
for an input feature (specialized attention model), or the
attribute-level attention value is constructed using the con-
nected feature tensor of all input feature vectors (shared
attention model). Finally, the specific prediction task is real-
ized by combining an LSTM network.

In addition to the above approaches, some methods based
on other neural networks have been gradually proposed. For
example, Taymouri et al. [3] presented a novel adversarial
training framework based on an adaptation of Generative
Adversarial Networks (GANs) to the realm of sequential
temporal data to predict the next activity and its timestamp.
Mauro et al. [29] studied how to use the stacked inception
Convolutional Neural Networks (CNN) module to predict the
next activity and compared its performance with the LSTM
network. Similarly, Pasquadibisceglie et al. [30] applied a
CNN network to predict and analyze the business process.
Besides, Khan et al. [31] proposed a memory-augmented
Neural Network (MANN) to recommend the sequence of
events to be executed in the subsequent process. Theis and
Darabi [32] took the execution time of activities in the process
as a primary variable. They used the time-decay function to
enhance the Petri net process model that was constructed by
the process mining algorithm to construct continuous process
state samples. Then, on this basis, deep learning technology is
used to train the prediction model to predict future activities.

Recently, Chen et al. [33] proposed a multi-task prediction
method based on BERT and transfer learning. It’s novelty
lies in utilizing a new pre-training task to learn a generic
representation of historical process instances (i.e., traces)
and exploring the impact of masking strategies and masking
probabilities on the performance of different prediction tasks.
Different from it, our approach focuses on the multi-task
prediction simultaneously. As shown in Table 1, we can find
that the prediction target of most current methods usually
trains the next activity and its timestamp together, but it is
generally separate from other tasks. In addition, the input data
of most methods is mostly derived from complex processing
of business process event logs, such as the extended time
features other than the original timestamp attribute. On the
one hand, these existing methods are designed to handle the
specified task. Once the specified task changes, we cannot
effectively evaluate the performance of these methods. On the
other hand, there is a strong correlation between some tasks
in predictive process monitoring, but existing studies have
paid little attention to this. Some knowledge can be shared
and transferred among these tasks as they learn feature repre-
sentations. In this way, we can reduce the prediction cost and
time complexity and improve the prediction performance to
some extent.

Therefore, this paper proposes an approach called MTL-
Former, based on multi-task learning and the Transformer
network for multiple tasks in PPM. Meanwhile, it uses very
few attributes with minimal preprocessing of event logs. To a
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certain extent, MTLFormer utilizes the attention model in
the Transformer network to better capture the long-distance
dependency features in the historical process executions.
Under the guidance of multi-task learning, it can improve the
efficiency and accuracy of prediction by sharing the knowl-
edge learned from different tasks.

III. PROBLEM DEFINITION
A. EVENT LOG
The process execution in PAIS can generate many event
logs, which record detailed information about each business
process execution. Each complete execution of a business
process can obtain a specific process instance (case). Each
of them consists of a series of events, and each event cor-
responds to all the information about the execution of an
activity in this business process. The relevant definitions of
the event log are as follows.
Definition 1 (Event): An event is the smallest unit in the

event log and can be defined as e = (a, caseID, eventID, tstart ,
tend , r, d1, . . . , dm), in which a denotes the activity name
(attribute) in a business process of this event e, caseID
denotes the ID number of the process instance that the event e
occurred in, eventID denotes the ID number of this event, tstart
and tend represent the timestamp attribute at which the event
starts and completes respectively, r represents the resource
attribute of event e, d1, . . . , dm represent the other attributes
of the event e. As for different events, the values of the above
attributes are different.
Definition 2 (Process Trace): Each historical process

instance (case) in the event log corresponds to a process
trace, which consists of an ordered sequence of several
events, denoted as σ =< e1, e2, . . . , e|σ | >, in which |σ |

is the number of events contained in this case.
Definition 3 (Prefix Trace): A prefix trace is an ordered

sequence of the first k events in a process trace σ that can be
defined as prefix (σ, k) =< e1, e2, . . . , ek >, k ∈ [0, |σ |],
where k represents the length of the prefix trace, i.e., the
length of the sequence intercepted from the process trace σ ,
and the timestamp attribute of all the events in the prefix trace
σ increases sequentially.

