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ABSTRACT The present study aimed to develop a method for estimating students’ attentional state from
facial expressions during online lectures. We estimated the level of attention while students watched a
video lecture by measuring reaction time (RT) to detect a target sound that was irrelevant to the lecture.
We assumed that RT to such a stimulus would be longer when participants were focusing on the lecture
compared with when they were not. We sought to estimate how much learners focus on a lecture using
RT measurement. In the experiment, the learner’s face was recorded by a video camera while watching a
video lecture. Facial features were analyzed to predict RT to a task-irrelevant stimulus, which was assumed
to be an index of the level of attention. We applied a machine learning method, light Gradient Boosting
Machine (LightGBM), to estimate RTs from facial features extracted as action units (AUs) corresponding
to facial muscle movements by an open-source software (OpenFace). The model obtained using LightGBM
indicated that RTs to the irrelevant stimuli can be estimated from AUs, suggesting that facial expressions are
useful for predicting attentional states while watching lectures. We re-analyzed the data while excluding RT
data with sleepy faces of the students to test whether decreased general arousal caused by sleepiness was a
significant factor in the RT lengthening observed in the experiment. The results were similar regardless of
the inclusion of RTs with sleepy faces, indicating that facial expression can be used to predict learners’ level
of attention to video lectures.

INDEX TERMS Attention, affective computing, engagement, facial features, online lecture.

I. INTRODUCTION
Understanding students’ engagement levels while studying
is important for improving learning outcomes. To improve
the quality of education, it is crucial to estimate learners’
level of engagement with their studies. However, it is difficult
for teachers to pay attention to all students, particularly
in online classes. Automated measurement of engagement
levels may be helpful for improving learning conditions. For
online learning, webcams can be used to capture learners’
facial expressions, which can be used to estimate their mental
states [1], [2], [3]. For example, Shioiri et al. conducted image
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preference estimation from facial expressions and found
that this information was useful for estimating subjective
judgments of image preference. In education-related studies,
Thomas and Jayagopi recorded students’ face images in a
classroom while they were studying with video material
on a screen and estimated the level of engagement from
students’ facial expressions [4], [5]. The authors succeeded
in predicting engagement, suggesting the usefulness of facial
expressions for estimating the level of engagement. Heart
rate has also been used to estimate mental states during
learning. Darnell and Krieg showed that changes in heart rate
are related to students’ activity during a class [6]. Although
previous studies have focused on engagement, which is
assessed externally, this research has also been extended to
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the measurement of internal states, which can be investigated
by estimating internal states. In these studies, the mental state
used as ground truth is based on subjective judgments [4],
[7]. However, mental states involve factors other than those
that can be evaluated subjectively. Unconscious processes,
which cannot be estimated subjectively, may play more
important roles than conscious processes. Thus, it is unlikely
that subjective judgments are suitable for use as indexes of
mental states. For example, heart rate change is reported
to be a useful index of students’ activity, and is not
necessarily related to the subjective estimation of attention
and engagement [6]. As such, it is important to develop
methods involving objectivemeasures for estimating the level
of engagement. A previous study showed that facial features
could be useful for estimating reaction time (RT) for mental
calculations [8]. This result suggests that RT could be a
good index of attention if it varies depending on focusing on
the task as typically assumed in attention studies for simple
detection, discrimination, or identification of visual stimuli.
However, this type of measure is not available for lectures.
Therefore, we attempted to use RT for task-irrelevant stimuli.

Although engagement is a term used with different
meanings in different contexts [7], [9], it is often used
in relation to attention [10], [11], [12], [13]. Attention to
lectures, classes, and tasks is thought to be closely related to
engagement. Here we use the term attention to refer to the
facilitation of sensory processing by endogenous intention or
salient exogenous stimulation, and consider it to be a major
factor for engagement. It should be noted that engagement has
also been used to indicate mental states of a longer duration
in some previous studies, such as a whole lecture [6], [7],
[14], [15], [16]. We measured levels of attention as an index
of engagement during lectures in this study.

