
IEEE VEHICULAR TECHNOLOGY SOCIETY SECTION

Received 19 June 2023, accepted 5 July 2023, date of publication 21 July 2023, date of current version 2 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3297884

Channel Estimation Based on Compressed
Sensing for Massive MIMO Systems
With Lens Antenna Array
ELHAM SHARIFI 1,2, MAHMOOD MOHASSEL FEGHHI 3, GHANBAR AZARNIA 4,
SAJJAD NOURI 3, DUEHEE LEE5, (Member, IEEE), AND
MD. JALIL PIRAN 6, (Senior Member, IEEE)
1Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666, Iran
2Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran 14115, Iran
3Department of Communications Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 51666, Iran
4Engineering Faculty of Khoy, Urmia University of Technology, Urmia 57166, Iran
5Department of Electrical and Electronics Engineering, Konkuk University, Seoul 27478, South Korea
6Department of Computer Science and Engineering, Sejong University, Seoul 05006, South Korea

Corresponding authors: Mahmood Mohassel Feghhi (mohasselfeghhi@tabrizu.ac.ir) and Elham Sharifi (sh.elham95@ms.tabrizu.ac.ir)

This paper was supported by Industry & Energy South Korea, under Grant 20204010600220 and Grant RS-2023-00237035.

ABSTRACT With the emergence of fifth-generation cellular networks (5G), there has been significant
interest in multi-input-multi-output (MIMO) systems. MIMO systems aim to achieve several key objec-
tives, including increasing capacity, mitigating the negative effects of multi-path propagation, minimizing
interference, and achieving higher data rates. Furthermore, the utilization of millimeter-wave (mmWave)
technology and high bandwidth can address traffic congestion and interference challenges, leading to
substantial improvements in data rates, spectral efficiency, and overall bandwidth. In the realm of mmWave
communications, massive MIMO systems incorporating lens antenna arrays have proven effective in
reducing the number of required radio-frequency chains. This paper presents two distinct approaches to
address the challenge of massiveMIMO channel estimation in mmWave communications. The first approach
proposes a compressed sensing (CS) scheme based on convex optimization, which offers accurate and
low-complexity channel estimation. The second approach introduces an estimation algorithm based on
the greedy method, which provides fast reconstruction, a straightforward geometric interpretation, and a
mathematically efficient framework. Extensive simulations demonstrate the superior performance of the
proposed algorithms compared to similar methods such as support detection (SD), orthogonal matching
pursuit (OMP), and sparsity mask detection (SMD). The proposed algorithms exhibit higher channel
estimation accuracy, better recovery quality, and fast convergence rates.

INDEX TERMS Channel estimation, compressed sensing, lens antenna array, massive MIMO, millimeter-
wave communication.

I. INTRODUCTION
The fifth-generation (5G) of cellular communications was
developed to meet the stringent requirements of applications
not supported by the previous generation. Some of these
requirements are: data rate, connection density, mobility,

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Quan.

energy efficiency, flexibility and latency. One of the key
services of 5G networks is to empower the ultra-reliable and
low latency communications (URLLC) capacity, which is
required to help special degrees of high reliability and low
latency end-to-end (E2E) communication. The 3rd generation
partnership project (3GPP) specifies the basic URLLC relia-
bility essentials for a single data frame of 32 as 99.9%, and an
E2E latency of <1ms. Also, in this generation, the data rate
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has reached a peak of 20 Gbps and an average of 100 Mbps,
it has a mobility of 500 km/h and energy efficiency with a
battery life of 10 to 15 years.

New technologies have been introduced to achieve these
requirements in the new generation, such as massive multi-
input-multi-output (MIMO) and mmWave [1], [2], [3]. Since
high-quality audio and video services have developed and
the number of home communication devices has increased in
recent years [4], [5], the demand for high-speedwireless com-
munications at short distances has increased accordingly. Its
large bandwidth and high spectral efficiency make mmWave
technology a key technology for 5G communications. The
development of massive MIMO technology is driven by its
ability to increase data rates significantly, increase commu-
nication bandwidth without requiring additional bandwidth
or power, and improve spectrum efficiency and energy effi-
ciency [6]. There are a variety of types of phase and frequency
distortion that affect wireless channels, including MIMO
channels, and the effects of each type depend on the channel
and the network fluctuations. Channel estimation determines
how the physical channel affects the input string. In Massive
MIMO systems for mmWave communications, there are
various types of channel estimation methods categorized
as follows: 1) Training-based Channel Estimation Methods:
These methods employ training information or sequences to
estimate the channel. The training sequences are designed
using specific algorithms to achieve optimal channel estima-
tion. An example is the Advanced Training-based Method,
which enhances channel estimation using lens antenna
arrays and advanced techniques [7], [8]. 2) Blind Channel
Estimation Methods: a) Self-Recovery Algorithms: These
methods estimate the channel using specific computations
and algorithms, such as source combination and feedback
estimation. b) Correlation-based Algorithms: These meth-
ods estimate the channel based on the correlation between
transmitted and received signals, utilizing linear or nonlin-
ear correlation-based algorithms [9], [10]. 3) Semi-Blind
Channel EstimationMethods or Statistical Information-based
Methods: These methods utilize statistical information along
with received data to estimate the channel. Statistical prop-
erties of signals and the channel, including the statistical
distribution, are considered. Examples include maximum
likelihood-based algorithms and Kalman filter-based
algorithms [11].

These channel estimation methods are used in Mas-
sive MIMO systems for mmWave communications, each
with its own characteristics and advantages. The selec-
tion of a specific method depends on the communication
conditions and requirements. For example while channel
blind estimators exhibit good performance in transmit-
ting information, they face limitations in channels that
experience rapid changes over time. In modern telecom-
munications, factors such as movement, Doppler effects,
and channel variability play crucial roles, presenting sig-
nificant challenges in terms of hardware and software
complexities [12], [13], [14].

The use of lens antenna arrays [15], [16] can pro-
vide enhanced beamforming and beam steering capabilities,
enabling improved spatial resolution and signal focusing.
This, in turn, contributes tomore accurate channel estimation.
Accurate channel estimation is crucial for various aspects of
Massive MIMO systems, including beamforming, precoding,
spatial multiplexing, and interference management. Reliable
channel state information (CSI) is essential for optimizing
system performance, mitigating interference, and achieving
high data rates. Furthermore, precise channel estimation can
help overcome channel fading effects and improve the overall
system robustness and reliability.

By conducting research on channel estimation techniques
specifically tailored for lens antenna arrays in Massive
MIMO channels, researchers can unlock the technology’s
potential to provide substantial gains in terms of capacity,
coverage, and quality of service. This, in turn, paves the
way for advanced wireless communication systems like 5G
and beyond, facilitating innovative applications such as the
Internet of Things (IoT), augmented reality, and autonomous
vehicles.

The channel estimation method based on training
sequences in mmWave telecommunications has advantages
such as having more detailed information about channel
characteristics, such as delay, interference and signal flow,
ensuring data transmission without errors and interference,
and optimal use of resources such as energy and bandwidth.
Therefore, this method can help to estimate the channel of
mmWave massive mimo systems. Algorithms for channel
estimation and its types have been described in the related
works section.

mmWave bands, however, have limited scattering, so only
a few dominant beams can be selected. In this way, the
number of radio-frequency chains can be reduced signifi-
cantly [17]. Furthermore, due to the sparsity of the mmWave
in the angle domain, selecting a suitable beam can be made
using the compressive sensing (CS) methods [18], [19].