B. PREDICTION TASKS
Take a process trace σ =< e1, e2, . . . , en > for an example,
the concepts of the three prediction tasks studied in this paper
are defined as follows:
Definition 4 (Next Activity Prediction Task): As for the

trace σ , the Next Activity Prediction Task can be defined
as a function fna (prefix (σ, k)) = ek+1.a, k∈ [1,n−1] to
predict the activity attribute of the next event (denoted as
next_event) at the current stage of process execution where
the first k-th events are executed. Since the name of the next
event to be predicted is an element in the set of activities
corresponding to the whole process, the task is considered
a multi-classification prediction task in this paper.
Definition 5 (Next Event Time Prediction Task): As for

the trace σ , the Next Event Time Prediction Task can

be defined as a function fnt (prefix (σ, k)) = (ek+1.tend −

ek .tend )/24, k∈ [1,n−1] to predict the difference in days
(denoted as next_time) between the end timestamp of the
next event ek+1 (i.e., ek+1.tend ) and that of the currently
executed event ek (i.e., ek .tend ) where the end timestamp of
ek is determined. Since the time to be predicted is also a
continual value, the task is considered a regression prediction
task in this paper.
Definition 6 (Remaining Time Prediction Task): As for

the trace σ , the Remaining Time Prediction Task can
be defined as a function frt (prefix (σ, k)) = (en.tend −

ek .tend )/24, k∈ [1,n] to predict the difference in days
(denoted as remain_time) between the end timestamp of the
last event en (i.e., en.tend ) and that of the currently executed
event ek (i.e., ek .tend ) where the end timestamp of ek is
determined. Since the time to be predicted is also a continual
value, the task is considered a regression prediction task in
this paper.

C. MULTI-TASK LEARNING
Generally speaking, as long as a model has more than one
objective task and there is a particular connection among
these tasks can be called Multi-task Learning (MTL) [12].
The related training process is to put the inputs of all tasks
into a multi-task learning model after data pre-processing and
then get the set of outputs of all tasks. During the training
process of multi-task learning, different tasks will influence
and learn from each other, thus improving the model’s gen-
eralization ability. The core of multitask learning is how to
share parameters between models corresponding to different
tasks. The modes of parameter sharing are usually divided
into hard- and soft- parameter sharing [34].
Definition 7 (Multi-Task): The three prediction tasks in

Definitions 4 to 6 are called Task A, Task B, and Task C. The
multi-task mentioned in this paper refers specifically to the
three tasks, Task A, Task B, and Task C.
Definition 8 (Multi-Input, Multi-Output): The input to

the multi-task learning model (i.e., Multi-input) is obtained
by splicing the inputs of Task A, Task B, and Task C and then
removing the duplicate parts, while the output to the multi-
task learning model (i.e., Multi-output) is concatenated by
the related outputs of Task A, Task B, and Task C. Suppose
the inputs to each task are Ain = [a, b, c], Bin = [b, c, d], and
Cin = [c, d, e], the Multi-input can be defined as inputs =

[a, b, c, d, e]. If the outputs of each task are Aout = f ,
Bout = g, and Cout = h, the Multi-output can be defined
as outputs = [f , g, h].
Definition 9 (Hard-Parameter Sharing): As shown in

Fig. 1(a), hard-parameter sharing refers to the input of
multiple tasks to the same shared layer, i.e., sharing the same
parameterW , and then outputting each task separately in the
deep layer with the number of outputs equal to the number
of tasks. The parameter W is a variable parameter that is
continuously updated during the back-propagation of the
neural network, not an artificial hyper-parameter set such as
the learning rate and the dimension of the hidden layer.
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FIGURE 1. Two parameter sharing modes: (a) hard-parameter sharing and
(b) soft-parameter sharing.

Definition 10 (Soft-Parameter Sharing): As shown in
Fig. 1(b), soft-parameter sharing refers to each task having
a separate model space in multi-task learning. Unlike single-
task learning, it sets the L2 distance norm regularization
between each model parameter, i.e., the difference between
each model parameterW does not exceed a certain threshold.
Given two tasks, x and y, the distances between their corre-
sponding model parameters are expressed as:

||x, y||2 =

√√√√ n∑
i=1

(xi − yi)2

where ||x||2 =

√√√√ n∑
i=1

x2i (1)

in which ||x||2 denotes the L2 parametrization of the input
vector x (i.e., the norm of the vector), n is the vector
dimension, and ||x, y||2 (the L2 parametrization of x and y)
represents the distance between these two vectors (i.e., the
distance between different task model parameters within a
certain range).

IV. MTLFORMER APPROACH
In this paper, we present an approach called MTLFormer
(Multi-Task Learning Guided for Transformer Network)
based on multi-task learning and the Transformer network
in Predictive Process Monitoring. Specifically, for multiple
associated tasks (i.e., the three prediction tasks mentioned
above: the next activity prediction, the next event execu-
tion time prediction, and the remaining time prediction),
a multi-task fusion prediction model can be constructed using
MTLFormer. In the prediction phase, the multi-task parallel
prediction online can come true by exploiting this model.
The approach consists of two main phases: the data pre-
processing and the construction and training of the neural
network model.

