IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 27 May 2023, accepted 17 July 2023, date of publication 21 July 2023, date of current version 27 July 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3297873

==l survey

Intelligent Metaverse Scene Content Construction

JUNXIANG WANG“1, SIRU CHEN“1, YUXUAN LIU"“1, AND RICHEN LAU'2

1School of Computer and Electronic Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
2State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China

Corresponding authors: Siru Chen (222202026 @njnu.edu.cn) and Richen Lau (329789995 @qq.com)
This work was supported in part by the National Natural Science Foundation of China under Grant 61702271; and in part by the Open

Project Program of the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, under Grant
VRLAB2023B05.

ABSTRACT The integration of artificial intelligence (AI) and virtual reality (VR) has revolutionized
research across various scientific fields, with Al-driven VR simulations finding applications in education,
healthcare, and entertainment. However, existing literature lacks a comprehensive investigation that
systematically summarizes the fundamental characteristics and development trajectory of Al-generated
visual content in the metaverse. This survey focuses on intelligent metaverse scene content construction,
aiming to address this gap by exploring the application of Al in content generation. It investigates
scene content generation, simulation biology, personalized content, and intelligent agents. Analyzing the
current state and identifying common features, this survey provides a detailed description of methods for
constructing intelligent metaverse scenes. The primary contribution is a comprehensive analysis of the
current landscape of intelligent visual content production in the metaverse, highlighting emerging trends.
The discussion on methods for constructing intelligent scene content in the metaverse suggests that in the
era of intelligence, it has the potential to become the dominant approach for content creation in metaverse

scenes.

INDEX TERMS Content generation, metaverse, immersive visualization, deep learning.

I. INTRODUCTION
The rapid evolution of metaverse technologies, coupled with
exponential growth in computing power, has brought about
a paradigm shift in the production of visual content. The
traditional manual creation of static scene content has been
revolutionized by the emergence of intelligent metaverse
technology, which enables the generation of scene content
with unprecedented capabilities. This intelligent approach
leverages existing data conditions as specialized tools for
programmatically constructing and enhancing metaverse
scenarios. The application of intelligent metaverse scene
content generation extends to various scientific domains
including education, biology, medicine, and art. Specifically,
it involves the dynamic construction of multi-variable scenes
through programming.

In contrast to conventional artificial intelligence-generated
content (AIGC), which predominantly focuses on generating
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text, images, audio, video, and models, our research focuses
on the utilization of Al methods to generate content within
metaverse scenes. Distinct from AIGC’s video content
generation [1], our emphasis is on the creation of specific
scenes that empower users to engage in free interaction
within the generated metaverse environment. This essential
feature sets our content generation approach apart from
simple videos, as it fosters a highly immersive and interactive
user experience integrated with the interaction concept of
Metaverse [2]. Based on the aforementioned considerations,
we have compiled and analyzed recent research on the
construction of intelligent metaverse scene content. We have
classified, summarized, and discussed these works in order to
inspire future endeavors in this field.

The rapid advancement of Al technologies has led to the
development of various methodological models that integrate
Al intelligence into automated metaverse scene generation.
Three primary strategies have emerged: the development
of intelligent framework systems for coordinating meta-
verse content, simulation of intelligent agents that replicate
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FIGURE 1. We choose a few exemplary papers from each category. Different publications are shown on the horizontal axis, while various kinds of
intelligent visual content production strategies are represented on the vertical axis, including scene content generation (V3D: virtual 3D construction,
CDG: classification-based directed generation, DG: data-driven generation, content construction and improvement (AC: adaptive change, El: effect
improvement)), simulated biology (ILTS: individual life trait simulation, GBS: group behavior simulation, SFL: stress feedback learning), personalized
contents (ECP: emotional content personalization, NCP: non-emotional content personalization), intelligent agents (IATD: intelligent agents trained based
on data, IACK: intelligent agents constructed from external knowledge systems, intelligent agents trained for interaction data adaptation (SRI: simulating
realistic images, IAAC: interaction actions to adapt agent changes, IPTC: interaction processes to adapt task collaboration)). Many of the papers share the
basic characteristics of multiple intelligent visual content generation techniques at the same time. All the papers are categorized (in different colors) and

disaggregated according to the main techniques they use.