We designed an experiment in which participants were
asked to detect an auditory target while watching a lecture
video. The primary task of the experiment was to understand
the lecture, and the secondary task was to detect the target.
RT to the auditory target was used as an objective measure
of attention level on the lecture videos. Here, we assumed
that the time required to detect a target that was irrelevant
to the primary task would be longer when the participant
focused more on the primary task (i.e., watching video
lectures in this experiment). Face images of participants were
recorded while watching the videos, and facial expressions
were analyzed after the experiment. The purpose of the study
was to estimate the RT from facial expressions to develop a
method for estimating engagement level from learners’ face
images.

Some of the results in this study with a smaller number
of participants were published in a post-conference book as
a preliminary report [14]. Here, we report analyses of facial
expressions in more detail with data from a larger number
of participants to consider the contributions of specific facial
features, the effect of individual variation, and the effect of
general arousal level or sleepiness.

II. EXPERIMENT
We conducted an experiment to investigate the relationship
between the attention level and facial expression while
watching video lectures. To estimate the level of attention in
video lectures, we measured RT to an auditory target that was
irrelevant to the lecture. We assumed that RT to an irrelevant
stimulus would be longer when participants were focusing
on the lecture compared with when they were not. The effect
on brain responses to irrelevant stimuli has been suggested
to be able to estimate attention to the primary task. For
example, Kramer et al. conducted electroencephalography
(EEG) measurements and reported that the event-related
response (ERP) to a task-irrelevant stimulus changes with
the difficulty of a primary task [18]. Similar changes were
expected with RT measurements because both ERP and RT
have been used to estimate attention in general [19]. In the
current study, we attempted to use recorded face images to
predict RT.

The auditory target we used was the disappearance of
continuous white noise instead of the appearance of a sound
stimulus, whereas previous experiments to measure attention
have typically used a pulse stimulus [20], [21]. The reason for
using the disappearance of sound was to avoid the influence
of bottom-up attention to a salient stimulus, such as an
auditory pulse. Bottom-up attention to a salient stimulus
could be strong enough to mask the effect of attention to the
lecture. Indeed, the effect of top-down attention cannot be
detected when there is only one transient stimulation, while
a target is discriminated by top-down attention among many
transient stimuli [22], [23].

Fifteen participants (average age, 23.1 years) took part
in the experiment. Participants had normal or corrected-
to- normal vision and normal audition. Participants were
instructed to watch a series of nine video lectures and
to answer questions at the end of each video (Fig. 1).
Participants were also instructed to press a key when they
noticed the auditory target (the sudden disappearance of
white noise) while watching the video lecture. Participants
were instructed that the lecture was the primary task of the
experiment while the detection of the target was a secondary
task, and they were required to answer questions at the
end of the experiment. RT to the target was measured to
estimate participants’ attention level at the time of the target
presentation.

The learning materials were from an introductory course
about a computer language, PHP, which was posted on
YouTube [24]. The videos were shown on a computer display
(MacBook Pro, Apple, California) with headphones (MDR-
7506, Sony, Tokyo) in a room with office lighting (483.2 lx
on the desk on which the computer was placed, and 211.8 lx
at the location of the participant’s face). The average loudness
of the lecturer’s voice was 70 db, and that of the white noise
was 0.66 db.

The white noise occasionally disappeared, which was the
target for the secondary task. The interval between two
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FIGURE 1. Experimental design. While watching a video lecture of an introductory PHP course in a session, auditory signals of white noise were added
to the original auditory track of the lecturer video. At the end of a session after watching the video, participants answered to several quizzes about the
lecture.

targets, which was a period of white noise presentation,
was randomly selected between 25 and 35 seconds. The
white noise started again immediately after the key press
to indicate detection, or after a period of 10 seconds if no
key press had been performed. Each lecture lasted between
10 and 20 minutes, depending on the content. At the
end of each lecture, eight questions were provided in a
google form format. For each question, participants selected
one of four choices as their answer.Watching one lecture
is a session of the experiment. There were nine lecture
sessions.