A. DATA PRE-PROCESSING
According to Definitions 1 to 3, assume that the event log
dataset for a business process is L = <σ1, σ2, . . . ,σn >,
where n represents the number of process traces contained in
the event log, and σ represents the process trace described in

Definition 2. In the data pre-processing stage, the event log
L must be extracted first. Specifically, some operations can
be conducted based on the original attributes of each event
in each process instance: (1) for each event, a prefix trace
prefix attribute is added to indicate the current moment of
the process instance; (2) for each event, add three additional
temporal attributes based on the start and end timestamp
attributes of the event, recent_time (denotes the time interval
between the two most recent events and the current event),
latest_time (denotes the time interval between the current
event and an event before the previous event), time_pass
(denotes the time interval between the start time of the
process instance and the occurrence of the current event);
(3) add three additional label attributes corresponding to
each of the three prediction tasks next_event , next_time,
and remain_time. After that, a process trace dataset can be
obtained for the fusion of the three tasks. For each of these
traces, each event can be viewed as a set of attributes noted
as e = {c, i, prefix, recent_time, latest_time, time_pass}
and a set of three prediction task label attributes
{next_event, next_time, remain_time}. Next, the attributes of
each event in the process instance are encoded and nor-
malized according to the data type to which the attribute
values belong. Finally, the vector obtained from the encoding
of the process instances is used as the input to the neural
networkmodel, and the labeled attributes of the entire process
instances are used as the target output of the model.

B. NEURAL NETWORK BUILDING AND TRAINING
In order to solve the problem that single-task learning cannot
capture the potential feature between multiple tasks and the
current LSTM-based (RNN-based) approaches cannot cap-
ture the long-distance dependency in sequential data, this
paper combines Transformer network and multi-task learning
to capture the association relationship between the feature
learning of the different tasks. Moreover, the particular atten-
tion mechanism in the Transformer network used here can
further learn the long-distance dependent features in the
data. In addition, our approach also uses location coding and
residual network to enhance the model’s ability to perceive
location information as well as address the gradient disap-
pearance and degradation of the weight matrix, respectively.
The structure of the neural network model constructed by
MTLFormer proposed in this paper mainly consists of the
(process) Trace Embedding Layer, the Feature Extraction
Layer, the Hard-param Sharing Layer, and the MTL Output
Layer, as shown in Fig. 2.

Taking a process trace σ = <e1, e2, . . . ,ei, . . . ,em> (i ∈

[1,m]) as an example (m denotes the number of events in
the process trace) to illustrate in detail how the MTLFormer
approach is trained to obtain the prediction model. First, the
process trace σ is pre-processed to obtain an encoded feature
vector of its attributes (except for the additional temporal
attributes) xp and a vector of temporal feature attributes xt
and then concatenated to obtain the vector X = [xp, xt ] as
the input to the neural network. Here, xp and xt correspond
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FIGURE 2. The structure of the neural network model constructed by
MTLFormer.

to the trace_inputs and time_inputs, respectively, in Fig. 2.
The main structure of the neural network constructed by the
MTLFormer approach is shown below.

Trace Embedding Layer. The process trace embedding
layer consists of two main parts, one for feature embedding
and the other for position embedding. Since the one-hot
encoding [35] uses N spaces to represent N states, it is
also called one-bit effective coding, that is, only one bit
is valid and this position is set to 1, while the rest of the
positions are set to 0. In terms of the classification tasks, the
feature space of the encoding vector increases dramatically
as the category increases, resulting in an intractable high-
dimensional vector problem. Therefore, trace_inputs can be
linearly mapped into a larger vector space to obtain the
feature embedding vector xattr = [xattr,1, xattr,2, . . . , xattr,m].
In this way, it not only solves the current high-dimensional
problem encountered with one-hot encoding but also maps
adjacent events to adjacent positions in vector space. As the
moment-to-moment state information of the recurrent neural
network is discarded in the MTLFormer model, it is dif-
ficult to determine the relative position of the data on the
whole. Thus, the position of trace_inputs should be embed-
ded simultaneously. The position embedding is similar to
feature embedding in that the position information of the
events is mapped into a larger vector space, resulting in a
position embedding vector xpos = [xpos,1, xpos,2, . . . , xpos,m].
Finally, the feature embedding vector is concatenated
with the position embedding vector to obtain the output

FIGURE 3. The structures of two different attention mechanisms:
(a) Single-head self-attention mechanism and (b) Multi-head
self-attention mechanism.

xtoken = [xattr , xpos] = [xtoken,1, xtoken,2, . . . , xtoken,m](dxtoken
denotes the dimension) of the Trace Embedding Layer.

Feature Extraction Layer. The feature extraction layer is
made up of the Encoder of the Transformer network and the
global average pooling layer (Global Pooling) [36]. In order
to learn long-distance dependent features of data, the output
vector xtoken of the Trace Embedding Layer can be fed into the
multi-headed attention and then computed to obtain the out-
put. At the same time, to reduce the probability of overfitting,
the output of the multi-headed attention is dropped through
the Dropout (1) layer, and some features are then summed
using the residual [37], [38] for layer normalization [39] (Add
& Norm (1)). The obtained intermediate vectors are then fed
into the Feed Forward Network [40], [41] with a dropout
layer (Dropout (2)) to discard some of the features and then
perform the residual summation and the layer normalization..
(Add & Norm (2)) to obtain the output of the Transformer-
Encoder. Finally, the output vector of the feature extraction
layer is obtained by the global average pooling layer (Global
Pooling). The multi-headed attention mechanism is shown in
Fig. 3(b).
As shown in Fig. 3(a), the (single-head) self-attention [10]

