
Received 30 June 2023, accepted 18 July 2023, date of publication 24 July 2023, date of current version 2 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3298049

A Task-Oriented General-Purpose Distributed
Computing System Based on CLTS Scheduling
Algorithm
MIN HUANG 1,2, YUNXIANG ZHAO 2, AND YAZHOU CHEN 1, (Member, IEEE)
1Army Engineering University, Shijiazhuang Campus, Shijiazhuang 050003, China
2Hebei University of Science and Technology, Shijiazhuang 050018, China

Corresponding author: Yazhou Chen (chen_yazhou@sina.com)

This work was supported by the Defense Industrial Technology Development Program under Grant JCKYS2020DC1.

ABSTRACT Most current research on commonly used distributed computing frameworks neglects the
difficulty of learning these frameworks. These commonly used distributed computing frameworks are
designed for professionals, and users must understand them well to use them for calculation tasks. In order
to solve the challenging balance problem between versatility and user learning difficulty, a new distributed
computing system is proposed. The design of this system is based on the idea of divide and conquer in
distributed computing. The paper uses Netty, Zookeeper, Hadoop Distributed File System (HDFS) and
other tools to implement the system functions. Firstly, the paper analyzes the research status of distributed
computing frameworks at home and abroad; Then, according to the idea of divide and conquer, the paper uses
Netty to implement the basic architecture of the system, uses Zookeeper and Netty to implement relevant
distributed mechanisms, uses HDFS as the distributed storage, designs and implements a Task-Oriented
General-Purpose (TOGP) distributed computing system, TOGP; Finally, the paper intensely studies the
task scheduling problem of the system, proposes a scheduling algorithm, Node Processing Capacity and
Distributed Lock Task Scheduling (CLTS) algorithm. The system scalability test proves that the TOGP has
good horizontal scalability. In the comparative experiment, the processing capacity of the TOGP using the
round robin is about 16% higher than that of Hadoop, which proves that the TOGP is available and efficient.
A series of experiments prove that the CLTS scheduling algorithm can effectively adapt to the heterogeneous
cluster environment and efficiently schedule tasks.

INDEX TERMS Distributed computing, load balance task-oriented, task scheduling.

I. INTRODUCTION
With the rapid development of information technology, mas-
sive data will be generated daily, and the vast amount of
data has far beyond the range that a single computer can
handle. Currently, there are two methods to deal with such
an enormous amount of data: centralized computing [1] and
distributed computing [2]. Centralized computing refers to
the use of parallel computing technologies such as OpenMP
to make full use of the computing resources of one computer,
which almost wholly depends on the processing capacity of

The associate editor coordinating the review of this manuscript and

approving it for publication was Abdullah Iliyasu .

one computer, to improve computing efficiency. Distributed
computing makes full use of the computing capacity of mul-
tiple computers by dividing the calculation task into several
subtasks and assigning these subtasks to multiple comput-
ers for processing in turn, thereby saving computing time
and improving computing efficiency. The programming of
centralized computing is simple, and the project is easy to
maintain. However, centralized computing does not have
scalability at the computer level. The computing capacity of
a centralized computing system depends entirely on the per-
formance of one computer. If one computer cannot provide
sufficient computing capacity, it can only upgrade hardware
equipment or use another higher-performance computer.

79176
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-6152-7912
https://orcid.org/0009-0007-7035-652X
https://orcid.org/0000-0003-3320-845X
https://orcid.org/0000-0002-4964-6609


M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

Compared with centralized computing, distributed com-
puting has a broader application prospect: distributed com-
puting frameworks have scalability, which can expand more
machines in the computer cluster to improve the computing
capacity of the entire computing system. At the fault toler-
ance level, the computing information can be stored in other
computers in the cluster through redundant backup and other
ways so that the collapse of a few computers will not affect
the regular operation of the entire cluster. In addition, using
centralized computing to process big data has high require-
ments for computer configuration. In contrast, distributed
computing has a higher cost-performance ratio. Users only
need to use several ordinary computers to process calculation
tasks that only high-performance computers can centrally
process. Nowadays, distributed computing technology has
been widely used to process data. Up to now, there are many
commonly used distributed computing frameworks, such as
Hadoop and Spark. These distributed computing frameworks
can be applied to many fields, as shown in Figure 1.
These distributed computing frameworks have beenwidely

used. With the continuous iterative updating of versions,
the structure of these distributed computing frameworks has
become increasingly complex. Around these distributed com-
puting frameworks and related tools, one relatively large
ecosystem [3], [4] and a research system have been formed.
Many papers have conducted in-depth research on the param-
eter configuration, job scheduling and analysis, data pro-
cessing flow and other aspects of these frameworks. These
studies cannot change the fact that these commonly used
distributed computing frameworks are designed for profes-
sionals. Users need to have a deep understanding of the
framework structure to use the framework to execute dis-
tributed calculation tasks efficiently. Nevertheless, even these
common distributed computing frameworks cannot solve all
distributed computing problems.

Taking Hadoop as an example, under the MapReduce
programming model, users only need to implement the map-
per, reducer, and driver classes to deal with data. However,
there are still problems with Hadoop itself: MapReduce is
unsuitable for processing all batch tasks. When users want to
process some tasks inappropriate for disassembling into Map
and Reduce, they must consider transforming the business
logic into MapReduce, dramatically increasing the users’
workload. In addition, common distributed computing frame-
works such as Hadoop and Spark are challenging to meet
some special distributed computing requirements. For exam-
ple, distributed computing technology is difficult to apply
to large-scale simulation calculation. The model data in the
field of simulation calculation is stored in a particular format
and can only be read with simulation calculation software.
The particular format of data and the particular processing
method of these data make it difficult for distributed comput-
ing frameworks such as Hadoop or Spark to give full play
to their advantages. Suppose users want to force distributed
computing frameworks such as Hadoop or Spark to handle
these special requirements. In that case, the original structure

FIGURE 1. Application fields of distributed computing frameworks.

of the frameworks needs to be significantly modified, and the
cost is too high.

Many special distributed computing requirements have
emerged with the wide application of distributed computing
technology. Designing a corresponding distributed comput-
ing system for each requirement is impossible from the cost
perspective. If a distributed computing system can simulta-
neously have relatively low cost and the versatility to handle
particular distributed calculation tasks, it must have the fol-
lowing characteristics:

1) The system needs to maintain a lightweight structure.
The lightweight structure can reduce the system’s learning
difficulty and deployment cost. Users can deploy and use the
distributed computing system to complete calculation tasks at
a lower cost.

2) The system needs to provide users with some Appli-
cation Programming Interfaces (API) to modify the system
according to their needs and then handle some particular
distributed calculation tasks to achieve its versatility.

3) The system needs to utilize the resources in the cluster
fully. Different calculation tasks rely on different parts of the
computers in the cluster, such as computationally intensive
tasks that rely more on CPUs. Therefore, to adapt to the needs
of various types of distributed calculation tasks, the system
must be able to utilize all resources in the cluster.

Therefore, it is necessary to design a more general-purpose
distributed computing system. In order to reduce users’ learn-
ing difficulty and maintain versatility, the system needs to
encapsulate the details of distributed computing and provide
users with some corresponding APIs to allow users to imple-
ment relevant business logic according to actual needs. This
paper proposes a task-oriented general-purpose distributed
computing system, TOGP. The implementation of TOGP
uses Netty, an event-driven network application development
framework, Zookeeper, a distributed application coordination
service software, and HDFS. According to the current needs
and application scenarios, TOGP focuses more on batch
processing.