In addition to the lecture sessions, there were two control
sessions to measure RT for the detection task without paying
attention to the lecture, so that the total number of session
was eleven. In the control sessions, two videos from the
same video lectures were used so that the participants knew
the content and had little or no reason to be attracted to
the content. Participants were asked to focus on the white
noise and told that they did not have to pay attention to
the content of the video on the display. The first control
session was conducted as the 6th session with the first lecture
video, and the second control session was conducted as
the 11th session with the 6th lecture video used at the 7th
session. The experiment was conducted over 2 days. Five
lecture sessions and the first control session were performed
on the first day, and the rest of the sessions (four lectures
and one control session) were performed on the second day.
The interval between the first and second days was within
1 week. The total duration of the experiment, 11 sessions,
was approximately 130 minutes.

III. FACIAL FEATURE ANALYSIS
Participants’ faces were recorded while watching lecture
videos, and their facial features were analyzed after the
experiment. We analyzed face images recorded in the 3 sec-
onds before the target presentation (disappearance of white
noise), using OpenFace [25] to extract the facial features.
To perform facial expression analysis using OpenFace, the
first step is to gather facial images or video data. From each
video frame, OpenFace detects a face (multiple faces can be
detected while there was only one face in our experiment)
and locate it in the frame. Then, it makes facial appearance
as face orientation and makes facial landmarks such as
boundaries of eyes, eyebrows, and mouth. By analyzing
the position changes of the facial landmarks and facial
appearance, OpenFace evaluates the degree of facial muscle
activity as action units (AUs). AUs are assigned to muscle
movements related to facial expressions based on the Facial
Action Coding System (FACS) [26]. For example, AU1
indicates the raising of the inner eyebrows, AU4 indicates
the lowering of the eyebrows, and AU5 indicates the
raising of the upper lids (Table 1). OpenFace offers several
research advantages for facial analysis. Firstly, leveraging
deep learning techniques, particularly convolutional neural
networks (CNNs), OpenFace achieves high accuracy in facial
recognition and feature extraction tasks. This is crucial
for research projects that require precise identification and
comparison of facial features. Secondly, OpenFace not only
enables facial recognition but also facilitates the extraction
of facial features such as expressions and poses. This
broadens its applications in research areas such as facial
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TABLE 1. Meanings of AUs are also listed.

emotion recognition, facial tracking, and facial attribute
analysis. Thirdly, being an open-source toolkit, OpenFace
allows researchers to modify and customize it according to
their specific needs. This flexibility enables adjustments and
improvements tailored to individual research objectives and
various application scenarios. Fourthly, OpenFace supports
processing large datasets of facial images and videos. This
is particularly valuable for research projects that involve
handling extensive data, such as facial recognition in video
surveillance systems or the establishment of facial image
databases. All of these advatages are important to us
particulary when to apply research achievements to practical
occasions. We arbitrarily chose the period of time between
3 sec and 0 sec before target presentation as the time window
during which the effect of attention might be reflected in
target detection, but the uses of 1 or 5 seconds showed similar
results (see Fig. 5).

The features of the facial expressions were extracted as
AUs from the video taken for each target presentation using
OpenFace as well as the positions and angles of the head and
eyes. The meanings of AUs are shown in Table 1. Two types
of AU indexes are available from OpenFaces: a continuous
value between 0 and 5 for 17 AUs (referred to as AUr) and
a binary value of 0 or 1 (absence or presence) for 18 AUs
(referred to as AUc), which are 17 AUs and the AU28 for
Lip Suck. Because we collected data for a 3-sec period for
each target, we used statistical features of the time-varying
values: minimum, maximum, mean, standard deviation, and
three levels of percentiles (25%, 50%, and 75%) for AUr

and mean and standard deviation for AUc. The number of
parameters was 155 in total numbers of variables in total.
There are perhaps better statistical features of sequential data
rather than what we used here. However, they were sufficient
to show the usefulness of the AUs to predict RT (see later).
For better prediction in the future, we could investigate more
complex temporal features.