is a structure that can be executed concurrently, almost
regardless of distance. It scores each part of the input sep-
arately, with higher scores being more important for the
prediction task and lower scores being given less weight
during training. Particularly, the attention mechanism used
here is the Scaled Dot-Product Attention model, which is
calculated by:

att(Q,K ,V ) = softmax

(
QKT√
dxtoken

)
V (2)

in which, the softmax() denotes the normalization function,
dxtoken is the dimension of the input vector xtoken, Q is the
Query vector, K is the Key vector, V is the Value vector,
and att is the attention score. Particularly, Q, K , and V are
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obtained by:

Q = WQX + bQ (3)

K = WKY + bK (4)

V = WVY + bV (5)

in which,WQ,WK , andWV are the weight parameters of the
corresponding vectors Q, K , and V , bQ, bK , and bV are the
bias of the corresponding vectors Q, K , and V , and X , Y are
the two inputs of this attention mechanism (X = Y = xtoken).
Similar to the (single-head) attention mechanism, the

multi-head self-attention mechanism [35] described in
Fig. 3(b) is used in this paper where the parametersW in the
single-head attention mechanism can be calculated several
times based on the number of heads in the multi-head atten-
tion mechanism, and then combined to obtain the multi-head
attention score. Given the multi-attention mechanism with
l-heads, the multi-head attention score attMulti (Q,K ,V )

with the related weight parameters WQ
i ,WK

i ,WV
i (i =

1, 2, . . . , l) can be calculated by:

attMulti (Q,K ,V ) = concat (head1, head2, . . . ,head l)WM

where head i = att (Qi,Ki,Vi) , i = 1, 2, . . . ,l (6)

where concat() is the vector concatenated function,WM (the
dimension is the multiplication of the dimension of the input
vector by the number of heads) is the weight parameter to be
trained for multi-head attention, Qi = QWQ

i , Ki = KWK
i ,

and Vi = VWV
i are the Query vector, Key vector, and Value

vector corresponding to each head, respectively. Finally, the
attention output vector of the feature extraction layer in the
MTLFormer model can be obtained with attMulti_output =

attMulti (xtoken, xtoken, xtoken).
Then, the output vector of the multi-head attention mecha-

nism is processed by Dropout (1) to obtain attMulti_output =

dropout(attMulti_output). After that, the output values
attMulti_output are then summed with its input values and
then performed by the layer normalization, as described in:

output_a = norm(attMulti_output + xtoken) (7)

where output_a is the output after the Add & Norm (1)
process, and norm() is the normalization function.

Similarly, the output vectors obtained above are processed
by Feed Forward, Dropout (2), and Add & Norm (2) again in
turn to obtain:

FF_output = FF (output_a) (8)

FF_output = dropout(FF_output) (9)

output_t = norm(FF_output + output_a) (10)

where FF_output is the output vector after the Feed Forward
neural network, FF is the related function, output_t is the
final output of the Transformer-Encoder. Finally, the dimen-
sion of output_t is reduced after the global average pooling
operation, and then the final output output fe of the feature
extraction layer can be obtained.

Hard-Param Sharing Layer. In order to achieve multi-
task learning, feature learning for the three tasks is shared
and processed at this layer. Feature learning is performed
differently for different types of tasks. For instance, tasks
related to predicting time require the input of temporal fea-
tures, while the next activity prediction task does not. The
detailed computation is as follows.

N = dropout(output fe) (11)

T = concat(dropout
(
output fe

)
, relu(xt )) (12)

R = concat(dropout
(
output fe

)
, relu(xt ))) (13)

outpuths = concat(N ,T ,R) (14)

In the above equations, N ,T ,R are the feature vectors
for the three tasks of the next activity prediction, the next
event time prediction, and the remaining time prediction,
respectively, concat() is the vector concatenated function, xt
is the input vector of temporal features obtained in the pre-
processing stage, relu (x) = max(0, x) is the linear activation
function, and outpuths is the final output vector of the hard-
parameter sharing layer.

MTL Output Layer. After the hard-parameter sharing
layer, separate outputs are required for each task to obtain
three separate prediction results, as shown in:

ŷ(1)(output1), ŷ
(2)(output2), ŷ

(3)(output3)

= linear
(
outpuths

)
(15)

where ŷ(i)(output i) denotes the vector of outputs (i.e., the
predicted results) for all events in terms of the i-th task after
the calculation above and linear() is the activation function
of the Fully Connected (FC) layer. The activation function is
described as:

linear(X ) =

∑
j

WI xj + b (16)

whereWI is the weight parameter, and b is the bias value.
The true label vector Y = [y(1), y(2), y(3)] can be obtained

from the three prediction task label attributes tagged in the
data pre-processing stage where y(1) denotes the actual result
of the next activity prediction task, y(2) denotes the true result
of the next event time prediction task, and y(3) denotes the true
result of the remaining time prediction task. For each task, the
loss value of the entire multi-task model can be calculated
separately from the output of the MTLFormer prediction
model and the actual results (i.e., the label vectors). Finally,
the model is continuously optimized using training samples
to obtain a fixed set of parameter values that minimize the
loss function, i.e., the final prediction model to be trained.