The TOGP adopts the task-oriented design concept to
achieve versatility. By dividing the calculation task into data
and code and managing them separately, users can call data
and code like calling components or modify the way the
system reads data according to the actual needs of the calcu-
lation task. The TOGP implements the task type mechanism,
allowing users to customize new task types under the system
structure so that even if the system itself cannot fully meet the

VOLUME 11, 2023 79177



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

FIGURE 2. Organization chart of the TOGP.

requirements of particular calculation tasks, users can solve
this problem by customizing task types and corresponding
business logic. Based on the TOGP, this paper profoundly
studies the task scheduling problem of the system. As the
research result, the paper proposes the CLTS scheduling
algorithm, which can effectively improve the efficiency of
task scheduling in a heterogeneous cluster environment.

To sum up, the major contributions of this paper are as
follows:

1) This paper proposes a distributed computing system,
TOGP. The TOGP is designed and implemented using Netty,
Zookeeper, and HDFS.

2) Using task-oriented design concepts to treat data and
code independently. Users can customize the reading method
of data.

3) This paper proposes the CLTS scheduling algorithm.
The CLTS scheduling algorithm can adapt to the het-
erogeneous cluster environment and efficiently schedule
tasks.

The remainder of the paper is organized as follows.
Section II discusses related work. Section III describes the
design and implementation of the TOGP and the CLTS
scheduling algorithm. Section IV shows the experimental
results and analysis. Section V concludes the paper.

II. RELATED WORK
Google put forward the distributed computing modelMapRe-
duce in the paper [5] published in 2004. This comput-
ing model abstracts the business into two parts: Map and
Reduce. Users only need to write their Map and Reduce
programs according to their business needs and then write
a driver to realize distributed computing. There is still much
research [6], [7], [8] and applications [9], [10] on the MapRe-
duce model.

In 2009, the AMP laboratory of Berkeley University pro-
posed the distributed computing framework Spark and pub-
lished a related paper [11] in 2010. Unlike Hadoop, which
has a distributed storage system, HDFS, and a resource man-
agement tool, Yarn, Spark is more like a tool for processing
big data. It does not provide a file management system and
will not store data. Spark’s distributed memory computing
model is more efficient and inherits MapReduce’s horizontal
scalability. Spark uses Directed Acyclic Graph (DAG) to
describe the calculation logic, which solves the limitations
of the MapReduce model.

In 2013, Zaharia et al. improved Spark and pro-
posed Spark Streaming [12], a distributed comput-
ing framework for stream processing using micro-batch
processing.

79178 VOLUME 11, 2023



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

FIGURE 3. The data processing flow of the TOGP.

In 2015, Carbon et al. proposed the distributed comput-
ing framework Flink [13] based on the data flow model.
Flink supports batch processing and stream processing. In the
same year, Kulkarni et al. proposed the distributed comput-
ing framework Heron [14]. It solves the problems of the
distributed stream processing system Strom in the execution
model, resource allocation and task scheduling.

In 2017, Wei et al. designed and implemented a distributed
computing framework, OpenCluster [15], to process mas-
sive data generated by modern astronomical telescopes. This
framework can be used to rapidly develop high-performance
data processing systems for astronomical telescopes and sig-
nificantly reduce software development costs. In the same
year, to solve the problem that the existing distributed com-
puting frameworks do not support the Reinforcement Learn-
ing (RL) algorithm, UC Berkeley RISE-Lab proposed the
distributed computing framework Ray [16], which uses the
dynamic task graph computing model. In the same year,
Venkataraman et al. improved Spark Streaming and proposed
the distributed computing framework Drizzle [17], which
reduced the processing delay to 100ms while retaining the
low recovery delay of Spark Streaming. In 2017, Wu et al.
designed and implemented the distributed parallel computing
framework SummaryMR [18] using C++ to solve the prob-
lem of complex configuration steps and the lack of scalability
of the existing framework.

In 2019, Saha et al. proposed the Mesos framework
for container based Message Passing Interface (MPI) jobs,
Scylla [19]. This framework uses docker swarm to realize

the communication between the containerized tasks (MPI
processes) and Mesos and act as resource managers, thus
realizing the distributed computing of MPI tasks.

In 2020, Prakash et al. improved the shortcomings of
traditional general distributed computing frameworks such
as MapReduce in graph computing. Using the improved
MapReduce model, they solved the Erdos-Renyi (ER) graph
problem [20]. In the same year, Xu et al. designed and imple-
mented a distributed computing framework [21] capable of
predicting wind speed big data based on Spark.

In 2023, Sun et al. analyzed the MapReduce programming
model, proposed a random sample partition data model for
the problem of the MapReduce programming model in pro-
cessing big data, and designed a non-MapReduce distributed
computing framework for this data model [22].
According to the above analysis of the current research

situation, scholars at home and abroad study distributed com-
puting frameworks in two ways. The first is to conduct more
in-depth research based on a commonly used distributed com-
puting framework to make up for the original shortcomings
of the distributed computing framework, while the second
is to design a new distributed computing framework. The
designed distributed computing framework will often process
data in a particular format. So far, mainstream distributed
computing frameworks have formed an enormous ecosystem
after years of development. Further optimization based on
the mainstream distributed computing frameworks often does
not reduce the complexity and difficulty of these frameworks,
so the current situation of mainstream distributed computing
frameworks for professionals has stayed the same. Most of
the distributed computing frameworks designed by scholars
are designed to handle some particular type of data, and these
frameworks are often not versatile enough.

III. DESIGN AND IMPLEMENTATION OF TOGP
The TOGP adopts the Client/Server structure. The
Client/Server structure is a software system architecture
that can fully utilize the advantages of the hardware envi-
ronment on both sides, allocate tasks reasonably to the
client and server sides, and reduce communication overhead.
In the TOGP, the computing server and computing node are
implemented by Netty. The computing nodes deployed on
different computers can communicate with the computing
server through the network to complete the calculation task
together. The design idea of the TOGP is: that the computing
server receives the data, code and task type uploaded by users
and divides the data into data splits according to the task type
and data type; The computing node can dynamically join the
cluster. The computing server will dynamically allocate the
split information to the computing nodes according to the sta-
tus of the current online nodes. The computing node will call
the code to process the splits and upload the split processing
results to the computing server. Finally, the computing server
will summarize and count according to the task type to obtain
the running results of the calculation task. Figure 2 shows the

VOLUME 11, 2023 79179



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

FIGURE 4. How the TOGP processes calculation tasks.

organizational structure of the TOGP. Figure 3 shows the data
processing flow of the system.

Figure 4 shows how the TOGP processes calculation tasks.
The TOGP divides the calculation task into data and code and
manages them separately. Through data segmentation, TOGP
divides data into splits. Splits’ name combines the data name
and serial number, and TOGP does not allow the same data
name to appear. So, each split has a unique split name. TOGP
will collect the split names of these splits and calculate the
weight of each split, ultimately generating split information
in key-value pair format.

The specific flow of system data processing can be
obtained by combining Figure 2, Figure 3 and Figure 4.When
the user submits data, code and task type to the TOGP, the
command receiving module receives the information submit-
ted by the user and checks whether the corresponding file
exists. If there is a corresponding file, the data processing
module will find the corresponding segmentation method
according to the task type and data type, segment the data
into splits, and upload the splits and code to HDFS. The
task scheduling module will schedule according to the com-
puting nodes’ status and split information. Finally, based on
the scheduling results, the computing server will send split
information to the current online computing nodes.