II. RELATED WORK
MassiveMIMO systemswith lens antenna arrays inmmWave
communications can significantly reduce the number of radio
frequency (RF) chains with beam selection. However, beam
selection requires the base station (BS) to obtain accurate
information from the beamspace. This is a challenging task,
for example, the channel size of the beam space is large
while the number of RF chains is limited. In the desired sys-
tem model, the problem of beamspace channel estimation in
mmWave massive MIMO with lens antenna array is investi-
gated. So that an adaptive selective network including a small
number of one-bit phase shifters is considered for mmWave
massive MIMO systems with lens antenna array [20].
The proposed selective network serves a dual purpose in

data transmission and channel estimation. During data trans-
mission, it operates by selecting beams as usual. However,
during channel estimation, it acts as a combiner to obtain
effective beamspace channel measurements. Therefore, the
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beam space channel estimation problem can be formulated
as a weak signal recovery problem based on the adaptive
selective network [17].
In another study [21], the authors proposed a chan-

nel estimation method that incorporates complete knowl-
edge of large-scale fading. They introduced a pilot reuse
sequence to eliminate pilot contamination in edge users. The
study considered Rayleigh fading for small-scale and an
identically independent distributed (i.i.d.) channel model in
multi-cell massiveMIMO systems. The authors estimated the
large-scale fading and analyzed the performance in terms of
maximum ratio transmission and zero-forcing precoding as
the number of antenna elements and users increased. They
further enhanced the channel quality by allocating orthogonal
pilot reuse sequences specifically to the edge user group to
mitigate pilot contamination.

Moreover, the achievable data rate and channel quality
improve by maintaining a constant grouping parameter based
on large-scale fading and dividing users into two groups:
edge users and central users. This grouping approach opti-
mizes transmission parameters according to the characteris-
tics of each user group, resulting in increased data rates and
improved channel quality.

To estimate the sparse channel, various algorithms have
been presented, including greedy, statistical, threshold-based,
and convex optimization algorithms. Greedy algorithms iter-
atively approximate the signal and support coefficients until
convergence or reaching a certain threshold. Some of these
algorithms perform comparably to convex optimizationmeth-
ods, such as norm lp minimization. One method called
orthogonal matching pursuit (OMP) iteratively identifies the
signal support and reconstructs the signal using a virtual-
inverse approach. OMP identifies columns of the measure-
ment matrix with the highest correlation and repeats this step,
calculating correlations with the residual signal to recover the
sparse signal. The stopping condition is defined as the number
of iterations or the requirement to achieve the observed data.
OMP can recover the sparse signal by repeating this step
several times [22].

In addition, the authors employ a wideband dictionary
and demonstrate that channels across different orthogonal
frequency division multiplexing (OFDM) subcarriers share
a common support. This insight enables the application of
a variant of the simultaneous OMP algorithm, known as
generalized simultaneous OMP (GSOMP). GSOMP exploits
information from multiple subcarriers to increase the proba-
bility of successfully recovering the common support [23].

Another category of algorithms that are used in compressed
reception is threshold-based algorithms. The insight that jus-
tifies the classification of these algorithms as a different
family relies on the approximation of the matrix inverse
and the adjoint matrix (measurement). The basic threshold
algorithm consists of determining the s-sparse support of the
desired signal thatmust be reconstructed from the observation
vector y = Ax, in the form of indices corresponding to the

absolutely large s component of A ∗ y, and then finding a
vector with this support in such a way that have the best com-
patibility with the measurement vector. Algorithms related to
this set include iterative hard thresholding (IHT) [24], [25],
normalized iterative hard thresholding (NIHT) [26], [27] and
hard thresholding pursuit (HTP) [28], [29].

Another type of algorithms are sublinear algorithms. These
algorithms reconstruct sparse signals through group testing
and are much faster and more efficient compared to greedy
or convex optimization algorithms. But they need a spe-
cial pattern in the observation matrix, and that is that the
observation matrix must also be sparse [30]. In addition to
the stated methods, there are also statistical methods such
as Bayes method, which, unlike other methods, use pre-
vious information about signal coefficients. That is, they
consider a model for the signal. While in non-statistical
methods, the only prior information is the sparsity of the
signal. As an example, [31] has proposed a method in which
Gaussian-Bernoulli prior information is considered for the
s-sparse signal. Also, in the proposed method [32], [33],
signal sparsity is modeled using Laplace’s hierarchical form
as prior information. Although it is reasonable to assume
additive Gaussian noise; However, the Gaussian-Bernoulli
or Laplace prior information assumption for signal statical
moments will not always correspond to reality. Accord-
ingly, [34] and [35] has presented a Bayes-based method
for sparse signal reconstruction that uses noise statistics and
signal sparsity rate.

Another group of methods is convex optimization
techniques, which are very powerful for calculating sparse
representations. Convex optimization is a sub-branch of
optimization problems in mathematics that deals with the
minimization of convex functions on convex sets. In [36]
and [37], to reduce the overhead of pilot-based channel
estimation for cell-free systems, the authors propose a novel
joint channel estimation and data detection (JED) algorithm
that exploits (i) channel sparsity and (ii) the fact that the
user equipment (UE) transmit signals are taken from a
bounded constellation set (e.g., QPSK). JED algorithm uses
forward-backward splitting (FBS) [8] to efficiently solve a
biconvex optimization problem. Recently, algorithms based
on sparsity mask detection (SMD) [38] and support detection
(SD) [17] proposed to estimate the beam space channel in
mmWave massive MIMO systems.

The SMD algorithm first selects beams with higher power
using a beam training process between the base station and
users, and as a result, by reducing the dimensions of the
channel and solving it with classical algorithms, such as least
squares (LS), it achieves an estimate of the channel. One
of the advantages of this method is reducing the training
pilots [34], [38]. However, the number of training pilots
required to check all beams is proportional to the number of
base station antennas, which is a large number (for example,
256 antennas). This number of pilots is significantly reduced
based on the SD-based channel estimation scheme [17].
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The basic idea is to decompose the total channel estimation
problem into a series of sub-problems, each of which only
considers one sparse channel component (a vector containing
the information of a specific propagation direction) [39].
First, for each channel component its support is detected
(i.e., the index set of non-zero elements in a sparse vec-
tor) by exploiting the structural characteristics of mmWave
beamspace channel. Then, the influence of this channel com-
ponent is removed, and the support of the next channel
component is detected in a similar method. After the supports
of all channel components have been detected, the beamspace
channel of large size can be estimated with low pilot
overhead.

In [40], the authors proposed the regular scanning support
detection (RSSD) algorithm, a channel estimation technique
for the 5GmmWave massive MIMO system with 3Dmetallic
plate lens antenna array that saves energy and focus beams.
Initially, entire channel estimation obstacles are divided by
some alternate obstacles named as channel components.
After that, using regular scanning the component support is
detected along with fading action. Finally, channel compo-
nent will be abolished from the entire beamspace channel
estimation complication. In [41] and [42], the authors propose
separable compressive sampling match pursuit (SCoSamp)
algorithm by exploiting the separable structured sparsity of
mmWave massive MIMO channel. They present that the
angular spreads of mmWave channel give rise to the sparse
separable structure, such that the sparsity of mmWave chan-
nel can be divided into angle of arrival (AoA) and departure
(AoD) domains separately. After designing the precoding
and combining matrices under the metric of mutual informa-
tion, according to the separability structure of the channel,
SCoSamp algorithm is proposed.

Finally, it solves the problem by calculating the correlation
matrix of the signal and separating the coordinates of the
channel elements into two sub-matrices through least squares.
In this method, the number of pilots to estimate the channel
is equal to the number of elements, and since it performs
the estimation twice for each matrix, as a result, it has more
computational load and the number of pilots is also high.