To investigate the relationship of facial expressions with
the RT of target detection, we attempted to predict RT from
AUs using amachine learningmethod called LightGBM [27].
LightGBM is a gradient boosting model, which operates
quickly and exhibits relatively accurate performance in
general. LightGBM is a decision tree model with gradient
boosting, in which the node of trees grows to minimize
the residuals. Since training data with large residuals are
used preferentially, thus learning proceeds efficiently, which
is a powerful machine learning technique that can be used
for both regression and classification tasks. It works by
combiningmultiple weak learners (simple decision trees) into
a strong learner, which is able to make accurate predictions
on new data. In this study, two different methods were tested
for RT predictions of AUs. One method was to train a model
with pooled data of all participants (pooled data model), and
the other was to train a model with all but one participant
and test with the remaining participant (across individual
test models). The latter method was to investigate individual
differences. If individual differences are small, the model
built with other participants should be able to predict RTs
of the participant tested. However, individual variations may
prevent the building of a general model that can be used for
anyone whose data are not used to build the model.

For the evaluation of the models, a 15-fold cross-validation
method was used. All data were divided into 15 groups
randomly for the pooled data model, 14 of which were used
for training and the remaining group was used for testing.
The process was repeated 15 times, one test for each group,
and the average was used as the model performance. For the
across-individuals test model, data for 14 of 15 participants
were used for training, and data for the remaining participant
were used for testing. The processwas repeated 15 times, with
one test for each participant. The average of the 15 test scores
was used as the model performance. Prediction performance
was assessed by the root mean square error (RMSE) of the
prediction against the data and by the Pearson’s correlation
coefficient between the data and the prediction.(Fig. 2)

IV. RESULTS
Target presentations without responses within 10 sec were
excluded from the reaction time (RT) analysis. Such target
presentations occurred on 5.5% of trials on average across
all participants. The average RT over all sessions of all
participants was 1.1 sec, with a standard deviation of
2.3 sec. Because average RT varied among participants,
we normalized RT as Z-scores after taking the logarithm.
We took the logarithm of RT to minimize the effects of
asymmetrical distribution (usually a heavy tail for longer
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FIGURE 2. The framework of the analysis: (a) Video recording of participants’ faces while watching online lectures and recording of reaction time of
target detection measured as the time from the target presentation (disappearance of white noise and the key press for the detection). (b) Orientation
information at each location as facial appearance and landmarks on a face, such as the eyes, nose, mouth, and chin are detected for all video frames
through each session by OpenFace. Facial appearance and landmarks are used to obtain AUs based on the Facial Action Coding System(FACS). Head
pose and eye gaze are also detected. Head pose is an important factor to analyzed face images as normalized fashion. (c) OpenFace extracted Action
units (AUs) from facial landmarks and appearance for each frame. (d) We used several statistical measures of sequential AU values from a time window
(3 s for main analysis and 1s and 5s were also used) before each target presentation. Used statistical measures were average, standard deviation,
minimum, maximum, and percentiles of 25th, 50th, and 75th for intensity indexes. Only average and standard deviation were used for binary indexes.
(e) The statistical measures from all AUs were used to predict reaction time using a machine learning method, LightGBM. LightGBM constructs a
tree-type model with leaf-wise tree growth, choosing the leaf with max delta loss to grow. (f) We compared predicted RTs with measured RTs, showing
their correlation. Higher correlation indicates that the LightGBM model can predict RTs to task-irrelevant stimulus well, so that the model can predict the
attention level at the time of target presentation under the assumption that higher attention to the lecture makes RT to the task irrelevant target longer.
We also analyzed strength of contribution using a method called Shapley additive explanations (SHAP). SHAP shows relationship between contribution
values (strength to contribute the prediction) and each of feature indexes.