After receiving the split information, the computing node’s
receiver module will download the code and corresponding
splits from the HDFS. And then, the calculation module will
call the code to process the splits and send one message and
split processing result to the registration and result summary
modules. The message sent to the registration module will be
fed back to the monitoring module of the computing server.
It will eventually be used as a part of the computing node
status as a reference for task scheduling. The result summary
module of the computing server receives the split processing
results uploaded by each node, calls the corresponding sum-
mary method according to the task type, and finally obtains
the running results of the calculation task. The running results
will be backed up to HDFS and submitted to users.

The TOGP requires at least one computing server and
one computing node. Theoretically, the system can allow
hundreds of nodes to participate in distributed computing.
The actual maximum number of nodes that the system can run
depends on the performance of the computing server, network
communication rate, queue length of the task scheduling

TABLE 1. Custom communication protocol.

TABLE 2. Task types supported by the TOGP.

module and other indicators. In the TOGP, the computing
server and computing node are usually deployed separately
in the cluster computers. One single computer can deploy
one computing server and multiple computing nodes at the
same time. Deploying multiple nodes on one computer may
cause different nodes to interact with each other, so this is not
recommended.

The system uploads data splits and code to HDFS mainly
for fault tolerance. HDFS will store the data of each file in
blocks, and each data block will keep multiple copies. These
copies of data blocks are distributed on different nodes in the
HDFS cluster, ensuring that even if there are problems with
a few computing nodes, they will not affect the relevant data
of the calculation task.

Some communications in the TOGP use the customized
communication protocol based on MessagePack and Netty.
Table 1 shows the specific contents of the communication
protocol.

In distributed computing, the processes of different types
of calculation tasks vary greatly. Hence, most distributed
computing frameworks provide multiple operators or multi-
ple computing models to achieve versatility. The TOGP uses
task-oriented design, classifies the calculation tasks accord-
ing to the summary logic of the splits computing results,
summarizes three common task types under the most basic
task types, and designs the corresponding data segmentation
method and processing results summary methods according
to the three task types. Table 2 lists the task types supported
by the TOGP.

79180 VOLUME 11, 2023



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

Firstly, the TOGP defines the most basic task type, dis-
tributed calculation task, which does not have the corre-
sponding data segmentation and result summary methods.
However, other task types can inherit from this type. Devel-
opers can inherit new task types by inheriting this type.

Under the most basic task type, the TOGP sets three
task types by default. Each task type has its corresponding
data segmentation and result summary method. If developers
implement new task types, they must also implement corre-
sponding data segmentation and result summary logic. The
‘‘other’’ type is mainly considered for special-needs calcu-
lation tasks. For example, when using simulation software
to calculate models, if the angle is used as the basis for
partitioning, different computers in the cluster can conduct
simulation experiments according to different angles, and the
final experimental results only need to be merged.

By following various measures, TOGP is easy for users to
learn and use:

1) There is a deployable front-end interface program for
TOGP. The front-end interface program can be connected
to the computing server, allowing users to submit or check
computing tasks in the web page, and monitor the cluster
status. The front-end interface does not involve distributed
mechanisms or scheduling algorithmmechanisms. TOGP can
be run directly without the front-end interface.

2) The TOGP provides users with some APIs to modify
the TOGP according to their needs and then handle some
particular calculation tasks. TOGP’s lightweight structure can
reduce the system’s learning difficulty and deployment cost.

3) The processing of data by TOGP relies on the code
uploaded by users. Users do not need to transform the busi-
ness logic into a certain computing model.

A. COMPUTING SERVER
The computing server is the core of TOGP. Its main jobs
include:

1) Receiving the data, code and task type uploaded by
users.

2) Segmenting the data according to the task type and data
type.

3) Uploading the splits and code to HDFS.
4) Monitoring the status of the computing nodes.
5) Scheduling the splits according to the status of the

computing nodes and the split information.
6) Monitoring the running status of the calculation tasks.
7) Receiving the split processing results.
8) Summarizing and statistics the split processing results.
The monitoring mechanism on the computing node is

based on Zookeeper. When the computing node goes online,
an ephemeral node will be registered in the designated direc-
tory of the Zookeeper cluster. The naming format of the
ephemeral node is IP: port. The session between the comput-
ing node and the computing server ends when the computing
node is offline. Because the life cycle of the Zookeeper
ephemeral node depends on the session, the ephemeral node
will be deleted. As long as the computing server uses

FIGURE 5. The flow chart of the task scheduling module.

Zookeeper’s watchmechanism tomonitor the specified direc-
tory, it can sense all computing nodes currently online on
time. The computing node will send heartbeat packets to
the server at regular intervals. If the computing node cannot
connect to the computing server, it will try to reconnect.

The core of the computing server is the task scheduling
module. The task scheduling algorithm of the system is built
into the task scheduling module. Before sending split infor-
mation to computing nodes every time, the task scheduling
module will check the current online nodes. The design of
the task scheduling module allows the node to join or exit the
operation at any time. Suppose a computing node is offline
and cannot automatically reconnect to the server. In that case,
the computing server will recycle unfinished splits allocated
to this node by collecting information on these splits. The
information on unfinished splits will rejoin the system queue.
The task scheduling module maintains the system queue, and
the system queue is composed of three queues. These three
queues represent low, medium and high task priorities. The
task schedulingmodule will extract the split information from
the queue like a weighted round robin and send it to the
computing node.

Figure 5 shows the flow chart of the task scheduling
module.

In the task scheduling module, there are two scheduling
algorithms. One of the algorithms is round robin. When the
round robin is used as the scheduling algorithm, the sys-
tem will directly send splits evenly to each computing node

VOLUME 11, 2023 79181



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

without considering the computing capacity of nodes, which
means that the round robin cannot schedule splits in real
time according to the processing capacity of nodes Given
the shortcomings of the round robin, this paper introduces
the distributed service registration and discovery mechanism
and the dynamic feedback mechanism of node processing
capacity into the task scheduling problem of the TOGP
and proposed the CLTS scheduling algorithm. The CLTS
scheduling algorithm is based on node processing capacity
and distributed lock. It is designed to adapt to heterogeneous
cluster environments and schedule tasks according to the
actual processing capacity of nodes.

B. COMPUTING NODE
The main jobs of the computing node include:

1) Receiving the split information sent by the computing
server.

2) Downloading the code and corresponding splits from
HDFS according to the name of splits.

3) Calling the code to process the splits.
4) Sending the split processing results to the computing

server.
5) Monitoring the local status and collecting status infor-

mation, such as CPU utilization, memory utilization, hard
disk utilization, etc.

6) Sending the heartbeat packet to the computing server.
7) Updating its state information to the Zookeeper cluster.
The computing node regularly monitors the local computer

state through Operating System and Hardware Information
(OSHI). It puts the local state information into the heartbeat
packet sent to the computing server. Because there is already
a distributed service registration and discovery mechanism
implemented by the Zookeeper ephemeral node feature to
determine whether the node is online, in the TOGP, the heart-
beat packet sent by the computing node is mainly used to send
the local state information to the server.

Because of the requirement of task scheduling and dis-
tributed service registration and discovery mechanism, the
computing node needs to connect with the Zookeeper cluster.
Through the Zookeeper cluster, the status of computing
resources and the processing status of splits are fed back to
the computing server as a reference for the server to schedule
tasks.