biological logic, and utilization of machine learning or deep
learning methods to generate or enhance scene content.
Understanding the comprehensive integration of intelligent
metaverse scene content generation requires a detailed study
of these strategies and an analysis of the employed methods
to reveal valuable insights into the future trends of metaverse

scene content generation in the era of Al

A. RELATED SURVEYS
Previous surveys in this field have predominantly focused on

Al-based computer vision imaging, with particular emphasis
on evolutionary computation and biological vision [3],
or on generating interactive and immersive content [4].
Some surveys have delved into the impact of content
generation in Al on the art industry [5] and explored deep
learning-based image style transfer [6]. Additionally, the
Unreal 3D authoring engine has shown interest in leveraging
agents and decision-tree-based procedural content generation
techniques for immersive game development [7].
In comparison to studies that delve into the application
of Al technology in machine learning for character pro-
gramming and calculation in games [8], or compare search-
based methods and machine learning methods to traditional
approaches in surveying game program content [9], our
survey takes a more comprehensive approach by focusing
on the application of Al technology and the generation of
intelligent metaverse scene content. While there have been
surveys that explore the inclusion of human emotions in
virtual agents and the advancements of Al in education [10],
these surveys either have limited coverage of content
generation or primarily focus on detailed descriptions of a few
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representative studies [11], [12], [13]. In contrast, our survey
offers a comprehensive analysis of recent advancements from
a cutting-edge perspective, incorporating relevant papers
from the IEEE Xplore and ACM Digital Library based on

their relevance and research direction.

B. TAXONOMY OF THE SURVEY
The exploration of Al for generating content in metaverse
scenes has led to the emergence of several common areas
of interest, including scene content generation, simulated
biology, personalized content, and intelligent agents, either
individually or in combination (Figure 1). It is important
to highlight that many methods employ a combination
of these intelligent metaverse scene content generation
techniques rather than relying solely on a single approach.
While this survey does not encompass all papers related to
metaverse scene content generation, its primary focus is on
the utilization of deep learning or other machine learning
methods and intelligent frameworks to achieve the generation

of metaverse scene content.

Il. SCENE CONTENT GENERATION
Integrating Al into the design framework of VR presents
a logical solution for overcoming the challenges associated
with automated metaverse scene content generation, thereby
enhancing the realism of virtual environments. Deep-learning
modules have emerged as effective tools for achieving
this objective. Notably, Unreal Engine explored Al-based
approaches by utilizing agents and decision trees to generate
content in immersive game programs [7].
This section introduces several common intelligent meth-
ods used in the generation and improvement of metaverse

76223



IEEE Access

J. Wang et al.: Intelligent Metaverse Scene Content Construction

scene content. These methods can be broadly divided into
four main categories: virtual 3D reconstruction, directed
generation based on classification, data-driven generation,
and content construction and improvement. It is worth men-
tioning that certain approaches may exhibit characteristics
that align with multiple categories simultaneously. For this
study, we classified them based on their primary features.

A. VIRTUAL 3D CONSTRUCTION

Two-dimensional photos are crucial for reconstructing
three-dimensional scenes because of their accessibility and
the availability of comprehensive data. Wang et al. proposed
a method that utilizes the ant colony algorithm to rapidly
segment video scenes and combines the segmentation
process with the similarity of the same modal data and
the correlation of different modal data to construct multiple
panoramic-image arrangements, thus creating a VR scene
space [14]. Similarly, VIRTOOAIR significantly improves
the system’s posture recovery capability by incorporating
VR tracking data and low-semantic input from RGB photos
into an end-to-end reconstruction process using deep learning
algorithms, as shown in Figure 2(a) [15]. In contrast to
purely two-dimensional image data, Zhang et al. applied
effect processing to two-dimensional images, as shown in
Figure 2(c). The 2D input images were transformed using a
visual art language with a traditional Chinese ink and wash
style, followed by a 3D virtual technique to generate a 3D
virtual scene in ink and wash style [16]. Freville et al., on the
other hand, indirectly employed YOLO for object detection
to identify realistic objects and generate corresponding 3D
world assets at their respective locations, as depicted in
Figure 2(b) [17].

These approaches demonstrate the potential of integrating
deep learning techniques and innovative algorithms for
constructing metaverse scenes. However, challenges remain
in terms of handling complex scenes, ensuring the accuracy
of the reconstruction process, and achieving a balance
between realism and efficiency. Further research is required
to address these challenges and advance the field of virtual
3D construction in metaverse environments.

B. CLASSIFICATION-BASED DIRECTED GENERATION
Generating different categories of objects often requires
specialized treatment to achieve the desired results. Naoki
Matsuo et al. employed deep learning networks to classify
objects into “‘spatial boundaries” and ‘“‘common obstacles.”
By overlaying virtual objects onto real objects based on their
classifications, they created a more recognizable VR space
that remained enjoyable even in cluttered environments filled
with obstacles [18], as depicted in Figure 3(a).

Similarly, the generation of food textures can be expe-
dited through the pre-categorization of food items. The
FoodChangeLens approach [19] uses a cyclic generative
adversarial network (GAN) trained on a large-scale collection
of food images from Twitter streams. This enabled the
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FIGURE 2. Virtual 3D construction. (a) The processing pipeline for
VIRTOOAIR. The data-collecting module for VR tracking is the initial
system component. To learn the upper body joint configuration, a deep
neural network is given the VR tracking data (i.e., HMD and hand
motions). Inverse kinematic regression of the deep neural network is
performed using the second module. Processing of RGB images is
handled by the third module, which also has a pre-processing procedure
(i.e. extraction of bounding boxes). To rebuild the lower body joint
rotation, the bounding box and camera pictures are both continually input
into the end-to-end recovery framework (i.e., the fourth module). The
final module’s visualization tool is in charge of properly portraying the
virtual body in VR [15]. (b) On a practice floor plan, tests were conducted.
The original floor layout can be seen in the top image, while the 3D
environment can be seen in the bottom image [17]. (c) Engaging Al [16].

transformation of food categories while preserving the shape
of the original food item, as illustrated in Figure 3(b). This
method leverages conditional CycleGAN (cCy-cleGAN) [20]
to perform image transformations, along with food segmen-
tation results obtained from U-Net [21], a convolutional
network designed for biomedical image segmentation. The
transformed images were rendered as textures.