As the MTLFormer prediction model is designed for mul-
tiple tasks, it is necessary to calculate the loss values for each
task and then combine them to obtain the multi-task loss
function. Specifically, the first task dealt with in this paper
is essentially a multi-classification prediction, for which
a multi-classification cross-entropy loss function is often
used to calculate the error. In contrast, the other two tasks
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are essentially regression predictions, for which a LogCosh
loss function is used to calculate the error. The multi-
classification cross-entropy loss function is described as:

loss(σ ) = −
1
m

m∑
i=1

ŷi log (yi) (17)

where loss(σ ) denotes the loss value of the process trace σ in
the next activity prediction task,m denotes the total number of
events contained in this trace, ŷi denotes the predicted value
of the i-th event in this trace, and yi denotes the actual value
(i.e., the label value). Accordingly, the loss value of an event
log L = <σ1, σ2, . . . ,σn > (where n represents the number
of process traces contained in this event log) fed into the
MTLFormer prediction model can be obtained for the next
activity prediction task by:

Loss1 =

n∑
j=1

loss(σj) (18)

where Loss1 denotes the sum of the loss values of all process
traces in the event log L for the next activity prediction task.
For the rest two prediction tasks, the LogCosh loss function
is used to calculate their error values in the event log L by:

logcosh (σ ) =
1
m

m∑
i=1

log
e(ŷi−yi) + e(yi−ŷi)

2
(19)

Loss2 =

n∑
j=1

logcosh(σj) (20)

where logcosh (σ ) denotes the loss value of the process trace
σ for the next event time prediction task,m is the total number
of events contained in this trace, ŷi is the predicted value of
the i-th event in this trace, and yi is the actual value (i.e., the
label value), and Loss2 denotes the sum of the loss values of
all process traces in the event log L for the next event time
prediction task. Similarly, Loss3 that denotes the sum of the
loss values of all process traces in the event log L for the
remaining time prediction task can be calculated. Based on
them, the total loss function of the MTLFormer model can be
denoted as:

Loss = (ω1 ∗ Loss1 + ω2 ∗ Loss2 + ω3 ∗ Loss3) (21)

where ω1, ω2, and ω3 are the weights of the corresponding
loss functions for each task, respectively.

After the prediction model has been trained, the sequence
of events that are executed in the on-going process instance
can be used as input to the prediction model to obtain multi-
task prediction values for achieving online prediction.

V. EXPERIMENTAL EVALUATION
In order to verify the effectiveness of the MTLFormer pro-
posed in this paper, we conduct experiments on four real-life

event logs. The specific experimental environment and exper-
imental setup are described as follows. Moreover, we con-
duct the ablation experiments with multi-task learning and
the Transformer network as the baseline. The experimental
results are collated for each prediction task separately to
comprehensively evaluate the different approaches’ predic-
tion results. The main comparison is performed among some
approaches, MTLFormer, the ProcessTransformer approach
(called STLFormer) proposed in [11], and the proposals in
other references. In this paper, we choose the four metrics
of accuracy, precision, recall, and F-score for evaluating
the performance of different approaches in the next activity
prediction task. As for the rest tasks of the next event time
prediction and the remaining time prediction, we choose the
Mean Absolute Error (MAE) metric to evaluate their perfor-
mance.

A. EXPERIMENTAL SETUP
The datasets used in our experiment are derived from
real-life event logs in the 4TU research data reposi-
tory (https://researchdata.4tu.nl/home/). For comparison pur-
poses, we choose the following event logs, Helpdesk and
BPIC2012. The detailed information is shown below.

(1) Helpdesk: This dataset is derived from the ticket man-
agement system of an Italian software company. It contains
4,580 process instances, 21,348 events, and 14 activities.

(2) BIPC2012: This dataset originates from a Dutch finan-
cial institution and it records detailed information about the
business process of a loan application. It contains 13,087
process instances, 262,200 events, and 23 activities. As it is
a merging of three intersecting sub-processes, the log can be
further divided into three logs, BPIC2012_A, BPIC2012_O,
and BPIC2012_W, based on the initial letter identification of
the different names for the different tasks.

The environment of our experiment was configured as
shown in Table 2. We implemented the methods in this
paper on Python 3.8 using Tensorflow 2.5.0. All experiments
in this paper are performed on Windows 10, a 2×12 Intel
Xeon 5118 CPU @2.30GHz 256GB, and 3× NVIDIA Tesla
V100.

The evaluation metric for predictive models is to substitute
the predicted and actual values into the evaluation formula
and evaluate the performance in terms of the output value.
Standard metrics evaluated for multi-classification prediction
tasks are as follows.