The computing node’s calculation module maintains a
business thread pool to implement parallel processing within
the node. The capacity of the business thread pool depends
on the number of CPU cores of the computer where the node
is located. The capacity of the business thread pool will also
be sent to the server as part of the node status information.

C. CLTS SCHEDULING ALGORITHM
The scheduling algorithm used in distributed computing
frameworks determines the utilization rate of computing
resources to a large extent. The TOGP uses round robin
as the scheduling algorithm in the system implementation
phase. As the default scheduling algorithm for distributed

computing frameworks such as Flink and Storm, the round
robin has the advantages of fewer parameters, simple opera-
tion and easy replication. However, in practical applications,
the round robin performs poorly in the heterogeneous cluster.
The heterogeneous cluster considered in this paper refers to a
computer cluster with different computing capacities due to
significant differences in disk capacity, CPU cores and speed,
and memory capacity among multiple internal nodes. In the
situation of using a distributed computing system that can run
multiple calculation tasks simultaneously, along with the start
or end of other calculation tasks, the computing capacity that
can be provided for the newly added calculation task on the
same computer will also change.

Since the development of distributed computing technol-
ogy, many task scheduling algorithms have been formed.
These task scheduling algorithms can be divided into classical
and heuristic task scheduling algorithms. Classic schedul-
ing algorithms include round robin, first come first service
algorithm, fair scheduling algorithm, etc. The heuristic task
scheduling algorithm comprises a genetic algorithm, ant
colony optimization, simulated annealing algorithm, particle
swarm optimization algorithm, etc.

This paper studies task scheduling algorithms to solve the
problem of system load balancing. It is found that although
some of the current classical scheduling algorithms have few
parameters and simple operations and are easy to replicate,
these classical scheduling algorithms do not consider the per-
formance differences between the nodes in the heterogeneous
cluster and are prone to load imbalance. While some current
heuristic task scheduling algorithms can adapt to complex
scenarios and rapidly expand the global search, they have
problems such as high randomness, easy fall into local opti-
mal solutions, and challenging control parameters. Therefore,
this paper studies the shortcomings of round robin in cal-
culation task processing and proposes the CLTS scheduling
algorithm.

CLTS scheduling algorithm is designed based on the
premise that the number of data splits is far more than the
sum of each node business thread pool. Most distributed cal-
culation tasks meet this premise considering the large amount
of data in distributed computing. CLTS scheduling algorithm
is further designed based on the round robin implemented in
the TOGP. Based on the round robin, the CLTS scheduling
algorithm has three problems to be solved.

The first problem is the control of split scheduling. In the
round robin, because the task scheduling module only needs
to know whether the computing nodes are online, it directly
gives the scheduling results of all splits according to the
nodes’ online status. Suppose a computing node is offline
and cannot reconnect to the server. In that case, the task
scheduling module will schedule splits sent to this node, and
the computing server did not receive processing results again,
according to the round robin. According to the parallel mech-
anism of computing nodes, the capacity of the business thread
pool on computing nodes is limited. If the split information
that exceeds the capacity of the thread pool is received, the

79182 VOLUME 11, 2023



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

FIGURE 6. The structure of the CLTS scheduling algorithm.

redundant split information can only wait in the thread pool’s
queue. If the task scheduling module sends too much split
information to one computing node at one time, and then the
node suddenly drops and cannot reconnect, it can only start
the fault-tolerant mechanism of the system. The system needs
to find a large number of split information sent to this node
and continue to send this split information again, which is
costly. Therefore, whether from the perspective of computing
efficiency or fault tolerance, it is necessary to control the
scheduling of splits.

The second problem is the perception of node computing
resources. In the TOGP, computing resources refer to the
number of idle threads in the business thread pool. The second
problem is closely related to the first problem. Under the
condition that the server can sense the nodes’ computing
resources, the task scheduling module can send the appropri-
ate amount of split information to computing nodes with idle
threads according to the number of idle threads of each node
to avoid accumulating split information in the queue.

The third problem is the perception of nodes’ process-
ing capacity. After solving the first two problems, the task
scheduling module can only perceive which node has idle
business threads but does not perceive the computing capac-
ity of nodes. Therefore, when the number of remaining
splits is small, it is possible that the task scheduling module
erroneously sends splits to the node with extremely weak
computing capacity. So, it is necessary to design a perception
mechanism for the processing capacity of the nodes. Under
the perception mechanism, computing nodes will actively
provide the computing server with information such as the
processing time of splits, which will be continuously updated

and used as the basis for task scheduling. Figure 6 shows the
structure of the CLTS scheduling algorithm.

The CLTS scheduling algorithm has made certain modifi-
cations to the original functions of the computing server and
computing node of the TOGP. It allows the task scheduling
module to make decisions based on the progress of split
processing.

In the CLTS scheduling algorithm, the computing server
sends the first batch of split information based on the connec-
tion status of each computing node. The computing server can
accurately perceive all computing nodes with idle business
threads simply by continuously monitoring the changes in the
node.

The pseudo-code for the processing flow of the computing
server after the user uploads calculation tasks in the CLTS
scheduling algorithm is shown in Algorithm 1.
When the CLTS scheduling algorithm is first started, there

is no historical data. The computing server has to use the
round robin as the scheduling algorithm to send the first
batch of splits. Once a computing node has processed a split,
it will register the computing node’s address in the Zookeeper
cluster. The scheduler of the computing server monitors the
changes in the specified directory in the Zookeeper cluster
and can get the node’s address with idle computing resources.
When the computing node finishes processing a split, it will
automatically record the processing time of the split and
update the processing time to the Zookeeper cluster. The
relevant information uploaded to the Zookeeper cluster will
be obtained by the server and used as an essential basis for
judging the computing capacity of nodes. After getting the
node address and the split processing time, the scheduler

VOLUME 11, 2023 79183



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

Algorithm 1 The Pseudo-Code For the Processing Flow of
the Computing Server After the User Uploads Calculation
Tasks in the CLTS Scheduling Algorithm

1.Receive the data, code and task type uploaded by the user
2.Divide the data into splits according to the task type and
data type

3.Upload splits and code to HDFS
4.Check online computing nodes and send split
information to these computing nodes

5.loop:
6. Detect a change in the data of the node in the

Zookeeper cluster
7. if The computing server has received all split

processing results of one calculation task then
8. Call the corresponding result summary method

according to the task type
9. end if
10. if System queue is empty then
11. end loop
12. else
13. if The proportion of unprocessed splits is less than

10% then
14. Search the table for T and Tmin. (T is the time

spent processing other splits of this calculation
task by the computing node with idle threads. Tmin
is the shortest time to process this calculation
task’s splits)

15. if T > N × Tmin (N is the parameter set by the
user, with a default value of 4) then

16. Update the data of the node in the Zookeeper
cluster to the address of the computing node
corresponding to Tmin

17. end if
18. end if
19. Get split information from the system queue
20. Send split information according to the data of the

node in the Zookeeper cluster
21. goto loop
22. end if

determines whether to refer to the node address with idle
computing resources and the split processing progress of
the current calculation task and obtains the final scheduling
result. Then the scheduler executes the final scheduling result
and sends the split information to the specified computing
node.

During the operation of the CLTS scheduling algorithm,
if there are newly added computing nodes, they will register
their addresses in the Zookeeper cluster like other computing
nodes that have processed splits.