RTs). We also used normalized values of AUs by Z-scoring
to avoid the effects of individual variations of facial features.
We expected that variations of AUs after normalization
were related to changes in mental processes, whereas the
absolute AU values include facial differences among different
individuals. We then applied LightGBM to model the
relationship between RT and facial expressions, and tested
the model using a 15-fold cross-validation method. Fig. 3a
shows the prediction results of the pooled data model. The
horizontal axis shows RT measured in the experiment and
the vertical axis shows the prediction from LightGBM. Each
point represents each target presentation from all sessions
of all participants and different colors indicate different

training-test combinations (15 different combinations with
different colors). The RMSE of data deviation from the
predictions (or the deviation of predictions from the data) was
0.75. The average of the RT data is zero, with a unit standard
deviation after Z scoring by definition. Thus, the RMSE of
model prediction (0.75, which is smaller than 1) indicates
that the model can at least partially explain the data variation
(25% in this case). The Pearson’s correlation coefficient
between data and prediction was 0.66. A statistical test of
no correlation showed that the correlation was statistically
significant (p < 0.001, t(2412) = 11). We used a test to
examine whether the Pearson’s correlation coefficient is not
significantly different from zero and showed the assumption
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FIGURE 3. (a) Correlation between measured reaction time (RT) and the predicted RT of the model. Each point represents the RT of each target
presentation from all sessions of all participants. Different colors indicate different training-test combinations (15 combinations). (b) Indexes are
arranged according to the level of contribution to the prediction obtained using the Shapley additive explanations (SHAP) method. Each point is from
each RT, as in the correlation figure of figure3 (a), and the color (red or blue) indicates a positive or negative contribution. The horizontal axis indicates
the level of contribution to the prediction of the RT by the model (c) The absolute value that corresponds to the contribution of each index to the
prediction estimated by SHAP.

of not different was rejected with a level of 5%.In addition to
the statistical significance of correlation coefficient, we also
used a statistical test of RMSE to show that our prediction
is better than chance. We compared RMSE of the model
prediction and that of data, which is one after Z-scoring,
using a t-test (p < 0.001, t(14) = 16.62). The present
analysis successfully predicted RT to task-irrelevant targets,
which we assumed to vary depending on attention states.
This prediction of RT, in turn, predicted the attention state
at the time some seconds before the target presentation
during learning. We concluded that facial features and
movements of the head and eyes contain information about
attention.

Further analysis revealed the level of contribution of each
index to the prediction (i.e., the importance of each index
for the prediction) using a method called Shapley additive
explanations (SHAP) [28]. SHAP provides the value that
corresponds to the contribution of each input feature to the
prediction (Fig. 3 c). AU9 (nose wrinkler), AU45 (blink),
AU15 (lip corner depressor), and AU7 (lid tightener) were
the best five contributors among all AUs. The analysis also

provides the degree of contribution of each input feature for
predicting each event of target detection, as shown by the dots
in Fig. 3 (b). Red dots indicate high values of facial feature
indexes and blue dots indicate low values. The patterns of dot
distribution of data points in red and blue show, for example,
that AU9 negatively contributes to RT. Higher values (red
dots) were distributed toward the negative direction of the
horizontal axis, indicating that shorter RT was associated
with more nose wrinkling, which, in turn, suggests that less
attention was paid to the lecture when more nose wrinkling
was exhibited.Wewill discuss the effect of these AUs inmore
detail in the Discussion section.

We performed control sessions to confirm that watching
a lecture video influences RT to the auditory target. In the
control condition, participants were asked to detect the target
without paying any attention to the video lecture. RTs in
this condition are considered to reflect full attention to the
auditory target. The average RT for the two control sessions
across all participants was 0.7 sec. This RT duration is clearly
shorter than the average RT in the lecture sessions, which was
1.1 sec. and the Pearson’s correlation coefficient between the
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FIGURE 4. Comparison of four different models: Support Vector Regression (SVR), Multilayer perceptron (MLP), Linear Regression and LightGBM.

experiment and control sessions was statistically significant
(p < 0.05, t(14) = 2.74), indicating that RT to the target
was an appropriate measure of attention to the lectures.
We attempted to predict RTs of the control conditions with
the same procedure used for the lecture session. The results
revealed that the RMSE of the predictions was 0.89, and the
Pearson’s correlation coefficient between data and prediction
was 0.45, which was not statistically significant (p = 0.092,
t(517) = 3.1).
There are three issues to examine before accepting the

results. The first is whether the results depend on the choice
of the machine learning methods, the second is whether they
depend on the selection of time windows and the third is
whether they depend on individual variations. First, we used
three different models other than LightGBM as a comparison:
Support Vector Regression (SVR), Multilayer perceptron
(MLP), and Linear Regression. The results showed that
accuracy of lightGBM is similar to that of SVR, which is
better than MLP and Linear Regression (Fig.4), and that
the time required to analyze was the shortest for lightGBM
among the four methods.