(1) accuracy

accuracy =
TP+ TN

TP+ TN + FP+ FN
(22)

(2) precision

precision =
TP

TP+ FP
(23)

(3) recall

recall =
TP

TP+ FN
(24)

76730 VOLUME 11, 2023



J. Wang et al.: MTLFormer: MTL Guided Transformer Network for Business Process Prediction

TABLE 2. The environment of our experiment.

(4) F-score

F − score = 2∗
precision∗recall
precision+ recall

(25)

In these equations above, TP (True Positive) refers to a
sample with a positive predicted value and a positive true
value, FP (False Positive) refers to a sample with a positive
predicted value and a negative true value, TN (True Negative)
refers to a sample with a negative predicted value and a nega-
tive true value, and FN (False Negative) refers to a sample
with a negative predicted value and a positive true value.
All of these indicators are always used to assess classifica-
tion prediction tasks. Note that even for multi-classification
problems, there are only correct and incorrect assessments,
so this assessment indicator can again be considered a binary
assessment problem. The higher the value of the first three
indicators, the more effective the method is. The indicator
that is always used in regression prediction tasks is the Mean
Absolute Error (MAE):

MAE =
1
m

∗

m∑
i=1

∣∣(yi − ŷi
)∣∣ (26)

where m denotes the total number of events, yi denotes the
actual value, and ŷi denotes the predicted value. The smaller
the value of MAE , the smaller the prediction error (i.e., the
better the prediction performance of the model).

B. DATA PRE-PROCESSING AND PARAMETER SETTING
This section feeds four real-life event log datasets into the
built neural network model for training. Each dataset is
first pre-processed and then used as the training set for this
model by extracting the first 80% according to the order the
events occurred and the last 20% as the test set to evalu-
ate the performance of the prediction models obtained from
different approaches of training. For each process instance,
separate data pre-processing is performed as described in
Section III-A. For instance, the attribute recent_time of an
event is obtained by subtracting its end timestamp from that
of the two most recent events in this process instance and
dividing it by 24 hours and rounding down, the attribute
latest_time of an event is obtained by subtracting its end
timestamp from that of the previous event in this process
instance and dividing it by 24 hours and rounding down, and
the attribute time_pass of an event is obtained by subtracting
its end timestamp from that of the first event in this process
instance and dividing it by 24 hours and rounding down.

Additionally, 20% of the data from the training set is used
for validation and hyper-parameter optimization during the
multi-task learning. Themodel based onMTFormer is trained
for 100 epochs with an Adam [42] optimizer and a learning
rate of 0.002. In addition, the prediction model (i.e., classi-
fier) is developed with a single transformer-encoder block
(i.e., Feature Extraction Layer) that consists of a specific four-
head attention mechanism, followed by feed-forward layers
having residual connections, dropout, and a normalization
layer in this paper.1 Specifically, a linear connection layer
with a dimension of 128 is used in its MTLOutput Layer, and
a 36- and 128-dimensional Relu linear activation function is
also used in the Hard-parameter Sharing Layer, respectively.
The optimized hyper-parameters on the validation set are a
batch size of 64 and a list of loss weight {ω1: 0.6, ω2: 2, ω3:
0.3}. As for the model based on STLFormer, we trained it
according to [11].

C. EXPERIMENTAL RESULTS
A comprehensive comparison between MTLFormer and
STLFormer is carried out to demonstrate the effectiveness of
multi-task learning. The currently available other approaches
are then evaluated against these two approaches separately for
different prediction tasks to demonstrate the effectiveness of
the attention mechanism in the Transformer network (i.e., the
approaches that do not use the Transformer network vs. the
two approaches of MTLFormer and STLFormer) to demon-
strate the effectiveness of the Transformer network in PPM.
First, the comparison results of MTLFormer and STLFormer
are shown in Table 3.
It is easy to see from Table 3 that MTLFormer outperforms

STLFormer on Helpdesk and BPIC2012_A in terms of pre-
diction performance, with an average improvement of about
7% in accuracy and precision as well as that of about 12%
in recall and f-score for the next activity prediction, with an
average decrease of about 10% and 22% in MAE for the
time prediction tasks. However, on the other two datasets,
the accuracy and precision of MTLFormer are slightly lower
than that of STLFormer, and the MAE is slightly larger for
the event time prediction task but the MAE is much smaller
for the remaining time prediction task. By jointly learning
from multiple tasks, MTLFormer introduces the concept of
task sharing and transfer learning within the Transformer
model. It can capture shared information to improve the

1https://github.com/jiaojiaowang1992/MTLFormer
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TABLE 3. The comparison results of MTLFormer and STLFormer on the different datasets.

overall performance compared to separate single-task mod-
els (i.e., STLFormer) and the shared layers of the model
learn representations that are beneficial for multiple tasks,
enabling the model to transfer knowledge and generalize
across related tasks. Therefore, it can leverage the inherent
relationships between tasks and potentially enhance overall
performance. However, in our experiments, the performance
of the observed BPIC2012_O and BPIC2012_W datasets did
not improve but decreased. The reason may be that these
two datasets are manually operated processes with much
uncertainty, resulting in the learning of shared features by
multiple tasks making the feature representations obtained
from the learning of different tasks become harmful noise to
each other. In general, the average metrics of MTLFormer
improved across the board compared to STLFormer, thus
demonstrating that multi-task learning can improve the per-
formance of tasks with similar features.