In the practical application of the CLTS scheduling
algorithm, the computing server will maintain a table for each
calculation task, as shown in Table 3.

During the execution of the calculation task, the computing
node needs to collect split processing information. This part
of the business is handled by an independent thread pool,
which will not affect the processing of calculation tasks. The
computing server will obtain split processing information
through the Zookeeper watch and dynamically update the
table. The system takes the time spent by computing nodes

TABLE 3. Table maintained by the computing server.

Algorithm 2 The Pseudo-Code For the Processing Flow of
the Computing Node After the Computing Server Sends Split
Information in the CLTS Scheduling Algorithm

1.Receive split information from the computing server
2.Find the corresponding splits and code fromHDFS based on the
split information
3.Download corresponding splits and code from HDFS
4.Call the code to process splits
5.Collect split processing information and send the split process-
ing
results to the computing server
6.Register a Zookeeper ephemeral sequential node under the
node in the Zookeeper cluster
7. if The serial number of this Zookeeper ephemeral sequential
node is not the smallest then
8. Register a Zookeeper watch for watching the previous

Zookeeper ephemeral sequential node
9. Receive notifications from Zookeeper watch
10. end if
11.Update the data of the node in the Zookeeper cluster.

The updated data is the address of this computing
node and split processing information. (The format of
updated data is: node address; node name; split name;
start time; processing time)

to process a split of the calculation task as the basis for
judging the computing capacity of nodes so that the com-
puting capacity of each node can be compared. Through this
comparison, the server can have a relative understanding of
the computing capacity of each node.When the TOGP detects
that the number of remaining splits is small, it combines the
table data with the nodes with an idle business thread as the
basis for task scheduling.

When the number of unprocessed splits is large, the TOGP
will fully use the computing resources of all nodes in the
cluster and send split information to nodes with idle com-
puting resources. When the number of unprocessed splits
is small, the task scheduling module will actively retrieve
the information in the corresponding table when it perceives
idle computing resources. Finally, the task schedulingmodule
makes a choice by comparing the computing capacity of
different nodes.While using computers with weak computing
capacity in the cluster, this mechanism can avoid unnec-
essarily slowing down the processing of calculation tasks
due to sending split information to nodes with inadequate
computing capacity at the later stage of task processing.

79184 VOLUME 11, 2023



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

TABLE 4. Cluster configuration.

Algorithm 2 shows the pseudo-code for the processing
flow of the computing node after the computing server sends
split information in the CLTS scheduling algorithm.

After receiving the split information sent by the computing
server, the computing node will download the corresponding
splits and code from HDFS and call the code to process the
splits. When the node’s business thread finishes processing
the current split, it will try to update the node’s data in the
Zookeeper cluster. The updated data is the address of this
computing node. Under the influence of distributed lock, only
one computing node can change the data of the node at the
same time.

The computing server can accurately perceive all comput-
ing nodes with idle business threads simply by continuously
monitoring the changes in the node in the Zookeeper cluster.
Therefore, the computing server can only send split informa-
tion to computing nodes with idle threads. The distributed ser-
vice registration and discovery mechanism is implemented.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL ENVIRONMENT
Figure 7 shows the network environment for TOGP
deployment.

The TOGP deploys in a cluster of multiple comput-
ers. The operating system for these computers is Ubuntu
20.04 LTS. For efficiency reasons, computers in the cluster
have deployed the Zookeeper and HDFS. Table 4 shows the
configuration of these computers.

Due to the many responsibilities of the primary computer,
such as being responsible for data segmentation and upload-
ing splits to HDFS and interacting with other computers, it is
necessary to ensure the stable operation of the entire system.
The primary computer needs to have a higher configuration.
According to the TOGP’s design, the computing server and
computing node can be deployed on different computers.

Because the TOGP needs to use Zookeeper for distributed
coordination services, computers in the cluster should deploy
Zookeeper. Table 5 shows the planning of the Zookeeper
cluster.

FIGURE 7. The network environment for TOGP deployment.

TABLE 5. Planning for zookeeper cluster.

B. SYSTEM SCALABILITY TEST
The core idea of distributed systes is to allow multiple com-
puters to work together to complete some tasks that are
difficult to be handled by one single computer, such as tasks
with high concurrency or large amounts of data. Therefore,
distributed systes have to use a network to connect multi-
ple computers. This structure means that distributed systems
must have scalability. As the most significant feature of
distributed systems, scalability allows distributed systems to
adapt to changes in requirements.

Scalability is divided into horizontal scalability and verti-
cal scalability. Horizontal scalability means that the cluster’s
overall performance can be improved by increasing the num-
ber of computers in the cluster. In contrast, vertical scalability
means that the overall performance of the cluster can be
improved by improving the performance of each computer
in the cluster.

The performance of one single computer cannot be
improved without limitation, but it is easy to add a large
number of computers to the cluster. Therefore, many dis-
tributed computing frameworks tend to emphasize horizontal
scalability, that is, to improve the efficiency of distributed
computing by increasing the number of computers in the clus-
ter. Therefore, it is necessary to test the horizontal scalability
of the TOGP.

The horizontal scalability test of the system involves
deploying the TOGP in the cluster and running a K-means
algorithm to process the same iris dataset with different num-
bers of computing nodes enabled. This dataset is generated
by Python following the Iris dataset, and its size is 2.1GB.
Figure 8 shows the results of the horizontal scalability test.

VOLUME 11, 2023 79185



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

FIGURE 8. Horizontal scalability test.

From the test results of horizontal scalability, deploying
more nodes can effectively speed up the processing efficiency
of calculation tasks. The TOGP can fully use the newly added
computing resources in the cluster to complete calculation
tasks and has horizontal scalability.

C. SYSTEM PERFORMANCE COMPARATIVE EXPERIMENT
For distributed computing frameworks, performance is a sig-
nificant factor. The performance of distributed computing
frameworks determines whether frameworks can efficiently
complete the calculation task. In the system performance
comparative experiment, this paper selects Hadoop to com-
pare with the TOGP using the round robin. The calculation
example used in the experiment is word frequency statistic,
and the version of Hadoop used is 2.10.1.

This paper chooses Hadoop as a comparison object for the
following reasons:

1) Many distributed computing frameworks mentioned
above are not open source, and some are designed to handle
data in special formats, which need to be more versatile.

2) The TOGP is similar to Hadoop in structure. Both use
HDFS as distributed storage and are implemented by Java.

3) Hadoop is a classic distributed computing framework
widely used and is still being updated. Therefore, it is more
valuable to compare with Hadoop.

The example used in the experiment is word frequency
statistic. Its content is to count the number of occurrences
of each word in single or multiple text files and output each
word and its number of occurrences in the form of key-value
pairs. The dataset of word frequency statistic used in this
comparative experiment is generated by Python. The words
are separated by spaces. The size of the dataset is 3.15GB.

The comparative experiment is conducted in a cluster envi-
ronment built by four computers, server, worker 1, worker
2 and worker 3. In order to reduce the impact of network
speed fluctuations, it is necessary to use the same dataset
to conduct multiple experiments. In the comparative experi-
ment, Hadoop uses its default word frequency statistic pro-
gram. Because Hadoop’s word frequency statistic program
requires the dataset to be uploaded to HDFS ahead of time,
the TOGP reads the data directly from the local computer and

FIGURE 9. System performance comparative experiment.

uploads splits to HDFS after data segmentation. For fairness,
the time Hadoop performs word frequency statistics is the
time the dataset is uploaded and the time Hadoop’s word fre-
quency statistic program performs data processing. The time
for the TOGP to perform word frequency statistics includes
the time for data segmentation, the time for uploading splits
to HDFS, and the time for the TOGP to process the splits.
Figure 9 shows the experimental results.