These classification-based directed generation methods
offer a more targeted approach to scene generation and
demonstrated the potential of deep learning techniques to
improve the realism and efficiency of metaverse content
creation. However, challenges remain, such as the need for
comprehensive and diverse training datasets, and the potential
for bias in classification systems. Further research is needed
to address these issues and to develop more sophisticated and
reliable classification-based generation methods.

C. DATA-DRIVEN GENERATION

Data-driven generation relies on diverse collections of
realistic data to achieve accurate and immersive simulations
of various scenarios. For example, in the field of football,
a trained PFNN model [22] can be used to make predictions
and create a fully immersive 3D environment, allowing
analysts, coaches, and players to view an entire game.
By capturing and learning human flow patterns through agent
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trajectories powered by a neural-network-based animation
system, player motions in the field and their dynamics from
one event to the next can be accurately represented [23],
as depicted in Figure 3(c). In the domain of music instruction,
hand motions can be automatically generated for 3D anima-
tions using MIDI data as the input. This is accomplished by
leveraging a pre-trained Hidden Markov Model (HMM) for
fingerings detection [24], as shown in Figure 3(d).
Data-driven generation techniques present exciting oppor-
tunities for creating realistic simulations and instructional
metaverse animations. The integration of diverse data
sources, such as football trajectories and MIDI inputs,
enables immersive experience and skill development. How-
ever, addressing the challenges of data collection, dataset
quality, and fostering creativity in content generation are
important areas for future research. By addressing these
limitations, researchers can unlock the full potential of
data-driven generation in metaverse environments and further
enhance immersive experiences and interactive capabilities.

D. CONTENT CONSTRUCTION AND IMPROVEMENT

The construction and adaptation of content are essential for
creating engaging scenarios that provide users with unique
experiences. To achieve this, content must be generated
in a manner that fits realistic scenarios and provides
natural variability in the development of different scenarios.
Researchers have explored two approaches to achieving this:
adaptive changes to content and effect improvements.

1) ADAPTIVE CHANGE

For an adaptive change, Lugrin et al. used an Al module
to generate event chains from a triggering perspective [25],
as shown in Figure 4(a). They simulated the spontaneous
movements of objects, causing collisions between them, and
selected modifications closest to a predefined cost threshold
based on heuristic values. This approach triggers conceptual
events related to the user experience and results in content
that adapts to the user’s actions and choices.

Another example of adaptive change is DeepDive [26],
which incorporates Al tools to simulate spontaneous changes
in the environment to recognize the patterns of systems in
the resource environment of ancient civilizations, as shown
in Figure 4(b). This regional growth approach uses pattern
recognition in hydrology, Al collection modules on vegeta-
tion to predict potential vegetation of cells, A*, and cultural
algorithms to generate reindeer herds, providing opportuni-
ties to generate and test anthropological and archaeological
theories.

These adaptive change approaches offer users a unique and
dynamic experience that adapts to their choices and actions,
thereby creating more engaging scenarios.

2) EFFECT IMPROVEMENT
To improve the effectiveness of generated content,
researchers have focused on enhancing the visual and
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delivery aspects of content. Iglesias et al. proposed feature
extraction using Al algorithms [27], as shown in Figure 4(c).
They employed visualization methods and new UE4 classes
to register and superimpose the collected characteristics on
a 3D model, enabling the identification of structural flaws
using an Al-based approach. This technique improves the
photorealism and immersive qualities of content.

QM4VR [28], on the other hand, focuses on delivery
improvements rather than 3D model upgrades. By monitoring
the operation and performance of the sub-streams and
modifying the load balancing/scheduling method to enhance
the quality of service (QoS) parameters, the VR Content
Quality Multipath Delivery (QM4VR) approach manages
MPTCP sub-streams to distribute priority packets based on
content awareness, as shown in Figure 4(d). This enhances
the delivery of VR content and ensures a smoother and more
reliable user experience.

Furthermore, the rover positioning system [29] offers a
novel approach for improving the overall effect of the VR
experience, as depicted in Figure 5(a). By utilizing a bird’s
eye view of the VR world and employing the MCL algorithm,
monocular visual-inertial odometry, and Siamese neural
networks [30], the system predicts the rover’s position by
adding GAN-enhanced images to the VR image dataset, and
the rover’s performance in the VR environment is enhanced.