Second, there is no theoretical reason to select a certain
period of time for facial feature extraction to estimate RTs.
We used 1 and 5 second windows in addition to 3 second
windows to see the effect of the time on the analysis. The
results are similar for the three cases (fig. 5). A t-test of
RMSE of the model prediction with one showed statistical
significance both for 1- and 5-second windows (p < 0.001,
t(14) = 15.32 for 1s and p < 0.001, t(14) = 18.08 for 5s).

Third, we tested whether a model built with other
individuals’ data (across individual models) can predict
the data of another individual. Figure 6 shows the results
of the predictions. Surprisingly, the results revealed no
successful prediction across participants. Thus, a model that
was based on a group of individuals could not be used to
predict the attention level of an individual in the group. The
face information related to attention appeared to vary from
participant to participant.

V. DISCUSSION
In the current study, wemeasured RT to task-irrelevant targets
as an index of attentional level. With the RTs, we developed

a method for predicting engagement to video lectures using
a machine learning technique. Our approach was to predict
the response time under the assumption that the response
time would become longer when more attention was paid to
the lecture, reducing attention to a target that was irrelevant
to the lecture. The model built for the prediction provided
information about the facial features that contributed most to
the prediction, which were as follows: AU9 (nose wrinkler),
AU45 (blink), AU15 (lip corner depressor), and AU7 (lid
tightener). Here, we discuss possible explanations for the
importance of these factors in predicting RTs. AU9 was
negatively related to RT. Longer RTwas associated withmore
attention to the lecture, suggesting that AU9 was negatively
related to the amount of attention paid to the lecture.
Increased nose wrinkling was associated with deviation of
attention from the lecture. On the hand, the results suggest
that AU45 (blink), AU15 (lip corner depressor), and AU7
(lid tightener) were positively related to level of attention
paid to the lecture. Thus, more depression of the lip corner,
more frequent blinking, and more tightening of the eyelids
are expected when a person pays more attention to lectures.
Lip corner depression may be related to situations in which a
learner has difficulty in understanding the lecture. This may
lead the learner to try and attend more to lectures, and to
exhibit a serious facial expression. Tightening the eyelids and
blinking are similar facial actions, and both may be related
to making an effort to understand the content of lectures by
opening the eyes wider. However, more blinks and tightening
eyelids may also be related to sleepiness. When a person is
sleepy, they would be likely to not attend either to lectures
or to any task-irrelevant stimuli, which would result in longer
RT to the target even without a high level of attention being
paid to the lecture. Although the present experiment was
designed assuming only two attention states, attending to
the lecture or to the task irrelevant target, attention level
could potentially be reduced by sleepiness, resulting in longer
RTs for the target with decreased attention to the lecture.
We attempted to estimate the effect of sleepiness during
lectures and re-analyzed the data.

To exclude the possible influence of sleepiness on the
results, we re-analyzed the data after removing data with
sleepy faces. To identify times at which a participant appeared
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FIGURE 5. We applied 1, 3 and 5 second time windows to see the effect of the time to analyze facial features.