Next, the performance of the different approaches will be
analyzed and evaluated separately for each prediction task.

1) THE NEXT ACTIVITY PREDICTION TASK
This task is a multi-classification task. Since accuracy is the
basic metric used in other methods, we chose accuracy for
statistical analysis. The results of the experimental compari-
son are shown in Table 4. The table shows that MTLFormer
has a higher average accuracy on different datasets than any
other approaches in the next activity prediction task. For the
two datasets of Helpdesk and BPIC2012_A, MTLFormer
has the highest accuracy compared to the others. However,
on the BPIC2012_O dataset, STLFormer has the highest
accuracy, and on the BPIC2012_W dataset, the method in
Chen et al. [33] is the most accurate. It is easy to see from
this table that there is an advantage to using the Transformer
network in this task because the three methods mentioned-
above are based on this network.

2) THE NEXT EVENT TIME PREDICTION TASK
This task is a regression prediction task, so the MAE metric
is used here to evaluate the prediction results. The prediction

results of the different approaches for the four datasets men-
tioned above are shown in Table 5. On the whole, the table
shows that MTLFormer improves prediction performance
compared to STLFormer in the next event time prediction
task, with an average reduction in the error metric MAE of
approximately 0.08 days on the four datasets. For the datasets
of Helpdesk and BPIC2012_A, the MAE error of MTL-
Former is reduced by approximately 0.3 and 0.1 days, respec-
tively. On the other two datasets, its MAE error improves
somewhat, about 0.05 days on average. Moreover, from the
perspective of each dataset, MTLFormer achieves optimal
results only on the Helpdesk and is slightly inferior to the
other approaches on the other three datasets. There may be
three main reasons for this phenomenon. First, to improve
the generalization of MTLFormer, we trade off multiple pre-
diction tasks simultaneously in hyper-parameter optimization
and only consider a set of optimization parameters to make it
applicable to all datasets. While the STLFormer is used to
optimize the hyper-parameters for each prediction task. The
second reason may be that the learning features of the other
tasks in these datasets (i.e., BPIC2012_A, BPIC2012_O, and
BPIC2012_W) are less suitable to share with the next event
time prediction task.

So it is not conducive to the advantage of MTLFormer
sharing the learning features of multiple tasks. The last one
may lie in the different input data when training models based
on these approaches. We mainly perform minimal prepro-
cessing on the raw event log data to obtain the input data of
MTLFormer and STLFormer. In contrast, other approaches
use extended time features as input data in addition to the
raw event log. However, in general, MTLFormer is the most
effective among the above comparison methods. In addition,
from the perspective of the neural network used, the average
prediction performance of the Transformer-based approaches
is much better than that of the others. The average MAE
error is reduced by approximately 0.8 days. Especially for the
Helpdesk dataset, the MAE of MTLFormer is only 2.84 days,
while that of the method in [31] is 6.36 days, with a difference
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TABLE 4. The comparison in the next activity prediction task (higher is better).

TABLE 5. The comparison in the next event time prediction task (lower is better).

of 3.52 days. Even though this method in [31] can achieve the
minimum MAE for the BPIC2012_A dataset, the difference
is only 0.26 days compared with MTLFormer. For the rest
datasets, MTLFormer is only 0.04 days and 0.06 days away
from the best results.

3) THE REMAINING TIME PREDICTION TASK
This task is similar to the next event time prediction task,
so we also choose MAE as an evaluation metric. The predic-
tion results of the different approaches on the four datasets
mentioned above are shown in Table 6. The table shows
that MTLFormer reduces the prediction error compared to
STLFormer in the remaining time prediction task by approx-
imately 0.3 days on the Helpdesk dataset, approximately
1.6 days on the BPIC2012_A dataset, approximately 1.6 days
on the BPIC2012_O dataset, approximately 3.2 days on
the BPIC2012_W dataset. In general, the average reduc-
tion in prediction error on these four datasets is about
1.7 days. Therefore, it is sufficient to demonstrate that MTL-
Former has an advantage over STLFormer in predicting the
remaining time. Compared with the non-Transformer-based
approaches, the advantage of MTLFormer and STLFormer is
obvious.