To enhance the details of the scene contents, Feng Gao et al.
applied convolutional neural networks in Al technologies
to extract and reconstruct a virtual field point cloud [31],
as shown in Figure 5(b). They established a coordinate
matching relationship between a computer-generated virtual
scene and actual reality and improved the scene’s details
using techniques such as the Gouraud shading algorithm
and texture mapping. This approach reduces distortion and
enhances user satisfaction by providing a more visually
appealing and realistic virtual environment.

To address the challenge of sustainable scene style
transformation in real-time, Lei Yang et al. proposed methods
to increase the frame rate of real-time rendering applications
and applied them to the Barracuda style transformation in
VR [32], as shown in Figure 5(c). By optimizing the rendering
process, they enabled smooth and consistent scene style
transformations, improving the overall visual quality and
coherence of the VR experience.

These approaches focus on enhancing the visual quality,
delivery efficiency, and overall immersion in metaverse
content, leading to more engaging and satisfying user
experiences.

lll. SIMULATED BIOLOGY

Simulating real-life situations through the generation of
virtual content has emerged as a valuable approach in the bio-
logical sciences. It offers researchers the opportunity to study
and analyze complex biological systems, providing insights
that may be challenging to obtain through direct observation
alone. In recent years, there has been a growing focus on
utilizing Al-generated content to simulate the social attributes
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FIGURE 3. Classification-based directed generation. (a) Real-time method processing pipeline for creating VR environments based on reality [18].

(b) Overview of the FoodChangeLens holographic system [19]. (c) Overview of the system: Motion-captured animations of individual football players are
utilized to create virtual agents (football players), and data taken from recorded football matches is used to create replay events in the VR

simulation [23]. (d) The input MIDI file comprises time sequences for the various keys, as seen in the top left image. Bottom left image: Our technology
creates a 3D performance animation for both hands based on the MIDI file. The figure on the right shows how the performance animation is displayed in

the HMD and is in tune with a real piano, giving the user real-time visual cues and feedback [24].

and habits of various organisms, including fish, flocks, and
birds, within biological ecological environments [33], [34].

This section discusses the application of AI content
generation in simulated biology, covering three crucial
aspects: individual life trait simulation, group behavior
simulation, and stress feedback learning. By exploring these
areas, researchers aim to gain a deeper understanding of
the behavior and dynamics of biological systems in virtual
environments.

A. INDIVIDUAL LIFE TRAIT SIMULATION

The simulation of individual organisms is crucial for
simulating living organisms and for enabling the exploration
of ecological dynamics. Simulating the characteristics of
different organisms requires the application of fundamental
principles. For instance, the simulation of an artificial fish
captures the essence of simulating individual organisms.
To achieve a more realistic simulation of individual fish lives,
researchers have proposed various methods.

Xian-Yu et al. developed a multi-sensory system model
that incorporates vision, touch, taste, and smell to mimic
the routines and behavior of fish in the wild, thereby
enhancing the simulation of the physiological characteristics
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and individual responses of artificial fish [35], as shown in
Figure 6(b). To simulate diverse variations in the process of
fish egg division, Xu and Zhou suggested a fish egg model
based on the artificial life approach, which incorporates
life dynamics, artificial life methodology, Al, and genetic
algorithms [36], as shown in Figure 6(a).

However, purely artificial life approaches have inherent
time limitations. To address this, Liu proposed the integration
of an evolutionary model into the artificial fish reproduction
process, enabling the gradual enrichment of the vital signs
of fish over time through an overall evolutionary perfor-
mance [37], as shown in Figure 6(c). This approach has the
potential to generate more realistic simulations of individual
organisms by modeling gradual changes in their life traits
over time.

The limitations of these approaches are not explicitly
mentioned, but the integration of an evolutionary model to
overcome time limitations suggests that the time-consuming
nature of simulating individual organisms is a challenge.
Additionally, although these approaches may improve the
simulation of individual organisms, there may still be
limitations in accurately simulating complex ecological
dynamics. Further research should focus on addressing these
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FIGURE 4. Content construction and improvement. (a) Al-based behavior has been included in the game engine’s event system, as seen in the top side
figure. View of the system architecture in the bottom figure. The system is built on a gaming engine that has been converted to an immersive display
similar to CAV [25]. (b) Screenshot of the in-depth exploring Interface for DeepDive. An A* ambush herd’s course for a specific herd size is shown on a
map in the upper left corner. Based on the existing rule set, the red circles on the map represent potential site locations. The wheels below show the
algorithm’s herd priority as determined by the user (N = nutrition; R = risk; E = movement force; and T = time to target) [26]. (c) The dashboard (a-e) of
the EPI system is immersive, while the sceneries (f-m) depict real-world surroundings [27]. (d) The fundamental design of QVMI4VR [28].

limitations to enhance the accuracy of ecological simulations
and promote a better understanding of ecological systems.