FIGURE 6. Correlation between measured and predicted RTs, using the
across individual test model. Configurations are the same as in Fig. 3 (a) .

to be sleepy, we used eye movement data and subjective eval-
uation of sleepiness in videos. A previous study reported that
the eyes become stationary when sleepy [28]. We attempted
to detect when learners were sleepy using the gaze data.
We calculated the standard deviation of gaze positions,
obtained through OpenFace analysis, for 3 sec before each
target presentation. The histogram in Fig. 7 (a) shows the
distribution of standard deviation of gaze locations, which
reflects eye movement activity. The horizontal axis shows
the logarithmic scale of the visual angle in radians, showing
data with small values clearly. The distribution results can
be described as standard deviation values following a single
peak distribution with a peak at approximately -0.75 in log
deg. However, there appeared to be a peak at very small
values at approximately -1.34 in log deg. The eye movements
for the video images that were judged subjectively as sleepy
exhibited a standard deviation less than -1.13 log deg. Thus,
we defined the video faces with standard deviation of gaze

location smaller than -1.13 log deg as faces that reflected
sleepiness. Note that this analysis is not based on accurate eye
movement measurements, but on rough estimation by image
processing using OpenFace, by which we estimated that the
spatial resolution was higher than 2 radians. Despite the low
precision of this method, gaze stability could be evaluated on
the basis of the distribution shown in Fig. 7.

We re-analyzed the data after removing data associated
with sleepiness using a threshold of the standard deviation
of gaze location lower than -1.13 log deg. The results without
sleepy faces revealed that the RMSE of the predictions was
0.77 (see Fig. 7 b), which was smaller than the baseline
RMSE of 1.0. The Pearson’s correlation coefficient between
data and prediction was 0.67. and the correlation was
statistically significant (p < 0.001, t(2298) = 11), we also
used a statistical test of RMSE to show that our prediction
is better than chance. We compared RMSE of the model
prediction and that of data, which is one after Z-scoring, using
a t-test (p < 0.001, t(14) = 15.07). These results confirm
that facial expressions can be used to predict attention states
while watching a lecture. Figure 7 (c) shows the contribution
level of each AU to the prediction by SHAP. Similar to the
original analysis (Fig. 3), AU9 (nose wrinkler) was found
to be the largest contributor, and AU45 (blink) and AU15
(lip corner depressor) were the second and third largest
contributors, respectively. However, AU7 (lid tightener),
which was in the top five contributors in the original
analysis, was no longer included in the top five. These results
indicate that wrinkling the nose, blinking, and depressing
the lip corners are major factors in predicting attention to
lectures.

Individual differences in the relationship between internal
concentration state and facial expression, which have not
been captured in previous studies that used subjective
ratings [14], [15], [16], were found in the present study.
We consider several possible reasons for these results.
One possibility is that individual identification affected the
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FIGURE 7. (a) Histogram of standard deviation of gaze movements (gaze SD). The gaze SDs before target presentations with sleepy faces estimated
subjectively were smaller than the red line, and we assumed that RTs with gaze SDs larger than the red line were not influenced by sleepiness.
(b) Correlation between measured and predicted RTs for data without the influence of sleepiness. Configurations are the same as those in Fig. 3 (a).
(c) Indexes are arranged according to the level of contribution to the prediction obtained using SHAP. Configurations are the same as those in Fig. 3 (b).

findings. Because AUs themselves may contain information
about the facial features of individual participants, the AU
analysis might identify individuals. If there is substantial
individual variation in RTs in the present experiment, iden-
tification of individuals by facial features could potentially
predict RT results with some level of accuracy because there
is a correlation between facial features and RT for individuals.
However, because we used normalized values of RTs and
AUs for each participant, the averages of each parameter
did not exhibit any correlations among the parameters.
In other words, the individual differences we found could be
explained by individual differences in contributions of facial
features to RT estimation.

To investigate the effects of individual variability, we first
conducted the same analyses for data from each participant.
Because the amount of data for each participant is relatively
small, we performed a 5-fold (instead of 15-fold) cross-
validation analysis on each participant’s own data. The
average RMSE of the prediction against the data for all
participants was very close to baseline 1.01 (Fig. 8 c). The
RMSE is as poor as the that across individual models (shown
in Fig. 6), likely because of the small amount of data used
for each model even with 5-fold cross-validation. We, then,

examined the effect of the size of the data set on prediction
accuracy, and we found that approximately 20% of all data
were required to obtain a training effect with RMSE of about
0.8 (Fig. 8 f). To keep the proportion of the data set larger
than 20%, we compared the predictions between within and
across participants using data sets of three or five groups
of participants, instead of datasets of individual participants.
Better predictions in the within-group analysis compared
with those in the across-group analysis were expected if there
were large individual variations in feature expressions related
to engagement with the lecture. In the case of three-group
division, two of three groups were used for training and the
third group was used for a test for across group analysis,
while four groups were used for training with the fifth one
as a test in the case of five-group division. For within-group
analysis, data were divided into three or five sets, selecting
equal number of data from each group (each data set had one
third of first group, one third of the second group and one third
of the third group in the case of three groups). These three
or five datasets were used for three- or five-fold validation
testing.