As seen from Figure 9, in most cases, the computing
efficiency of the TOGP is higher than that of Hadoop, and
only in a few instances the computing efficiency of the two is
about the same. According to the average of ten experiments,
the performance of TOGP using the round robin is about
16% higher than that of Hadoop. The performance of TOGP
exceeds that of Hadoop for the following reasons:

1) The TOGP can fully use computing resources to process
the calculation tasks efficiently.

2) Hadoop is designed to handle very large-scale data, but
due to computer hardware limitations, the size of the dataset
is only at the GB level.

3) Compared with Hadoop’s computing process, the com-
puting process of TOGP reduces the number of times to write
data to disk.

4) The configuration of each worker computer is the same,
and there is no significant difference in processing capacity.
In this case, the round robin is more efficient than Hadoop’s
task scheduling algorithm.

Therefore, it can be proved that the performance of TOGP
is higher than that of Hadoop. By combining the performance
comparative experiment with the horizontal scalability test,
different types of calculation tasks have been processed on the
TOGP. It can be considered that the TOGP has availability.

D. EVALUATION OF THE CLTS SCHEDULING ALGORITHM
The comparative experiment part of the CLTS scheduling
algorithm needs to evaluate the computing capacity of com-
puters, and different types of calculation tasks have different
requirements on the computer configuration.

Therefore, the whole comparative experiment part needs
to use the same type of calculation tasks. The calculation task
used in the experiment is word frequency statistic, which best
reflects the idea of distributed computing. The datasets used

79186 VOLUME 11, 2023



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

in the word frequency statistic experiment are generated by
Python, with spaces interval between words, and the sizes of
the datasets are at GB level. The formats are identical between
different datasets, differing only in content and size.

In the experiment to verify the algorithm’s effectiveness,
the experimental evaluation index is the running time of the
calculation task. Because the CLTS scheduling algorithm is
designed to adapt better to the heterogeneous cluster, it is
necessary to simulate the heterogeneous cluster environment
before conducting comparative experiments. The heteroge-
neous cluster considered in this paper refers to a cluster with
different computing capacities due to significant differences
in disk capacity, CPU cores, speed and memory capacity
among multiple nodes of the same cluster.

Four computers were used in the scheduling algorithm
comparative experiment: server, worker 1, worker 2 and
worker 3. According to the cluster configuration, the hard-
ware configurations of each computing node are identical.
Therefore, the computing capacity of each computing node is
not significantly different. So, we need to use other methods
to simulate the heterogeneous cluster.

Before verifying whether the CLTS scheduling algorithm
can adapt to the heterogeneous cluster environment, the effec-
tiveness of the CLTS scheduling algorithm should be eval-
uated. Three datasets are used for word frequency statistics
to evaluate the efficiency of the CLTS scheduling algorithm
fully. The hardware configuration of each computing node is
identical, so there is little difference in its computing capacity.
In this case, the simple-structure round robin has become the
optimal scheduling algorithm under this condition because
the scheduling results fully match the scheduling based on
the computing capacity of the nodes. Therefore, we only need
to compare the CLTS scheduling algorithm with a theoretical
optimal algorithm, the round robin.

All three datasets are generated by Python, and the sizes of
dataset 1, dataset 2, and dataset 3 are 4.09GB, 6.06GB, and
11.12GB, respectively. The TOGP uses round robin and the
CLTS scheduling algorithm as scheduling algorithms to run
word frequency statistic tasks. Figure 10 shows the experi-
mental results.

According to the experimental results, it can be found that
the effect of the CLTS scheduling algorithm is not different
from that of the round robin, which is caused by the following
reasons:

1) The configuration of each worker machine is identical,
so the computing capacity gap of each node in the cluster is
tiny. The scheduling results given according to the nodes’
computing capacity are consistent with the round robin’s
scheduling results, which does not reflect the advantages of
the CLTS scheduling algorithm.

2) CLTS scheduling algorithm has distributed service reg-
istration and discovery mechanism and dynamic feedback
mechanism of node processing capacity implemented by
Zookeeper. These mechanisms will also occupy a certain
amount of resources and slightly affect the efficiency of the
CLTS scheduling algorithm. In contrast, the structure of the

FIGURE 10. The comparative experiment of scheduling algorithms.

round robin is relatively simple, so that the round robin will
save some time.

Because the computing capacity of each node in the cluster
is not significantly different, the above experiment is not
enough to prove that the CLTS scheduling algorithm can
better adapt to an environment of the heterogeneous cluster.
Therefore, further experimentation is needed to simulate an
environment of the heterogeneous cluster.

This paper initially adopted the approach of running other
programs to occupy the computing resources, thus expanding
the computing capacity gap of nodes in the cluster. However,
the effect of this approach is not apparent, and the impact
on computing capacity cannot be quantified. Therefore, this
paper can only simulate the decline of one node’s computing
capacity by directly adding a time delay to the calculation
module in worker 1. Under the time delaymechanism, worker
1 will delay when it receives the splits, so the nodemust spend
more time processing the same number of splits. The specific
delay time is set manually, accurate at the millisecond level,
which is easy to quantify and control. By adding a delay to
the node’s calculation module, the computing capacity of the
node can be significantly reduced, and the situation of the
heterogeneous cluster can be simulated.

Therefore, the content of the comparative experiment is to
add a delay to the computing node deployed on worker 1 and
use the round robin, the smooth weighted round robin based
on the node processing capacity, and the CLTS scheduling
algorithm to process the same dataset under different lengths
of time delay. The smooth weighted round robin based on
node processing capacity is a smooth weighted round robin
implemented in the system based on the dynamic feedback
mechanism of node processing capacity in the CLTS schedul-
ing algorithm. Figure 11 shows the experimental results.

As shown in Figure 11, as the delay of the computing node
deployed on worker 1 computer increases, the computing
capacity of the node decreases, and the advantages of the
CLTS scheduling algorithm become more and more evi-
dent. To summarize the advantages of the CLTS scheduling
algorithm, the experimental results in Figure 11 can be further
analyzed.

VOLUME 11, 2023 79187



M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

FIGURE 11. The comparative experiment of scheduling algorithms with
time delay.

FIGURE 12. Statistics on the proportion of splits.

Figure 12 shows the percentage of node processing splits
under round robin and CLTS scheduling algorithm with a
time delay effect in comparative experiments.

Under the mechanism of the CLTS scheduling algorithm,
the worse the computing capacity of the computing node, the
more inclined the server is to send split information to other
nodes. Finally, the node with the worse computing capacity
will be assigned less work.

With the increase in time delay, the computing node’s effi-
ciency of processing splits affected by latency will worsen.
Although the first round of three scheduling algorithms is
round robin, over time, the CLTS scheduling algorithm can
enable the computing server to promptly monitor the opera-
tion of business threads in the cluster and send split informa-
tion to nodes with idle business threads. The mechanism of
the CLTS scheduling algorithm enables it to make full use of
computing resources in the cluster. At the same time, it can
also adapt to the situation where there are significant differ-
ences between multiple nodes in the same cluster regarding
disk capacity, CPU cores and speed, and memory capacity,
which leads to significant differences in the computing capac-
ity of nodes.