B. GROUP BEHAVIOR SIMULATION

Simulating group behavior is a critical aspect in creating
a comprehensive representation of ecological dynamics,
and the integration of Al technologies has revolutionized
the vividness of these simulations in VR environments.
Researchers have proposed various innovative approaches
to tackle the challenges associated with simulating group
behavior.

One notable approach is the use of individual-based cel-
lular automata (CA) models [38] to refine the understanding
of schooling behavior and guide the construction of natural
collective behavior by specifying individual-level rules. This
method not only provides a realistic representation of group
dynamics but also allows for the exploration of emergent
properties that arise from interactions between individuals.
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For instance, Mozaffari et al. introduced a machine learning
tracking technique that employs a Bezier curve method
to smooth the movement of fruit flies, resulting in more
natural and lifelike behavior. Additionally, logistic regression
classification was utilized to classify the mating state of the
fish based on video frames captured before training [39],
as shown in Figure 7(a). This innovative approach enhances
the realism of group behavior and enables a more accurate
representation of ecological systems.

Although holistic simulations are valuable, they often lack
ecological fluidity. To address this limitation, researchers
have proposed integrating external stimulus demands and
adaptive mechanisms into simulations of artificial life. Lints
developed a cluster scheduling algorithm that considers the
characteristics of both individuals and groups, allowing for
integrated judgment of artificial life and better adaptation
to environmental changes [40], as shown in Figure 7(b).
Moreover, the incorporation of artificial evolution in group
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simulation, as exemplified by the adjustment of boid
parameters during evolution [41], facilitates innovation in the
field of group intelligence. This innovative approach enables
the exploration of novel group behaviors and the emergence
of collective intelligence in simulated ecological systems.
To address the movement challenges and enhance the
realism of VR environments, researchers have proposed
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simulating crowd behavior while considering obstacle avoid-
ance. The walking areas of crowds can be determined using
an A* search algorithm, resulting in more natural movement
patterns [42], as shown in Figure 7(c). Moreover, the
coordination of group movements was achieved through the
application of a multi-intelligent distributed system model,
as proposed by Reynolds et al. [41]. This innovative approach
ensures that group behavior remains cohesive and avoids
chaotic movements, thereby enhancing the overall realism of
the simulation.

Furthermore, the influence of emotions on group behavior
was explored to add a layer of realism. Noronha et al.
introduced the impact of panic emotions, which modifies
the behavioral parameters of agents and influences their
decision-making processes, particularly regarding the search
for an ideal path within a crowd [43], as shown in Figure 7(d).
This innovative integration of emotional dynamics enhances
the believability of group behavior and contributes to a more
immersive simulation experience.

The application of Al technologies in group behavior
simulation within ecological contexts has resulted in notable
advancements, including enhanced realism, improved adapt-
ability, and incorporation of complex dynamics. These
innovations have expanded our understanding of collective
behavior in ecological systems and contributed to the
emergence of new insights and the development of intelligent
simulations. However, it is important to acknowledge that
there may still be limitations and challenges in accurately
representing the intricacies of real-world ecosystems. Scal-
ability, computational demands, and the ability to capture
the full complexity of ecological dynamics are potential
areas for further research and improvement. Addressing
these limitations can help refine the application of Al
in group behavior simulations, ultimately advancing our
understanding of ecological phenomena and enhancing the
effectiveness of intelligent simulations.

C. STRESS FEEDBACK LEARNING

Behavior in natural ecosystems is not static or confined
but responds dynamically to various stressors. To accurately
simulate ecological systems, it is crucial to incorporate stress
feedback learning, which enables organisms to adapt and
evolve in response to unknown situations, cooperative inter-
actions, competition, and other biological relationships. This
section explores innovative approaches to stress feedback
learning in the context of simulated biology.

In the realm of fish populations, the incorporation of a
simplified and evolving model of fishing gear can stim-
ulate sportive evolution through predation dynamics [44],
as depicted in Figure 8(a). This approach introduces selective
pressures that drive the adaptation and survival of fish popu-
lations, mimicking the real-world dynamics of predator-prey
relationships and environmental changes. By incorporating
such stress factors, the simulation becomes more realistic
and allows the observation of evolutionary responses within
a virtual ecosystem.
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Another approach to stress feedback learning involves
the incorporation of predator-prey relationships into self-
organizing adaptive schemes. Using reinforcement learning
techniques [45], a population of agents can learn and adapt
through trial-and-error exploration by adopting different
behavioral traits when encountering similar agents and
predators to maximize rewards from the environment [46],
as shown in Figure 8(b). This innovative approach allows for
the emergence of complex behaviors and strategies within the
simulated population, providing insights into the dynamics
of predator-prey interactions and the evolution of adaptive
responses.
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Incorporating additional factors such as predators and
food sources further enhances the realism of the sim-
ulation. By applying reinforcement learning techniques
to a school of fish, a simulation model can train ML
agents using deep reinforcement learning algorithms [47],
as depicted in Figure 8(c). This approach enables fish to
learn and adapt their behaviors in response to changing
environmental conditions, predators, and food availability.
Through stress feedback learning, the simulated fish
population exhibited sophisticated and realistic responses,
closely mirroring the dynamics observed in natural
ecosystems.