In [43], the authors based on the specific triple-structured
sparsity in the cascaded beamspace channel, proposed a novel
multi-user joint cascaded channel estimation scheme named
as MTSCS-CE. The calculational complexity is close to
conventional OMP method but pilot overhead can be remark-
ably reduced under the same normalized mean square error
(NMSE) accuracy. Their proposed algorithm in the paper
concentrates on on-grid scenarios, while super resolution
estimation based on the triple-structured sparsity and the
trade-off between complexity and estimation accuracy will be
further discussion to overcome the energy leakage problem.

In [44], a multi-user mMIMO system with CSI feedback
resource adaptation framework and closed-loop pilot has
proposed. The framework includes CSI quality estimation,
joint compressive CSI recovery and pilot resource adaptation.

From simulation results, the framework proposed in [44]
upgraded CSI estimation performance, and improved robust-
ness against dynamic channel sparsity.

A combination of compressed sensing, S-CoSaMP, block
iterative support-detection (Block-ISD) and AoD algorithms
have given in [45] as a solution to decrease feedback over-
head of channel estimation. Simulation results show that this
proposed method reduces the pilot feedback overhead by
a significant percentage which improves the overall system
spectral and energy efficient (SE and EE).

In [46] an estimation framework extended using enhanced
Newtonized orthogonalmatching pursuit (eNOMP) algorithm
is given. The algorithm is applied to extract from the uplink
the frequency-independent parameters, which can be apply
to expand the downlink training scheme. eNOMP is an
iteration-based method that extracts a new component within
each iteration through the e-OMP and eNewton steps. At the
end of every iteration of the eNOMP algorithm, the corre-
sponding component path will be eliminated from the noisy
mixture.

Finally, the number of practical components equals the
number of extracted components if each component is accu-
rately estimated. Numerical results display that the proposed
framework in [46] can reconstruct the CSI with training
overhead and small amount of feedback.

In [47] the authors proposed a CS estimation scheme
for frequency division duplexing (FDD) mMIMO sys-
tems by proposing a structured sparse adaptive (CoSaMP)
algorithm that modifies the coding sampling matching pur-
suit (CoSaMP) algorithm. Simulation results show that the
proposed algorithm in [47] can reduce the pilot overhead and
has good performance and better SE in low signal-to-noise
ratio (SNR).

Authors in [48] propose a non-orthogonal pilot design with
CS-based channel estimation algorithm. By exploiting spatial
and temporal joint dispersion in the mMIMO delay domain,
the results show that less pilot overhead is achieved for
accurate CSI estimation. Authors in [49] proposed a design
consisting of scheduling and joint precoding algorithm for
multi-cell mMIMO systems to deal with the pilot feedback
overhead issue in FDD mMIMO systems. Also, a greedy
scheduling algorithm is introduced to further reduce the
computational complexity of the reported algorithm in [49].
Simulations confirm that overhead feedback reduction is
achieved.

In [50] the intrinsic tensor feature of the full-dimension
MIMO (FD-MIMO) channel is explored, to increase CSI esti-
mation. The proposed estimation algorithm in [50] is based
on the expectation-maximization framework via tensor as the
processing data structure. Moreover, the Cramér-Rao lower
bound is employed as a metric for evaluation. Simulation
results show an enhancement in CSI estimations, provid-
ing flexibility in realizing trade-off points between down-
link and uplink throughput using pilot-data superposition
strategy.
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In the aforementioned algorithms, the number of train-
ing pilots required for channel estimation is often high,
sometimes equal to the number of antennas at the base sta-
tion, which can be challenging in mmWave massive MIMO
systems. Considering this, our work is based on two key
algorithms: OMP and the SD algorithm, which offers the
lowest training pilot requirement.

In the OMP algorithm, all channel components are ini-
tially considered for estimation, resulting in increased pilot
overhead and decreased accuracy. This reduction in accuracy
is mainly due to the presence of numerous channel compo-
nents with very small or almost zero values. Estimating these
components introduces errors, as their values are forced to be
nonzero according to the minimum square error (MSE) met-
ric. Therefore, it is unnecessary to estimate all components,
and a subset of channels is sufficient for accurate estimation.
On the other hand, the SD algorithm significantly reduces the
support set, but it lacks responsiveness to different channel
conditions and paths. It relies on a fixed series of indices,
requiring prior knowledge of the number of transmitted paths.

The proposed methods address these limitations by offer-
ing distinct advantages. Firstly, they do not rely on knowing
the number of signal transmission paths. Secondly, the chan-
nel support set consistently includes the most relevant and
effective channel components for accurate estimation. This
ensures both improved accuracy and reduced training pilot
requirements.

III. CONTRIBUTIONS
This paper introduces two different systems models that
include conventional channels and channels with a lens
antenna array. We then propose an algorithm for channel
estimation with an acceptable overhead, reduced complexity,
and a low estimation error by utilizing compressive sensing
methods. This type of problem has already been consid-
ered, but some drawbacks reduce its effectiveness. The SD
algorithm, relies on a limited number of signal transmission
paths, including one line-of-sight (LoS) path and two non-
line-of-sight (NLoS), all of which must be orthogonal and
independent. In addition, the algorithm must consider the
multiple signal paths that arise due to the multi-path phe-
nomenon of the mmWave in MIMO channels. Additionally,
only a limited number of beams are selected based on the
sparse channel’s non-zero components (support), including
the most active beam and seven symmetrically surrounding
beams. However, if the number of beams is insufficient to
model the channel, it would increase the estimation error.

In addition, we present an algorithm based on the con-
vex optimization method, in which the channel estimation
is independent of the number of paths and recognizes the
sparsity level of the channel better. Hence, the estimation can
be done without knowing the number of paths. The proposed
method also has the advantage of being highly accurate and
of reduced complexity. Additionally, to speed up the mas-
sive MIMO channel recovery and to deal with the sparse
nature of mmWave channels, a new algorithm based on a

greedy strategy is proposed for channel estimation in mas-
sive MIMO systems with a lens antenna array in mmWave
communications.

Our main contributions are summarized as follows:
• We propose a new channel estimation algorithm based
on compressive sensing, inspired by convex optimiza-
tionmethods formassiveMIMO systemswithout requir-
ing that the number of channel paths is known.

• We propose another low-complexity algorithm based on
greedy algorithm for increasing the speed of recovering
the components of a massive MIMO channel.

• Through extensive simulation, we demonstrate that the
both proposed frameworks reduce estimation error and
require fewer pilots for the channel estimation procedure
compared with the SD algorithm, OMP and SMD.

The rest of the paper is organized as follows. Section IV
introduces the system model and problem formulation.
Section V summarizes the general situation and the neces-
sary prerequisites for channel estimation and then presents
channel estimation algorithms based on a group lasso with
an effective support set and the greedy method, respectively.
In Section VI, Section IV presents the simulation results
from VI-A and VI-B subsections based on the proposed
Group Lasso with Effective Support (GLES) and the Greedy
Algorithm with Intelligent Selection Support (GAISS) algo-
rithms, respectively. Finally, the conclusions are drawn
in Section VII.
NOTATION:
Lowercase letters show vectors, and boldface uppercase

letters showmatrices; We illustrated scaler with small normal
face and vectors with small bold face; the notations (·)T,
(·)∗,(·)H and ∥ · ∥ represent transpose, conjugate, Hermitian
operators and the Frobenius norm, respectively, and the trace
of a matrix A is noted by tr(A).Card (A) shows the cardinality
of a set A; ∥a∥2 shows the l2-norm of the vector a; the
amplitude of vector a is noted by |a |, and IK indicates the
K × K identity matrix.