According to the experimental results shown in Figure 11
and Figure 12, the CLTS scheduling algorithm can better
adapt to the heterogeneous cluster environment. Compared
with the smooth weighted round robin based on node pro-
cessing capacity, the CLTS scheduling algorithm is more
effective.

V. CONCLUSION
In order to solve the problem that the current commonly
used distributed computing frameworks are challenging to
balance between versatility and learning difficulty, this paper
proposes a distributed computing system, TOGP. The TOGP
adopts the task-oriented design concept, dividing the calcu-
lation tasks into multiple tasks and implementing the cor-
responding processing methods according to different task
types. Based on the TOGP, this paper makes more pro-
found research on the task scheduling problem of the system.
By introducing distributed service registration and discov-
ery mechanism and mechanism of node computing capacity
detection into the task scheduling problem of the system, the
paper proposed the CLTS scheduling algorithm.

The system scalability test proves that the TOGP has
good horizontal scalability. In the comparative experiment,
the computing performance of the TOGP using the round
robin is about 16% higher than that of Hadoop, which proves
that the TOGP has a high processing capacity. A series of
experiments prove that the CLTS scheduling algorithm can
effectively adapt to the heterogeneous cluster environment
and efficiently schedule splits.

In future work, on the one hand, we will continue to
expand the task types supported by the TOGP, further opti-
mize the data segmentation method, and further study the
computational model of stream processing to achieve stream
processing in the system; On the other hand, container tech-
nology and support for resource management platforms such
as Yarn will be introduced to achieve accurate control of
computing resources and maximize the utilization efficiency
of resources.

REFERENCES
[1] V. A. Shchapov, G. F. Masich, and A. G. Masich, ‘‘The technology of

processing intensive structured dataflow on a supercomputer,’’ in Proc.
IEEE Trustcom/BigDataSE/ISPA, vol. 2, Helsinki, Finland, Aug. 2015,
pp. 235–240, doi: 10.1109/Trustcom.2015.589.

[2] H. Tian, A. W. Liew, and H. Shen, ‘‘Advances in parallel and distributed
computing and its applications,’’ Concurrency Comput., Pract. Exper.,
vol. 34, no. 2, p. e6667, Oct. 2021, doi: 10.1002/cpe.6667.

[3] S. Tang, B. He, C. Yu, Y. Li, and K. Li, ‘‘A survey on spark ecosystem:
Big data processing infrastructure, machine learning, and applications,’’
IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 71–91, Jan. 2022, doi:
10.1109/TKDE.2020.2975652.

[4] S. Wilson and R. Sivakumar, ‘‘Twitter data analysis using
Hadoop ecosystems and Apache Zeppelin,’’ Indonesian J. Electr.
Eng. Comput. Sci., vol. 16, pp. 1490–1498, Dec. 2019,
doi: 10.11591/ijeecs.v16.i3.pp1490-1498.

[5] J. Dean and S. Ghemawat, ‘‘MapReduce: Simplified data processing on
large clusters,’’ Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008,
doi: 10.1145/1327452.1327492.

[6] Y. Wang and Y. Wu, ‘‘Universal coded distributed computing for
MapReduce frameworks,’’ 2022, arXiv:2201.06300.

[7] J. Li, Y. Liu, J. Pan, P. Zhang, W. Chen, and L. Wang,
‘‘Map-Balance-Reduce: An improved parallel programming model
for load balancing of MapReduce,’’ Future Gener. Comput. Syst., vol. 105,
pp. 993–1001, Apr. 2020, doi: 10.1016/j.future.2017.03.013.

[8] E. Gavagsaz, A. Rezaee, and H. H. S. Javadi, ‘‘Load balancing in join
algorithms for skewed data in MapReduce systems,’’ J. Supercomput.,
vol. 75, no. 1, pp. 228–254, Jan. 2019, doi: 10.1007/s11227-018-2578-0.

[9] W. Shi, D. B. Tang, and P. Zou, ‘‘Multi-objective automated guided vehicle
scheduling based on MapReduce framework,’’ Adv. Prod. Eng. Manag.,
vol. 16, pp. 37–46, Mar. 2021, doi: 10.14743/apem2021.1.383.

79188 VOLUME 11, 2023

http://dx.doi.org/10.1109/Trustcom.2015.589
http://dx.doi.org/10.1002/cpe.6667
http://dx.doi.org/10.1109/TKDE.2020.2975652
http://dx.doi.org/10.11591/ijeecs.v16.i3.pp1490-1498
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1016/j.future.2017.03.013
http://dx.doi.org/10.1007/s11227-018-2578-0
http://dx.doi.org/10.14743/apem2021.1.383


M. Huang et al.: TOGP Distributed Computing System Based on CLTS Scheduling Algorithm

[10] T. Gao, Y. Guo, B. Zhang, P. Cicotti, Y. Lu, P. Balaji, and M. Taufer,
‘‘Memory-efficient and skew-tolerant MapReduce over MPI for super-
computing systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 12,
pp. 2734–2748, Dec. 2020, doi: 10.1109/TPDS.2019.2932066.

[11] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computingwithworking sets,’’ inProc. 2ndUSENIXConf.
Hot Topics Cloud Comput., Boston, MA, USA, Jun. 2010, pp. 1–7, doi:
10.5555/1863103.1863113.

[12] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, ‘‘Discretized
streams: Fault-tolerant streaming computation at scale,’’ in Proc. 24th
ACM Symp. Operating Syst. Princ., New York, NY, USA, Nov. 2013,
pp. 423–438, doi: 10.1145/2517349.2522737.

[13] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, ‘‘Apache Flink: Stream and batch processing in a single
engine,’’ IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, Dec. 2015.

[14] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, ‘‘Twitter Heron: Stream process-
ing at scale,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, New York,
NY, USA, May 2015, pp. 239–250, doi: 10.1145/2723372.2742788.

[15] S. Wei, F. Wang, H. Deng, C. Liu, W. Dai, B. Liang, Y. Mei,
C. Shi, Y. Liu, and J. Wu, ‘‘OpenCluster: A flexible distributed comput-
ing framework for astronomical data processing,’’ Publications Astro-
nomical Soc. Pacific, vol. 129, no. 972, Feb. 2017, Art. no. 024001,
doi: 10.1088/1538-3873/129/972/024001.

[16] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
M. Elibol, Z. Yang, W. Pauk, M. I. Jordan, and I. Stoica, ‘‘Ray: A dis-
tributed framework for emerging AI applications,’’ in Proc. 13th USENIX
Conf. Operating Syst. Design Implement., Carlsbad, CA, USA, Oct. 2018,
pp. 561–577, doi: 10.5555/3291168.3291210.

[17] S. Venkataraman, A. Panda, K. Ousterhout, M. Armbrust, A. Ghodsi,
M. J. Franklin, B. Recht, and I. Stoica, ‘‘Drizzle: Fast and adaptable stream
processing at scale,’’ inProc. 26th Symp. Operating Syst. Princ., NewYork,
NY, USA, Oct. 2017, pp. 374–389, doi: 10.1145/3132747.3132750.

[18] R. Wu, L. Huang, P. Yu, and H. Zhou, ‘‘SunwayMR: A distributed par-
allel computing framework with convenient data-intensive applications
programming,’’FutureGener. Comput. Syst., vol. 71, pp. 43–56, Jun. 2017,
doi: 10.1016/j.future.2017.01.018.