76229



IEEE Access

J. Wang et al.: Intelligent Metaverse Scene Content Construction

These innovative applications of stress feedback learning
in simulated biology offer valuable insights into the adaptive
capabilities of organisms and their response to changing
environments. These simulations capture the dynamics of
biological systems by simulating stressors and employing
learning algorithms, thereby enabling the study of emer-
gent properties and evolutionary processes. This approach
provides researchers with a deeper understanding of the
complex interactions and behaviors exhibited by organisms
when exposed to different stressors. Nevertheless, it is crucial
to acknowledge the limitations of these methods. Challenges
may include accurately representing the full complexity
of real biological systems, scaling simulations to larger
and more intricate scenarios, and ensuring the realism and
accuracy of stress feedback mechanisms. Overcoming these
limitations will pave the way for further advancements in sim-
ulated biology and will contribute to a more comprehensive
understanding of the natural world.

IV. PERSONALIZED CONTENTS

The quality of artificially intelligent content generation in
a VR environment is determined by both the generation
capabilities of the system and the input it receives. When
generating intelligent content, it is crucial to ensure that
the generated content meets the needs of real users, as this
directly affects the VR experience and user satisfaction.
Therefore, it is essential to improve the outcome of generated
content based on the specific needs of individual users.

To address this challenge, several solutions for personal-
ized content generation have been developed. These solutions
can be broadly categorized into two groups: those that capture
sentiment data for analytical feedback to make the content
more personalized, and those that generate content adjusted
by non-emotional data feedback from within VR to cater to
the user’s preferences.

The first category focuses on capturing sentiment data,
such as user emotions and preferences, to provide analytical
feedback. By analyzing this feedback, the system can gain
insight into the user’s emotional state and tailor the generated
content accordingly. This approach ensures that the content
resonates with the user’s emotions, thereby creating a more
personalized and engaging VR experience.

The second category involves generating content that is
adjusted based on non-emotional data feedback obtained
from within the VR environment. This feedback summarizes
the user’s tendencies and preferences, allowing the system
to generate content that aligns with the user’s specific
needs. By adapting the content to the user’s preferences,
this approach enhances user satisfaction and the overall
enjoyment of the VR experience.

By incorporating personalized content-generation solu-
tions, VR environments can provide users with tailored expe-
riences that cater to their individual needs and preferences.
This not only enhances user satisfaction but also maximizes
the potential of artificially intelligent content generation in
delivering impactful and engaging VR experiences.
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A. EMOTIONAL CONTENT PERSONALIZATION

Emotions play a crucial role in subjectively evaluating the
quality of immersive content. Incorporating personalized
sentiment as a target of intelligent learning can effectively
fine-tune the results of online content generation, ensuring
that the generated content is highly relevant to the user’s
emotional state. This approach enhances the overall user
experience by delivering emotionally engaging and tailored
content.

An example of personalized VR content is VRelax,
a personalized VR relaxation therapy approach proposed
by Heyse et al. [48], as shown in Figure 9(a). VRelax
utilizes semantic reasoning and a decision-making approach
based on multi-armed bandit (MAB) reinforcement learning.
It leverages static and dynamic personality data as inputs to
select environmental decisions adaptively. By personalizing
the virtual environment and therapy experience, VRelax
improves relaxation therapy outcomes in individuals with
mental health issues.

The ISAM model [49] is another approach that enhances
emotional content personalization. This model utilizes ten
practice images from the International Affective Picture Sys-
tem (IAPs) and a collection of images from Google Images
to improve mood prediction based on the pleasure-arousal-
dominance (PAD) model [50], as shown in Figure 9(b).
By intelligently selecting pictures based on the PAD reaction
of the user, the ISAM model tailors the content to the
emotional state of the user, enhancing the emotional impact
of the VR experience.

Dingli and Bondin adopted a different approach by col-
lecting data through wearable devices and using adversarial
generative networks (GAN) to predict a user’s emotional
journey [51], as shown in Figure 9(c). This allows them to
link emotional states to specific events in the VR experience,
enabling the modeling of changes and game adaptations
based on the user’s emotional responses to factors such
as color and sound. This personalized approach enhances
emotional resonance and immersion in a VR environment.

By contrast, the PerAffect-lyVR system proposed by
Gupta focuses on training with response information and
leveraging situational and physiological cues from the user’s
interaction to detect emotional states [52], as shown in
Figure 9(d). By adapting to VR environments and difficulty
levels based on the user’s emotional state, PerAffect-lyVR
provides a highly personalized and emotionally engaging
experience.