IV. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a massive MIMO time-division duplexing
(TDD) system inmmWave communications. The base station
has M antennas and MRF radio frequency chains to serve K
single-antenna users. For the channel estimation, we consider
the downlink and uplink models. There are two subsections
to a massive MIMO channel model in mmWave communi-
cations, including traditional model and lens antenna array.
The channel model of a massive MIMO system in mmWave
communication is presented by two subsections of traditional
model and the lens antenna array.

A. TRADITIONAL MILLIMETER-WAVE MASSIVE MIMO
Figure 1(a) shows a massive MIMO system in the traditional
mode in a mmWave communication system. The received
signal Vector yDL can be expressed as:

yDL = HHGs+ v, (1)
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FIGURE 1. a) Architecture of traditional mmWave massive MIMO vs.
(b) Architecture of mmWave massive MIMO with a lens antenna array.

where s = [s1, s2, . . . , sk ] is the transmitted signal vec-
tor with dimensions K × 1 for all K users. Its normalized
power is E(ssH ) = IK ,HH

∈ CK×M shows the downlink
matrix of the channel, that H = [h1,h2, . . . ,hk ] shows the
uplink matrix of the channel based on channel reciprocity, the
M × 1 vector hk is the spatial vector of the channel between
the k th user and the BS [51], [52]. The precoding matrix with
dimension M × K is denoted by G = [w1,w2, . . . ,wk ] such
that tr(GGH) ≤ω,whereω is the downlink transmit power for
k = {1, 2, · · ·,K }, and v is the noise vector drawn from the
distribution CN∼ (0, δ2DL), where δ

2
DL is the downlink noise

power.
The number of RF chains in the massive MIMO systems in

the traditional mode is the same as the number of antennas,
see Figure 1 (a) [53], [54], e.g., MRF = M = 256. In this
paper, we assume the Saleh-Valenzuela model for the chan-
nel [55], [56], so the channel vector of k th user (hk ) can be
expressed as:

hk =

√
M

Lk + 1

Lk∑
i=0

γ
(i)
k f

(
∂
(i)
k

)
=

√
M

Lk + 1

Lk∑
i=0

ck,i, (2)

where ck,0 = γ
(0)
k f

(
∂
(0)
k

)
is the LoS component of hk

where γ (0)k denotes the complex gain and ∂(0)k represents the

spatial direction, ck,i = γ
(i)
k f

(
∂
(i)
k

)
represents the ith NLoS

component of hk for 1 ≤ i ≤ Lk , and Lk is the number
of NLoS components, ∂(i)k denoting the spatial direction, and
f (∂) is the array steering vector with dimensionM×1. For the
uniform linear array (ULA) in typical mode, the array steering

vector is:

f (∂) =
1

√
M

[e−j2π∂m]mϵI (M ), (3)

where I(M ) = {M −
p−1
2 , p = 0, 1, . . . ,M − 1} shows

a set of centered indices around zero, symmetrically. The
spatial direction obtains from ∂ =

d
λ
sinθ , where θ specifies

the physical direction in the interval [−π
2 :

π
2 ], the signal

wavelength denotes λ , and the antenna spacing denotes d ,
which generally is d = λ/2 in mm-Wave communications.

B. MASSIVE MIMO WITH THE LENS ANTENNA ARRAY IN
MILLIMETER-WAVE COMMUNICATION
The lens array can concentrate the signals from different
directions (beams) on different antennas [57], [58]. There-
fore, the spatial channel is converted into the beamspace
channel, as shown in Figure 1 (b). Mathematically, the lens
array antenna is the orthogonal beamforming vectors of
M predefined beams in angular space that is as follows.
Therefore, the system model of the lens antenna array is
defined as:

A = [f (
1
M

(
3 −M

2
),

1
M

(
5 −M

2
), . . . ,

1
M

(
M − 1

2
))]

H
. (4)

where the received downlink signal vector is ỹDL .

ỹDL = HHAHGs+ n = H̃
H
Gs+ n, (5)

In equation (5), H̃ represents the beamspace channel as:

H̃ = [h̃1, h̃2, . . . , h̃K ] = AH = [Ah1,Ah2, . . . ,AhK ]. (6)

We select only a small number of dominant beams using a
lens antenna array to reduce the MIMO dimension according
to [45]:

ỹDL = H̃
H
b Gbs+ n. (7)

The dimension-reduced beamspace channel is shown by
H̃b = H̃(j, :)j∈k , where k represents the set of selected beams
as illustrated in Figure 2 and Gb denotes the dimension-
reduced digital precoding matrix with size k × K [52].
The interference-aware (IA) beam selection algorithm can

be described as follows: (a) First, the algorithm identifies two
types of users: interference-users (IUs) and non-interference-
users (NIUs). This classification is based on the level of
interference they experience in the system. (b) Second, the
algorithm aims to find the best beam that is not shared with
other users. This beam is considered the foremost unshared
beam and is selected as the optimal choice. In summary, the
IA beam selection algorithm identifies users experiencing
interference and non-interference, and then selects the beam
that offers the least interference by prioritizing unshared
beams. This approach helps optimize the overall system per-
formance and minimize interference-related issues [52].
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FIGURE 2. The interference-aware (IA) beam selection algorithm:
(a) First: identify interference-users (IUs) and non-interference-users
(NIUs); (b) Second: look for the foremost unshared beam.

The benefits of the lens antenna array are the low hardware
cost/power consumption and the reduction of the number of
RF chains. The smallest number of required RF chains is
MRF = K .

V. BEAMSPACE CHANNEL ESTIMATION
The users require to transmit Q samples to the BS as the
known pilot sequences. These instants must be in block-wise
form, with each block having a size of K × K [59]. The
strategy that we have considered in this article is as follows:
Q instants are divided intoM blocks and each block consists
of K instants, i.e., Q = MK . For the mth block, we define ϕm
of size K × K as the pilot matrix, which contains K mutu-
ally orthogonal pilot sequences transmitted by K users over
K instants [59]. Due to the normalization of the pilot power
to the unit, the following relations are established:

ϕmϕHm = Ik ,ϕHmϕm = Ik

As a result, the uplink received signal matrix is due to
reciprocity in TDD systems and in the mth block, it is equal
to:

Ỹ
UP
m = UHϕm + Nm =H̃ϕm + Nm ,m = 1, 2, . . . ,M (8)

During the pilot transmission in the mth block, the BS
should employ a combinerWm of size K ×N to combine the
received uplink signal matrix Ỹ

UP
m (8). As a result, we have:

Rm = WmỸ
UP
m = WmH̃ϕm +WmNm (9)

where Nm is the N × K noise matrix in the mth block.
TheK×K measurement matrixZm of the beamspace chan-

nel H̃ achieved by multiplying the known pilot matrix ϕHm on
the right side of (9):

Zm = RmϕHm = WmH̃ + Neff
m (10)

FIGURE 3. Adaptive selecting network for mmWave massive MIMO with
lens antenna array.

In the above equation Neff
m = WmNmϕHm is the effective

noise matrix. Finally, the M matrix of the H̃ channel mea-
surement block is equal to:

ZK = Wh̃K + ñk , (11)

where ZK denotes the measurement matrix and, ñk shows the
effective noise matrix.