Fig(s). 4 to 7 show the comparison and change trends
of the performance of MTLFormer and STLFormer on
the datasets of Helpdesk, BPIC2012_A, BPIC2012_O, and
BPIC2012_W as the length of the prefix trace increases in

different prediction tasks, respectively. In each figure, the
subfigures (a), (b), (c), and (d) show the comparisons and
change trends of the four metrics (i.e., accuracy, precision,
recall, and f-score) in the next activity prediction task as
the length of the prefix trace increases. Each subfigure (e)
shows the comparison and change trend of the MAE metric
in the next event time prediction task (called MAE-nt) as the
length of the prefix trace increases. Each subfigure (f) shows
the comparison and change trend of the MAE metric in the
remaining time prediction task (called MAE-rt) as the length
of the prefix trace increases.

As can be seen from Fig(s). 4 and 5, the four metrics (i.e.,
accuracy, precision, recall, and f-score) of MTLFormer are
slightly higher than STLFormer with the different lengths
of the prefix trace, while the other two MAE metrics (i.e.,
MAE-nt and MAE-rt) are lower than the latter. As can be
seen in Fig. 6, the precision and f-score of MTLFormer are
slightly higher than STLFormer with the different length of
the prefix trace, and the MAE in the two time prediction
tasks (i.e., MAE-nt and MAE-rt) is lower than the latter,
while the other metrics are not as good as the latter. As can
be seen from Fig. 7, the recall of MTLFormer is slightly
higher than STLFormer with the different length of the prefix
trace, and the MAE in the two time prediction tasks (i.e.,
MAE-nt and MAE-rt) is lower than the latter, while the other
metrics are not as good as the latter. Overall, MTLFormer
has a good performance than STLFormer for the average
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TABLE 6. The comparison in the remaining time prediction task (lower is better).

FIGURE 4. The prediction performance comparison of MTLFormer and STLFormer in different tasks on Helpdesk
dataset.

TABLE 7. The comparison of model size for different approaches (1K=1000).

of all metrics but is also slightly inferior to STLFormer for
individual metrics in individual datasets.

Besides, to compare the model size of the different
approaches, we conduct a comprehensive analysis of the
parameter counts for bothMTLFormer and STLFormer mod-
els. This analysis allows for a more detailed comparison
of the model sizes between the two approaches for differ-
ent datasets. Specifically, we calculated each model’s total

number of learnable parameters, including the weights and
biases. Table 7 shows the statistics of the number of param-
eters in the model trained by the two approaches for each
dataset. Among them, the parameter number of STLFormer
is calculated by the sum of the parameter number of the
three tasks. As can be seen from the table, the model size
(i.e., the number of parameters) of MTLFormer and STL-
Former is of the same magnitude in all datasets, both of
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FIGURE 5. The prediction performance comparison of MTLFormer and STLFormer in different tasks on BPIC2012_A
dataset.

FIGURE 6. The prediction performance comparison of MTLFormer and STLFormer in different tasks on BPIC2012_O
dataset.

which are more than 100K (1K=1000) parameters. In con-
trast, the number of parameters of the MTLFormer model is

more than that of STLFormer on all datasets, with a differ-
ence of 11K parameters from the average value. This may
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FIGURE 7. The prediction performance comparison of MTLFormer and STLFormer in different tasks on
BPIC2012_W dataset.

be because MTLFormer has a certain amount of additional
shared parameters between multiple tasks when training the
model, compared with single-task training of STLFormer.
However, this model size difference of parameter number is
acceptable considering the current advanced hardware com-
puting power.

VI. CONCLUSION AND FUTURE WORK
This paper focuses on three prediction tasks in terms of the
next activity, the next event time, and the remaining time in
Predictive (business) Process Monitoring (PPM) and inves-
tigates how to improve the prediction performance further
and reduce time complexity. Our proposed approach, MTL-
Former, allows multiple tasks to learn concurrently, share,
and migrate knowledge, and is built utilizing the Trans-
former network guided by multi-task learning. Because the
hard-parameter sharing used in the construction of the pre-
diction model allows the learning of latent relations between
different tasks, MTLFormer can vastly reduce the time
required for model training, achieving the goal of mutual
learning between multiple tasks through parameter sharing
between different tasks. Furthermore, the multi-head atten-
tion mechanism of the Transformer network overcomes the
challenge of learning long-distance dependent features in
process instance data, thereby improving the prediction per-
formance. Extensive comparative experiments are compre-
hensively conducted for different tasks on different datasets,
and the results demonstrate the effectiveness of MTLFormer
for multiple tasks.

In future work, we intend to use soft-parameter shar-
ing structures such as the multi-gate Mixture of Experts
(mMoE) to implement multi-task learning and to inves-
tigate the application of other deep learning techniques
in the field of predictive process monitoring. Moreover,
we will study how predictive process monitoring tasks in
distributed application scenarios can improve collaboration
and performance betweenmultiple heterogeneous tasks while
enhancing privacy and reducing communication overhead in
future work, inspired by [43]. Besides, we also intend to
introduce active learning into predictive process monitoring
tasks inspired by [44]. It is expected that with the help of
active learning strategies, it can be implemented to allow
the machine learning algorithm to choose the data it learns
so that higher accuracy can be achieved with fewer training
labels.
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