By incorporating emotional content personalization tech-
niques, VR systems can offer tailored experiences that
align with user emotions and preferences. However, it is
important to address the ethical concerns associated with
the use of personal emotional data in virtual environments.
Despite these considerations, these approaches contribute
to enhanced emotional engagement, immersion, and overall
satisfaction, resulting in more impactful and meaningful
metaverse experiences for users. Advancements in intelligent
methods for recognizing human emotions [53] further fuel the
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potential of combining personalized content technology and
emotions, unlocking new possibilities in the field.

B. NON-EMOTIONAL CONTENT PERSONALIZATION

In addition to emotions, objective data generated from
VR content interactions can provide valuable insights into
personalized content generation. These more deterministic
data, allow for effective profiling of the user experience,
enabling the generation of personalized content based on
specific preferences and needs.

Kiourt et al. designed a personal virtual museum (PVM)
that incorporates dynamic systems and pan-institutional mod-
ular learning objects to facilitate collaboration, knowledge
modeling, and management [54], as shown in Figure 10(a).
Their approach utilizes tree search, reinforcement learning,
supervised learning, and a wide range of computational,
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audio, video, and image-based media. By leveraging struc-
tured external connections, the PVM enhances the con-
textual relevance of the virtual world, delivering dynamic,
enjoyable, and engaging experiences tailored to the user’s
needs.

Personalized game experiences can be achieved by adjust-
ing the difficulty level and utilizing personalized profiles
generated from each player’s Hyperseed [59]. Additionally,
customized categorization of feedback and real-time analysis
of game-level performance dynamics contribute to personal-
ized gameplay experiences [55], as shown in Figure 10(b).

VCoach [56] takes a similar approach by analyzing
objective user response states such as punching speed,
reaction time, and punching posture during exercise. These
data were compared to pre-collected data from professional
boxing coaches, enabling the system to generate adaptive and
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link between cognitive load and VR’s virtual assistants [52].

personalized boxing training routines in real-time, as shown
in Figure 10(c).

When using DTBVis [60] technology, experts can better
understand the similarities and differences between DTB and
the human brain by supporting iterative exploration at various
levels and granularities, along with automatic similarity
recommendation and high-dimensional exploration. This
allows them to customize the model and improve its
functionality.

User interaction data in VR supermarkets can be analyzed
using techniques such as Neural Collaborative Filtering
(NCF) to provide personalized recommendations [57],
as shown in Figure 10(d). By leveraging collaborative filter-
ing neural networks, the system can generate personalized
product recommendations based on invisible ratings derived
from user data.

Privacy considerations are essential in personalized con-
tent generation, and techniques like Convolutional Neural
Networks (CNNs) can be employed to ensure long-term
effectiveness while minimizing the amount of user data
required for training [58], as shown in Figure 10(e).
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By harnessing objective data from user interactions,
VR systems can deliver highly personalized content that
caters to individual preferences and needs. However, factors
such as the availability and quality of data, privacy concerns,
and the challenge of accurately capturing and interpreting
user interactions can affect the effectiveness of personal-
ized content delivery. Despite these limitations, leveraging
objective data in VR systems can significantly enhance
user engagement, immersion, and satisfaction by providing
tailored experiences that align with specific requirements and
objectives.

V. INTELLIGENT AGENTS

Scientists have developed intelligent agents that focus on
content generation to enhance the central and immersive
nature of content generation. Intelligent agents enable virtual
animation to take on the character of a main storyline,
whereas Al integration enhances the simulation, and the
adaptive nature of the intelligent agent avoids the frustration
of mechanical animation. Intelligent agents can be applied
in three main areas: those based on data training, those
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rotational angle of the elbow itself [58].

constructed from external knowledge systems, and those
trained to adapt to interactive data.

A. INTELLIGENT AGENTS TRAINED BASED ON DATA

In the realm of content generation, the data generated during
the development and evolution of VR content serve as a
valuable resource for training intelligent agents. Researchers
have leveraged the empirical data obtained from VR content
to enhance the intelligence of these agents. By allowing the
data to evolve in real time, the performance of intelligent
agents can progressively improve, resulting in more realistic
and sophisticated content generation.

One notable approach is the application of artificial neural
networks (ANN) for training intelligent agents. Paladin [61],
employed an ANN to control the agents’ behavior. The
predicted positions obtained from the neural networks are
evaluated for their reasonableness, allowing intelligent agents
to adjust their actions accordingly. This adaptive behav-
ior, combined with pre-programmed behaviors, enhances
the overall intelligence of the agents, as illustrated in
Figure 11(a).

Another instance involves the use of multilayer percep-
tron (MLP) neural networks in mastering fundamental tennis-
playing abilities [62]. By collecting essential information
from a simulated environment, intelligent agents are trained
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using MLP-based neural networks, enabling them to acquire
the necessary skills to play tennis proficiently, as shown in
Figure 11(b).

Furthermore, an RBF_LA learning algorithm was pro-
posed for tennis matches [63]. This algorithm incorpo-
rates different learning strategies under various conditions,
including no learning process, learning after a match, and
learning during a match. By adapting their strategies based
on real-time feedback, intelligent agents can improve their
performance in tennis matches, as depicted in Figure 11(c).