Figure 8 shows the results of both within- and across-group
analyses for the three and five groups in addition to the
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FIGURE 8. (a) the results of the three within groups, (b) five within groups, (c) each individual, (d) three across groups and (e) five across groups. (f) the
prediction performance as a function of the data size.

averaged individual predictions. The prediction accuracy
was better for within-group analyses compared with that
for across-group analyses. RMSE values were 0.86 and
0.78 for three and five within-group analyses, respectively,
and 1.10 and 1.08 for three and five across-group analyses,
respectively. A t-test of RMSE of the model prediction
with one showed statistical significance both for 3- and
5-groups (p < 0.001, t(14) = 7.11 for 3-group and p <
0.001, t(14) = 11.19 for 5-group). These results indicate
nontrivial individual variations in the relationship between
facial expressions and engagement. These variations do
not mean that there is no common factor shared by some
individuals because pooling data from many participants
was shown to improve the prediction (compare Fig. 7 and
8). SHAP values for the three- and five-group analyses
showed that AU9 and AU2 were among the best five
features in both groups. AU9 was also included in the
original analysis with all data. This result suggests that these
features are important for all individuals, while other features
that differ substantially across individuals could impair the
across-participant predictions. Although individual variation
limits to use the model without doubt, it is possible to
construct a model for a group of individuals with similar
properties.

The results suggest that individual variation is substantial,
and appears to be a disadvantage in general when the
present technique is applied to a supporting system, using
a model trained with different individuals. However, the

model can be customized to each individual and models
constructed for particular individuals may be more precise.
Although individual variation should be investigated further
to understand the essential factors, the technique developed
here can be used for applications in actual education
conditions.

Although psychophysical studies used sound stimuli as
a probe to measure attention level [30], [31], [32], such
approach is not practical in the actual learning situations.
Therefore, we investigated whether facial images are suf-
ficient to provide indexes of attention level. The model
performance depends on OpenFace performance. Although
Baltrusaitis et al. [33] reported that the accuracy of the
OpenFace is better than other methods, it is obvious that
its performance is not perfect, and it depends on recording
conditions of faces. Our estimation of RT from AUs,
therefore, includes estimation errors of facial features at a
certain amount. We believe that this analysis is useful to
obtain information of a learner’s conditions (mental states)
at each time to make appropriate feedbacks. For example,
70% of correct detection of less attention to a lecture
should be useful to provide a warning signal to the leaners
and/or the lecturer. Three times of erroneous warnings out
of ten should not be problem if the warning signal used
does not disturb the class much. Also, the detection rate
becomes higher than 99% if there are more than five learners
who loose attention to the class even that is 70% for one
learner.
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VI. CONCLUSION
In conclusion, we revealed that facial expressions can be used
to predict learners’ level of attention to video lectures, which
serves as an index of student engagement. Facial features
captured by a video camera can predict reaction times (RTs),
which are assumed to be indicative of attentional states.
Specific facial features, such as nose wrinkling, blinking, and
lip corner depression, appear to be associated with attention
during video lectures. The application of facial expression
technology has the potential to enhance the quality of
teaching. However, before implementing it in actual teaching
conditions, a few considerations should be taken into account.
Firstly, the underlying mechanisms behind the contributions
of these features are not yet understood, which is essential for
generalization. Secondly, significant individual differences
have been observed. Customizing the model may be one
possible solution. In future research, we will focus on
exploring individual differences and the physiological rela-
tionship between engagement and facial expressions during
learning.
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