[19] P. Saha, A. Beltre, and M. Govindaraju, ‘‘Scylla: A Mesos framework for
container based MPI jobs,’’ 2019, arXiv:1905.08386.

[20] S. Prakash, A. Reisizadeh, R. Pedarsani, and A. S. Avestimehr,
‘‘Coded computing for distributed graph analytics,’’ IEEE Trans.
Inform. Theory, vol. 66, no. 10, pp. 6534–6554, Oct. 2020, doi:
10.1109/TIT.2020.2999675.

[21] Y. Xu, H. Liu, and Z. Long, ‘‘A distributed computing framework for wind
speed big data forecasting on Apache Spark,’’ Sustain. Energy Techn.,
vol. 37, Feb. 2020, Art. no. 100582, doi: 10.1016/j.seta.2019.100582.

[22] X. Sun, Y. He, D. Wu, and J. Z. Huang, ‘‘Survey of distributed
computing frameworks for supporting big data analysis,’’ Big
Data Mining Anal., vol. 6, no. 2, pp. 154–169, Jun. 2023, doi:
10.26599/BDMA.2022.9020014.

[23] G. Chen, M. Rui, and K. Lu, ‘‘A parallel computing framework for big
data,’’ Front. Comput. Sci., vol. 11, no. 4, pp. 608–621, Aug. 2017, doi:
10.1007/s11704-016-5003-y.

[24] Y. Zhang, Q. Gao, L. Gao, and C. Wang, ‘‘iMapReduce: A distributed
computing framework for iterative computation,’’ J. Grid Comput., vol. 10,
no. 1, pp. 47–68, Mar. 2012, doi: 10.1007/s10723-012-9204-9.

[25] M. T. Islam, S. Karunasekera, and R. Buyya, ‘‘Performance and
cost-efficient spark job scheduling based on deep reinforcement
learning in cloud computing environments,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 7, pp. 1695–1710, Jul. 2022, doi:
10.1109/TPDS.2021.3124670.

[26] F. Hu, C. Yang, J. L. Schnase, D. Q. Duffy, M. Xu, M. K. Bowen,
T. Lee, and W. Song, ‘‘ClimateSpark: An in-memory distributed comput-
ing framework for big climate data analytics,’’ Comput. Geosci., vol. 115,
pp. 154–166, Jun. 2018, doi: 10.1016/j.cageo.2018.03.011.

[27] F. Li, J. Chen, and Z. Wang, ‘‘Wireless MapReduce distributed comput-
ing,’’ IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6101–6114, Oct. 2019,
doi: 10.1109/TIT.2019.2924621.

[28] Y.-C. Zhang, X.-Y. Wang, C. Wang, Y. Xu, J.-W. Zhang, X.-D. Lin,
G.-Y. Sun, G.-L. Zheng, S.-H. Yin, X.-J. Ye, L. Li, Z. Song, and
D.-D. Miao, ‘‘Bigflow: A general optimization layer for distributed com-
puting frameworks,’’ J. Comput. Sci. Technol., vol. 35, no. 2, pp. 453–467,
Mar. 2020, doi: 10.1007/s11390-020-9702-3.

[29] N. Shakya, F. Li, and J. Chen, ‘‘On distributed computing with heteroge-
neous communication constraints,’’ IEEE/ACMTrans. Netw., vol. 30, no. 6,
pp. 2776–2787, Dec. 2022, doi: 10.1109/TNET.2022.3181234.

[30] B. L. Morris and A. Sjjellum, ‘‘MPIgnite: An MPI-like language and
prototype implementation for Apache Spark,’’ 2017, arXiv:1707.04788.

[31] Z. Wang, S. Zhang, B. He, and W. Zhang, ‘‘Melia: A MapReduce
framework on OpenCL-based FPGAs,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 12, pp. 3547–3560, Dec. 2016, doi:
10.1109/TPDS.2016.2537805.

[32] R. Kurte, Z. Salcic, and K. I. Wang, ‘‘A distributed service framework
for the Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 16, no. 6,
pp. 4166–4176, Jun. 2020, doi: 10.1109/TII.2019.2948046.

[33] Z. Huang, F. Liu, M. Tang, J. Qiu, and Y. Peng, ‘‘A distributed computing
framework based on lightweight variance reduction method to accelerate
machine learning training on blockchain,’’ China Commun., vol. 17, no. 9,
pp. 77–89, Sep. 2020, doi: 10.23919/JCC.2020.09.007.

[34] R. Mahmud and A. N. Toosi, ‘‘Con-Pi: A distributed container-based edge
and fog computing framework,’’ IEEE Internet Things J., vol. 9, no. 6,
pp. 4125–4138, Mar. 2022, doi: 10.1109/JIOT.2021.3103053.

[35] Z. He, G. Liu, X. Ma, and Q. Chen, ‘‘GeoBeam: A distributed comput-
ing framework for spatial data,’’ Comput. Geosci., vol. 131, pp. 15–22,
Oct. 2019, doi: 10.1016/j.cageo.2019.06.003.

MIN HUANG received the M.Eng. degree in
software engineering from the Beijing Institute
of Technology, Beijing, China, in 2004. He is
currently pursuing the Ph.D. degree in electri-
cal engineering with the National Key Labo-
ratory on Electromagnetic Environment Effects,
Shijiazhuang, Hebei, China. He is currently an
Associate Professor with the Hebei University
of Science and Technology, Shijiazhuang. His
research interests include machine learning, natu-

ral language processing, and artificial intelligence.

YUNXIANG ZHAO is currently pursuing the mas-
ter’s degree with the Hebei University of Science
and Technology. His research interests include dis-
tributed computing and big data processing

YAZHOU CHEN (Member, IEEE) received the
B.Eng., M.Eng., and Ph.D. degrees from the
Shijiazhuang Mechanical Engineering College,
Shijiazhuang, China, in 1996, 1999, and 2002,
respectively. He is currently a Professor and the
Director of the Army Engineering University, Shi-
jiazhuang Campus, China. His research areas of
interest are EMC and lightning protection.

VOLUME 11, 2023 79189

http://dx.doi.org/10.1109/TPDS.2019.2932066
http://dx.doi.org/10.5555/1863103.1863113
http://dx.doi.org/10.1145/2517349.2522737
http://dx.doi.org/10.1145/2723372.2742788
http://dx.doi.org/10.1088/1538-3873/129/972/024001
http://dx.doi.org/10.5555/3291168.3291210
http://dx.doi.org/10.1145/3132747.3132750
http://dx.doi.org/10.1016/j.future.2017.01.018
http://dx.doi.org/10.1109/TIT.2020.2999675
http://dx.doi.org/10.1016/j.seta.2019.100582
http://dx.doi.org/10.26599/BDMA.2022.9020014
http://dx.doi.org/10.1007/s11704-016-5003-y
http://dx.doi.org/10.1007/s10723-012-9204-9
http://dx.doi.org/10.1109/TPDS.2021.3124670
http://dx.doi.org/10.1016/j.cageo.2018.03.011
http://dx.doi.org/10.1109/TIT.2019.2924621
http://dx.doi.org/10.1007/s11390-020-9702-3
http://dx.doi.org/10.1109/TNET.2022.3181234
http://dx.doi.org/10.1109/TPDS.2016.2537805
http://dx.doi.org/10.1109/TII.2019.2948046
http://dx.doi.org/10.23919/JCC.2020.09.007
http://dx.doi.org/10.1109/JIOT.2021.3103053
http://dx.doi.org/10.1016/j.cageo.2019.06.003