In the system model considered for massive MIMO sys-
tems in mmWave communication with a lens antenna array,
the selecting network is a one-bit phase shifter that replaces
the selecting network block in Figure 1 (b). The adaptive
selecting network is configured for beam selection during
the data transmission (Figure 3). One of the benefits of this
network is a significant reduction in energy consumption
and cost [60], [61]. This network is used as a Wm-combiner
to combine the uplink signals and is designed to minimize
cross-correlation [17]. The number of dominant scatters in the
mmWave prorogation environments is limited because h̃K is
a sparse vector. Therefore, by utilizing the adaptive selecting
network, it is guarantee that ZK has complete information of
h̃K even if Q < N . Then, (11) can be formulated as a typical
sparse signal recovery problem.

To guarantee the success of the CS reconstruction algo-
rithms, the W matrix must satisfy the Restricted Isome-
try Property (RIP) condition. For matrix W , the smallest
� ≥ 0 represents the sth restricted isometry constant �S =

�S (W ) such that (10) is met for every s-sparse vectors h̃K .

(1 −�)

∥∥∥h̃K∥∥∥2
2

≤

∥∥∥Wh̃K
∥∥∥2
2

≤ (1 +�)

∥∥∥h̃K∥∥∥2
2
. (12)

The Bernoulli random matrix is selected as theW matrix,
where the columns are normalized to the unit norm.

A. CHANNEL ESTIMATION BASED ON THE PROPOSED
GLES ALGORITHM
In order to solve (11), we can use greedy algorithms, such as
the OMP or the CoSaMP. Due to the limited transmit power
of the users, it is generally expected that the channel will be
evaluated with a low SNR.
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FIGURE 4. Group lasso method of a selection of blocks.

Therefore, the support function of the noisy h̃K , which
is calculated by greedy methods, is inaccurate and leads to
degraded performance.

In this paper, we exploit the beamspace channel structural
characteristics for channel estimation purposes. In this regard,
we propose the GLES algorithm, which is based on the group
least absolute shrinkage and selection operator (LASSO).
It is an algorithm from the convex optimization family
with the possibility of the proper support selection [62].
This algorithm can estimate the channel more accurately,
and it works better than the other existing methods, such
as SD, OMP [63], [64], and SMD [38], especially in low
SNR settings.

The GLES algorithm does not require prior knowledge
of the number of sparse blocks and the size of each block.
Hence, as the channel is sparse and the effective channel com-
ponents exist only around the strongest one, the group lasso
method can be used to appropriately estimate the desired
channel [65]. As a result of the lens antenna array features, the
proposed method operates on the proper block size detection,
which is natural when the strongest channel elements are
larger than the other blocks.

Figure 4 shows that the dominant block is active while
the remaining blocks are set to zero. The advantage of this
method is that the number of paths and the sparsity level of
the beamspace channel does not have to be known.

Based on the group LASSO formulation, the estimation
problem is formulated as follows. It first divides the channel
vector into several blocks as shown in (13).

h̃K =

(
h̃K1, h̃K2, . . . , h̃KLk

)
. (13)

Using the equation below, the group lasso solves the chan-
nel estimation.

ˆ̃hK = argminh̃K (
1
2
∗

∥∥∥ZK −Wh̃K
∥∥∥2
2
+ α

c∑
i=1

∥∥∥h̃K∥∥∥
2
), (14)

where α is the penalty parameter and, ˆ̃hK is the sparse esti-
mation of h̃K , which minimizes the distance between ZK and
Wh̃K [39], [66].

The group lasso solves the block basis pursuit problem
using Lagrangian relaxation. An alternative direction multi-
plier method is used in one solution. Due to the uncertainty of
the prediction, it does not work correctly. By using the Con-
VeX (CVX) optimization tool, we reduce the computational

complexity of the sparsity recovery algorithms and improve
the accuracy of the estimation [66].

The proposed algorithm works as follows. First, it solves
the group lasso problem using the CVX in order to obtain the
raw channel estimation h̃K . The index set of h̃K is then sorted
according to the descending order of the elements of h̃K1,
which is shown as the set Sk . Now the first element of Sk ,
is taken as the index of the first main peak of the channel,
and the V1 elements around it are then selected as the first
effective components of the channel, and they are represented
with the set T1. Actually, T1 is the first partial support. In the
next step, T1 is removed from Sk. Again, as illustrated previ-
ously, the first element of Sk and the V2 elements around it
are selected as T2, the second partial support. In this manner,
the set T3 is obtained. Finally, T1, T2, and T3 are defined
as effective support sets, and the other channel components
are set to zero. The estimation method is summarized as
Algorithm 1.

B. CHANNEL ESTIMATION BASED ON THE PROPOSED
GAISS ALGORITHM
The recovery speed of optimization-based methods is insuf-
ficient for large-scale problems. In terms of measurement
error, the proposed GLES method is robust; however, its
computational complexity makes it unsuitable for large-scale
problems, such as a large number of antennas. The GLES
method also requires an adjustment for α in each SNR.
In this section, we present an algorithm based on greedy
methods.

This method has the advantages of fast reconstruction, low
mathematical complexity, and simple geometric interpreta-
tions. Using this algorithm, which is based on a specific
rule, one or more columns of the compressing matrix are
identified in each iteration as candidates for active columns.
The location of the non-zero components is determined first
in each iteration of the sparse signal coefficients. These
coefficients are then estimated. This section describes the
proposed method in low SNRs using the forward-backward
(FB) algorithm [67], [68], which is classified as a greedy
algorithm. In the high SNR cases, we used a combination
of the SD and OMP algorithms, except that the support set
was selected intelligently to obtain the most accurate channel
estimation.

The proposed algorithm consists of two parts, a) the chan-
nel estimation at high SNRs, and b) the channel estimation
at low SNRs. Algorithm 2 describes the SD method. This
algorithm first finds the position n∗

i of the strongest element
of c̃k,i (the i-th channel component of h̃K in the beamspace)
by utilizing the low mutual coherence property of W̄ .
Then supp(c̃k,i) utilizing the structural characteristic of

mmWave beamspace channel as mentioned in step 9. After
that, the non-zero elements of c̃k,i are estimated by LS
algorithm and the effect of this channel component is
removed. This process is repeated for all the channel paths.
As mentioned at the beginning of the article, we use the
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Algorithm 1 Proposed GLES-Based Channel Esti-
mation Algorithm

1: Input : Z̄K , W̄
2: Output: Estimated beamspace channel for all

users
3: Measurement vector : Z̄K in 1 ≤ k ≤ K (11);
4: Combining matrix: W̄ in (11);
5: parameters: α, L-k, V1,V2,V3
6: for k = 1 to k ≤ K do

7: argmin
hk

( 12 ∗

∥∥∥Z̄K − W̄ h̃K
∥∥∥2
2
+α

L−k∑
i=1

∥∥∥h̃K∥∥∥
2
)

8: Sk = the index set that ordered by decreasing
magnitude of entries of h̃K

9: s = the first element of Sk
10: T1 = {s− V1/2, . . . , s+ (V1 + 2)/2}
11: Sk = Sk\T1
12: s = the first element of Sk
13: T2 = modN {s− V2/2, . . . , s+ (V2 + 2)/2}
14: Sk = Sk\T2
15: s = the first element of Sk
16: T3 = {s− V3/2, . . . , s+ (V3 + 2)/2}
17: Set the entries of h k to zero outside of

T1 ∪ T2∪T3
18: end for

strengths of this algorithm for our proposed work and fix its
weaknesses and then propose the GAISS algorithm.

C. CHANNEL ESTIMATION FOR MASSIVE MIMO SYSTEMS
WITH A LENS ANTENNA ARRAY IN MILLIMETER-WAVE
COMMUNICATIONS AT HIGH SNRs
As previously mentioned, the purpose is to recover the chan-
nel, which is h̃K , for the k th user in (11). SD has the advantage
of relatively good accuracy at high SNRs, as there is a small
amount of noise, and channel recovery is easier. Figure 5
illustrates the performance of this algorithm. A channel has
three paths, including one LoS path and two NLoS paths.
This beam path has the most power, and it produces the
biggest peak. The components around this peak, which are
formed by the antennas around the most prominent peak,
have a significant impact on the estimation of the channel.
This figure shows that one of the disadvantages of the SD
algorithm is that it does not detect the complete number of
effective beams since it only calculates eight components
around each peak by default.

The figure also shows that the components around the
highest peak, which are comparable with two of the other
peaks, were not estimated. As a result, these un/estimated
components increase the error.

Therefore, we need to identify the number of components
to estimate the channel correctly. By contrast, expanding
the support set, the non-zero components, decreases the

Algorithm 2 SD-Based Channel Estimation
Algorithm

1: Input : Z̄K , W̄
2: Measurement vector : Z̄K in (11);
3: Combining matrix:W̄ in (11);
4: All components of the channel: Lk + 1
5: The number of elements stored for each

component: V
6: Initialization: c̃ek,i = 0N×1 for 0 ≤ i ≤ Lk ,

Z̄
(0)
k = Z̄K

7: for 0 ≤ i ≤ Lk
8: Find the position of the strongest element of

c̃k,i as:
n∗
i = arg

∣∣∣ w̄Hn Z̄(i)k ∣∣∣ , w̄n is the n-th column of

W̄ ;
9: Find

supp
(
c̃k,i

)
= modN

{
n∗
i −

V
2 , . . . ,n

∗
i +

V
2

}
;

10: LS estimation of the non-zero elements of c̃k,i
as:
fi = (W̄

H
i W̄ i)

−1
W̄

H
i Z̄

(i)
k , W̄ i =

W̄ (:, b)b∈supp(c̃k,i);
11: From the estimated c̃ek,i as

c̃ek,i
(
supp(c̃k,i)

)
= f i;

12: Remove the influence of c̃k,i by

Z̄
(i+1)
k = Z̄

(i)
k − W̄ c̃ek,i

13: i = i+ 1;
14:

end for
15: ST =

⋃
0≤i≤Lk

supp (c̃i);

16: f T = (W̄
H
T W̄T )

−1
W̄

H
T Z̄k , W̄T = W̄ (:, b)b∈ST ;

17: h̃
e
k = 0N×1, h̃

e
k (ST ) = f T ;

18: Output: h̃
e
k∀k

estimation accuracy in this method since it estimates some
additional components incorrectly.

Due to the fact that the two NLoS paths have less power,
the effective beams around them are negligible, which results
in the NMSE increasing instead of decreasing.

On this basis, we estimated the NLOS paths based on the
SD method, and for the LoS path estimation, which has more
effective components around itself, we propose an improved
strategy. In the proposed method, the two smaller peaks with
the supports S2 and S3 are estimated by the SD algorithm
(Algorithm 2) [17].

h̃K (S2,S3) = ĥK , (15)

where h̃K (S2,S3) shows the estimated components of the SD
algorithm’s support of two small peaks. We then subtract
the estimated h̃K (S2,S3) from the channel measurement
vector, Z̄K .
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Then we have:

Z̄K = Z̄K − W̄ h̃K (S2,S3) . (16)

Now, the problem is to reconstruct the remaining com-
ponents of the channel from Z̄K . The following algorithm
estimates the S1 support for the highest peak. The proposed
algorithm is similar to the OMP method with the exception
that the S1 support in each iteration was selected intelligently
to obtain the most appropriate estimate for the highest peak.
For this aim, we define a boundary as ε

∥∥Z̄K∥∥
2, where ε is

adjusted according to the desired accuracy. According to the
defined boundary, the algorithm is repeated until the norm
of the residual vector r becomes smaller than this boundary
and is consequently the most appropriate support S1 to be
selected. In addition, we also set another control parameter,
smsx, to terminate the algorithm if the support size exceeds
it, regardless of the upper bound. Therefore, the proposed
algorithm will perform the following by selecting the initial
values of r(0) = Z̄K and h̃

(0)
K = 0 until the control conditions

allow.
First, we obtain the correlation vector between the two

variables [41], [42] r and W̄ as:

Corr(n) = W̄
T
r(n−1)/

∥∥∥W̄T
∥∥∥
2
. (17)

Consider the variable l(n) as a column index of W̄ which
has the greatest correlation with r(n−1) in (17), which can be
rewritten as:

l(n) = arg (max (Corr (n))) . (18)

Now, select the support set as follows.

S(n)1 =

{
l(n)−[

v− 1
2

]
}

:

{
l(n)+[

v− 1
2

]
}
. (19)

According to the selected support, the channel is estimated
by the least squares method [34], [35], [36], [37], [38] as:

h̃
(n)
K = zeros (1,n) . (20)

f T =

((
W̄

T
S(n)1

W̄S(n)1

)−1
W̄

T
S(n)1

)
∗Z̄K . (21)

h̃K (S
(n)
1 ) = f T (22)

Now, the residual vector is updated as follows:

r(n) =
´̄ZK − W̄

T ´̃hK , (23)

Until the inequality
∥∥r (n)∥∥2 > ε

∥∥Z̄K∥∥
2 is met, the value of

parameter v is updated as v= v+2 and the steps are repeated
from the beginning.

We form the support set, collectively the two previous
support for the NLoS paths and the new S1 support for the
LoS path.

Stotal = (S2,S3)∪S
(n)
1 . (24)

FIGURE 5. Demonstration of the performance of an SD algorithm in the
channel components reconstruction at SNR = 30 for the kth user.

FIGURE 6. Channel reconstruction performance of the SD algorithm at
SNR = 0 dB.

Finally, the estimated components are as follows.

h̃
(n)
K = zeros (1,n) . (25)

f T =

((
W̄

T
S_totalW̄S_total

)−1
W̄

T
S_total

)
∗ Z̄K

(26)

h̃
(n)
K (S_total) = f T . (27)

D. CHANNEL ESTIMATION FOR MASSIVE MIMO SYSTEMS
WITH A LENS ANTENNA ARRAY IN MILLIMETER-WAVE
COMMUNICATIONS AT LOW SNRs
The noise is noticeable when the SNR is low, and the channel
recovery is difficult. Figure 6 shows that the SD algorithm
estimates the channel inaccurately as well as the position of
the transmitting antenna for the third peak and sometimes
for the second peak, resulting in errors. The SD algorithm is
used to estimate the highest peak for low SNRs. We propose
the FB algorithm for the two small peaks, described in more
detail below. FB is one of the greedy methods, which is a
two-stage iterative algorithm. As the first step, the forward
step estimates the length of the support set.

In the second step, which is the same length as the back-
ward step, the components that have the least impact on
the estimated support set are removed. The forward step is
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longer than the backward step. In this way, the length of
the support set increases with each iteration. Both steps are
repeated until the residual power of the observation vector
reaches a threshold. Unlike other similar algorithms, the FB
algorithm does not need to be aware of the channel sparsity
level. The CS converts the signal into a compressed and
small-sized signal. Observations are made using the matrix
Measure W̄ . The algorithm is similar to OMP, SP, and SMD
algorithms [69], [70]. The performance of this algorithm is as
follows. We consider the highest peak with the support that
is estimated by the SD algorithm as an acceptable estimate in
the proposed method,

h̃K (S1) = ĥK , (28)

where h̃K (S1) shows the components of the highest peak esti-
mated by the SD algorithm. We then subtract the estimated
h̃K (S1) from the channel measurement vector, Z̄K , so we
have:

Z̄K = Z̄K − W̄ h̃K (S1) . (29)

We need to recover the channel peaks around the smaller
of Z̄K . The following algorithm estimates these supports.

The measurement vector Z̄K and the measurement matrix
W̄ are applied as the input of the FB algorithm, which results
in the output h̃FB,K . We now choose variables l1 and l2, as
the corresponding indices of the two bigger components of
h̃FB,K and we then define the support set S2_3 as follows:

S2−3 =

{
l1 −

[
v1 − 1

2

]
:l1 +

[
v1 − 1

2

]}
∪

{
l2 −

[
v1 − 1

2

]
:l2 +

[
v1 − 1

2

]}
(30)

A community consisting of this estimated support and
the support of the larger peak is selected as the final sup-
port. The channel under this support is estimated as follows
using the least squares algorithm.

Stotal = S2−3∪S1, (31)

h̃
(n)
K = zeros (1, n) , (32)

f T =

((
W̄

T
S_totalW̄S_total

)−1
W̄

T
S_total

)
∗ Z̄K ,

(33)

h̃
(n)
K (Stotal) = f T . (34)

VI. SIMULATION RESULTS AND DISCUSSION
A. PROPOSED GLES ALGORITHM
In this section, we evaluate the performance of the pro-
posed algorithms. We consider a massive MIMO system in
the mmWave communication, where the BS equips a lens
antenna array and has N = 256 antennas and NRF =16 RF
chains to serve K = 16 users. The number of resolvable
paths for the k th user in the spatial channel is set to be

Algorithm 3 Proposed GAISS Channel Estimation
Algorithm for High SNR Conditions

1: Input : Z̄K , W̄
2: Output: Estimated beamspace channel for all

users
3: Measurement vector : Z̄K in 1 ≤ k ≤ K (11);
4: Combining matrix:W̄ in (11);

5: parameters: ε, smsx, r (0) = Z̄K , h̃
(0)
K = 0, v

6: for each user k = 1to k ≤ K
7: Compute

h̃K (S2,S3) = ĥKby SD_basedAlgorithm
8: Update residual signal:

Z̄K = Z̄K − W̄ h̃K (S2, S3)
9: Compute the correlation:

10: Corr(n) = W̄
T
r(n−1)/

∥∥∥W̄T
∥∥∥
2

Find the index of the maximum correlation:
11: l(n) = arg (max (Corr (n))) .
12: Select the support set as:

S(n)1 =

{
l(n)−[ v−1

2 ]
}

:

{
l(n)+[ v−1

2 ]
}

13: Repeat

14: f T =

((
W̄

T
S(n)1

W̄S(n)1

)−1
W̄

T
S(n)1

)
∗

Z̄K h̃K (S
(n)
1 )

(n)
= f T .

15: Update residual vector:

r (n) = Z̄K − W̄
T
h̃K ,

16: Increase the range size: v = v +2
17: Update

S(n)1 =

{
l(n)−[ v−1

2 ]
}

:

{
l(n)+[ v−1

2 ]
}
.

18:

Until
∥∥r(n)∥∥2 > ε

∥∥Z̄K∥∥
2 or

∣∣∣S(n)1

∣∣∣ < smax ;

19: Set Stotal = (S2,S3)∪S
(n)
1 .

20: Update the beamspace estimate for the total

set: h̃
(n)
K (S_total) = f T

21: end for

one LoS component and Lk = 2 NLoS components; while
β
(0)
k ∼ CN (0, 1) , β(i)k ∼ CN

(
0,10−.5) fori = 1, 2.

ψ
(0)
k and ψ

(i)
k follow the independent and identically

distributed (i.i.d.) uniform distribution within [−0:5; 0:5].
Finally, the uplink and downlink SNR are defined as σ 2

UP and
ρ/σ 2

UP, respectively. The simulation setups are summarized
in Table 1.
In Fig. 7, the NMSE performance of the proposed

algorithm is compared with the SD-based, the OMP-based
and the SMD-based channel estimation algorithms for the
massive MIMO systems in mmWave communication. For
the SD-based channel estimation algorithm, we consider the
number of high-ower elements V = 8.
For the OMP-based channel estimation algorithm, the spar-

sity level of the beamspace channel is equal to V(LK+ 1) =
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Algorithm 4 Proposed GAISS Channel Estimation
Algorithm for Low SNR Conditions

1: Input : Z̄K , W̄
2: Output: Estimated beamspace channel for all

users
3: Measurement vector : Z̄K in 1 ≤ k ≤ K (11);
4: Combining matrix: W̄ in (11);

5: parameters: ε, smsx, r(0) = Z̄K , h̃
(0)
K = 0, v

6: for each user k from k = 1tok ≤ K
7: h̃K (S2,S3) = ĥKbySD_based Algorithm
8: Update Z̄K = Z̄K − W̄ h̃K (S1)
9: Solve Z̄K in step 2, using Forward-backward

algorithm
10: Obtain the output of step 3 = h̃FB,K
11: Set l1,2 = arg(max

(
h̃FB,K

)
1,2

)

12: S2−3 =

{
l1 −

[
v1−1
2

]
: l1 +

[
v1−1
2

]}
∪{

l2 −

[
v1−1
2

]
: l2 +

[
v1−1
2

]}
13: Stotal = S2−3∪S1,

14: f T =

((
W̄

T
S_totalW̄S_total

)−1
W̄

T
S_total

)
∗ Z̄K ,

15: h̃
(n)
K (Stotal) = f T .

16: end for

TABLE 1. The simulation setups.

24. This section assumes that the SD and OMP-based channel
estimation and the proposed GLES-based channel estimation

FIGURE 7. NMSE performance comparison among the OMP-based, the
SD-based, the SMD-based and the proposed GLES-based channel
estimation methods.

send Q = 96 instants for M = 6 blocks and the SMD-based
channel estimation scheme operatesQ=N= 256 instants for
pilot transmission. The proposed GLES-based channel esti-
mation algorithm reduces the estimated error significantly,
as shown in Figure 7. Choosing the support set correctly
allows us to estimate the main peaks of the channel as well
as other effective components of the channel as defined in
Algorithm 1, steps 8 to 16. Nevertheless, the error rate ismuch
lower at low SNRs. This can be seen in Fig. 7; at SNR= 0dB,
the NMSE of the SD, SMD, OMP and proposed GLES chan-
nel estimation algorithm is respectively 0:46, 0.57, 0.75 and
0:26, which is a 43% decline. This shows the superiority of
convex optimization algorithms and higher accuracy in recov-
ering signals in sparse environment, step 7 in algorithm1.

In Figure 8, the performance of the proposed GLES-based
and SD-based channel estimation algorithms are shown. The
proposed algorithm detects the efficient channel components
more accurately than the SD-algorithm. As can be seen in the
figure, the proposed algorithm detects the effective support
for each transmission path (both LOS and NLOS) separately,
the coordinates of the most effective beam in each path (the
beam with the maximum power) and then the rest of the
non-zero components of the channel. This causes the coordi-
nates of the non-zero components to be recognized correctly
and thus leads to a decrease in the NMSE value.

Therefore, with the proper block selection, effective sup-
port determination, and convex optimization algorithms, the
proposedGLES-based channel estimation algorithm is highly
accurate compared to greedymethods. Although greedy algo-
rithms require less computation time, they do not always
work well, especially in multi-path environments with high
correlation. Instead, convex optimization methods are more
accurate but slower to compute.

According to Figure 9, the proposed GLES-based chan-
nel estimation algorithm determines the sparsity level of the
channel by finding the appropriate CVX values for each SNR.
In fact, α is the penalty parameter in equation (14) a kind
of compromise between the sparsity channel level and the
estimation accuracy. In such a way that it applied imposed
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FIGURE 8. The main components of mmWave massive MIMO channel
comparison between SD (top) and proposed GLES-based (low) channel
estimation by the kth users.

FIGURE 9. The NMSE graph vs. α for SNR=10 dB.

a regularization penalty of the sum of the L2 norm on groups
that guaranteed that few groups were selected. But if a group
is selected, so are all the predictors in it. The NMSE graph
is plotted versus α for SNR = 10dB, as shown in Figure 9.
The best α for the proposed algorithm is about 0:086 for
SNR =10dB.

Thus, the best α for the other SNRs is obtained using the
CVX and is placed in (11). The optimum α for the other SNRs
is obtained according to Table 2.

B. PROPOSED GAISS ALGORITHM
In this section, we examine the performance of the sec-
ond proposed algorithm. Because this algorithm is based
on greedy methods with the possibility of smart support
selection, it can achieve the desired accuracy error in a rea-
sonable amount of time. The NMSE value in SNR = 0dB
has decreased from NMSE = 0:46 for SD-based channel
estimation to NMSE = 0:36 for the proposed GAISS-based
channel estimation algorithm, as shown in Figure 10.
The simulation results are consistent with algorithms 3

and 4. Considering that high and low SNRs are separated,
it is clear that the proposed algorithm works well in all SNRs.
For high SNRs, considering that the SD-based algorithm cor-
rectly estimates the NLOS paths, for these two smaller peaks,

TABLE 2. Optimum α for different SNRs.

the SD-based algorithm is used according to equation (15).
But this algorithm does not have a good estimation accuracy
for the LOS path, and we also know that the components
around the largest peak of the LOS path have a signifi-
cant effect on the channel estimation accuracy. Therefore,
the GIASS-based proposed algorithm was fully described
according to the relationships (16) to (27) for high SNR
by intelligently determining the support set to estimate the
LOS path and also defining the threshold limit to prevent
the estimation of additional components that lead to an
increase in NMSE. How the algorithm works is summarized
in Algorithm 3.

For low SNRs, according to Figure 6, it was observed
that unlike the previous case, the SD-based algorithm works
successfully for the LOS path, but it needs to be modified
for the two NLOS paths. Therefore, Algorithm 4 was pre-
sented specifically for low SNRs, so that it estimates the LOS
path according to Algorithm 2 and equation (28), then for
two NLOS paths, the algorithm uses the FB method due to
its forward and backward property. It is fully described in
equations (29) to (34). How the algorithm works is given in
Algorithm 4. The proposed GAISS method has the advantage
of not being dependent on the sparsity level of the channel,
and it can select the support set intelligently, resulting in a
better performance than existing algorithms.

On the other hand, the proposed method performs very
well under low SNR conditions. The downlink SNR is low
due to the limited transmission power of the users, so the
proposed GAISS algorithm performs better in these condi-
tions. By considering how many training instants are sent
at SNR = 25 dB, Figure 11 compares the previously men-
tioned algorithms based on NMSE performance. For exam-
ple, to achieve NMSE= 0:35, the number of Qs required in
the OMP and the SD algorithms are Q = 180 and Q = 120,
respectively, and it reaches Q = 100 in the proposed GAISS
algorithm. As a result, GAISS has an overhead reduction
of 44% compared to OMP and 16% to SD. Therefore, the
GAISS algorithm has a satisfactory performance with a low
pilot overhead.

In summary, we first proposed an algorithm that has a bet-
ter performance in terms of accuracywith emphasis on having
less information about the channel. Hence, the estimation can
be done without knowing the number of paths The cost of this
better performance is its high time complexity. The NMSE of
the SD, SMD, OMP and proposed GLES channel estimation
algorithm is respectively 0:46, 0.57, 0.75 and 0:26, which
is a 43% decline. On the other hand, for the applications
where this computational complexity is not acceptable or
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FIGURE 10. NMSE performance comparison among the OMP-based, the
SD-based, and the proposed GAISS- based channel estimation methods.

FIGURE 11. NMSE performance comparison against the total number of
instants Q for the pilot transmission.

answerable, we proposed a second algorithm that has reduced
this computational complexity. So that this amount of time
increase in the second method is very small compared to
the previous methods. That is, the calculation time for the
second proposed method is equal to 0.208 seconds per iter-
ation, while the best processing time in the existing methods
belongs to the SDmethod and is equal to 0.187 seconds. It can
be seen that this computational increase is very small com-
pared to the sign- ficant improvement of the NMSE metric.
Finally, to compare the time complexity, we have compared
both proposed methods for one iteration in all of SNRs and
listed them in the table 1.

Lastly, Figure 12 shows a comparison of the two pro-
posed algorithms with the SD, SMD and OMP algorithms.
As shown in the figure, due to the ability of convex optimiza-
tion algorithms to recover sparse noisy signals, the proposed
GLES algorithm outperforms the greedy GAISS algorithm
under low SNR conditions. The greedy GAISS algorithm,
however, performs better than the SD, SMD and OMP under
low-SNR conditions and is comparable to the GLES opti-
mization algorithm. However, the GAISS algorithm performs
better than the GLES optimization algorithm at high SNRs
because it selects support sets intelligently. In addition, it does
not need to adjust for each SNR in order to achieve its

FIGURE 12. NMSE performance comparison among OMP-based,
SMD-based, SD-based and two proposed GAISS and GLES-based channel
estimation methods.

corresponding sparsity coefficient in the GLES algorithm.
Note that Algorithms 3 and 4 are used separately during the
simulation process due to the signal-to-noise problem. Each
algorithm is equipped with a threshold that allows choosing
the appropriate approach based on the user’s signal strength
and the surrounding environment. This provides flexibility
for the user to choose and use any of the algorithms based
on the signal they send.

VII. CONCLUSION
This paper proposed two channel estimation techniques
for massive MIMO systems with lens antenna arrays in
mmWave communications for single-antenna users. We used
the training-based method, due to its low complexity. Aside
from that, the sparsity of the channel encouraged the use
of compressed sensing. Two new algorithms based on the
optimization method and greedy strategy have been proposed
for channel estimation in massive MIMO systems with a lens
antenna array in mmWave communications. The simulation
results have showed that the proposed optimization-based
GLES algorithm is accurate, especially under low SNR
conditions.

Also, this algorithm does not require prior knowledge of
the number of sparse blocks and the size of each block. This
means that the estimation is independent of the number of
paths, so we need less information about the channel and
thus it helps to simplify the problem a lot. But it has a
slow convergence rate and a high computational complexity.
To achieve high accuracy, high convergence speed, and low
computational complexity, the greedy GAISS algorithm has
been proposed. The performance of the proposed algorithms
was compared to that of other existing methods. In addition to
reducing estimation error, the proposed methods need fewer
pilots for the channel estimation procedure.

A channel estimation algorithm was investigated in this
article for systems with a single antenna user. It will be
possible in the future to investigate channel estimation in
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these systems for users with multiple antennas. One of the
challenges that can be addressed in the future is reducing
the number of pilots by designing appropriate precoding and
training sequences. Future activities could include examining
these systems in cellular communications and increasing the
number of NOMA users. Also, the use of large Intelligence
Surface (LIS or RIS) which has received much attention due
to its simple and inexpensive structure. Last but not least,
these systems can be estimated using the proposed estimation
methods as well as group lasso methods.
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