In the context of virtual-scene navigation, agents are
trained to learn and navigate diverse paths [64], as shown in
Figure 11(d). Through a reward-based training method, real-
time navigation systems enable agents to comprehend and
adapt to obstacles, path safety, traffic conditions, and other
relevant data, resulting in efficient and effective pathfinding.

Augmented learning techniques have also been employed
to train intelligent agents. For instance, Linqin Cai et al.
successfully trained agents to navigate through a maze
using reinforcement learning (RL) and a Pixy camera
sensor to detect and interact with different objects
in the environment [65]. This approach grants the
agents the freedom to choose optimal routes, fostering
adaptability and intelligence in their decision-making
processes.
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Content generation in VR environments can be signifi-
cantly enhanced by utilizing data-driven training method-
ologies and intelligent agents. However, the integration
of real-time data and adaptive mechanisms may introduce
complexities in terms of computational resources and system
responsiveness. Despite these limitations, the utilization of
data-driven training methodologies and intelligent agents
holds great potential for improving content generation
and creating more immersive experiences in metaverse
environments.

B. INTELLIGENT AGENTS CONSTRUCTED FROM
EXTERNAL KNOWLEDGE SYSTEMS

To ensure compatibility between intelligent agents and the
logic of reality, external knowledge systems can be leveraged
to enhance an agent’s understanding of logic. By integrating a
real-world logic system, VR simulations can be more closely
aligned with real-world principles. This approach can be
realized through the construction of intelligent agents using
external knowledge systems.

One such approach is the FuSM (Fuzzy State Machine)
[66]. By simulating emotions and controlling the behav-
ior of characters affected by these emotions, the FuSM
approach creates high-performance Al emotions and Al
systems, as illustrated in Figure 12(a). This technol-
ogy allows for the simultaneous of multiple emotions,
adding an element of unpredictability that enhances the
credibility of virtual characters and robots. FuSM effec-
tively addresses the combinatorial explosion of DFSM
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(Deterministic Finite State Machine) states while offering
significant expressiveness.

In the case of the Intelligent Virtual Human Animation
System (IVHAS) [67], which is based on the Semantic Web,
virtual scenes are defined with rich semantic information.
This enables computers to comprehend the significance of
virtual scenes and perform automated analytical processing,
as depicted in Figure 12(b). Semantic virtual environments
incorporate various aspects of human behavior, perception,
and behavioral planning in the real world, providing rich
semantic information to objects within virtual scenarios.

Similarly, the intelligent teaching module of the Smart
Physics Lab [12] presents its domain knowledge externally to
the Intelligent VR Teaching System (IVRTS) [12], as shown
in Figure 12(c). Utilizing external domain knowledge, the
teaching module enhances its capabilities and provides
a more comprehensive and intelligent virtual teaching
experience.

By integrating external knowledge systems, intelligent
agents in VR environments can align their logic and behavior
with real-world principles, resulting in more realistic and
contextually relevant interactions. Nevertheless, challenges
may arise in effectively integrating and updating external
knowledge sources, ensuring the accuracy and relevance of
the information utilized by agents, and addressing potential
biases or limitations in the knowledge systems themselves.
Nonetheless, the integration of external knowledge systems
is expected to improve the intelligence and authenticity of
intelligent agents in a metaverse environment.
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C. INTELLIGENT AGENTS TRAINED FOR INTERACTION
DATA ADAPTATION

In addition to the data generated during the development
of VR scene content, real-world data generated by users
through their interactions also play a crucial role. Researchers
can collect and leverage relevant data to make intelligent
agents more contextually relevant to users’ situations, thereby
enhancing the overall immersive experience. There are
three primary situations in which interaction data can be
collected to train intelligent agents: simulating realistic
images, adapting agent behavior based on interaction actions,
and adapting agent collaboration in task processes.

1) SIMULATING REALISTIC IMAGES
To facilitate a more immersive experience, operators can
simulate an image of a real person by leveraging the image
features of an actual individual. In the case of a virtual
companion dining system designed for the elderly [68],
researchers have implemented a technique that involves
segmenting the RGB images of a real person’s area using
depth information. By utilizing this depth information, they
can restore the point cloud of a person’s area and rebuild
the grid of virtual images. Furthermore, they mapped the
segmented color information onto the virtual body based
on texture-mapping rules, as depicted in Figure 13(a). This
approach satisfies the emotional need for enhanced realism
in the virtual companion, resulting in a more authentic and
engaging user experience.

In the context of avatar creation, researchers such as
Miao-Chi Liu Chang et al. explored an alternative approach
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to obtaining pose data without relying on skeletal movement
tracking. Instead, they trained a posture classifier using
Google’s experimental AI API, *Teachable Machine’ [69].
By leveraging user-recognized poses, they enable the inter-
active creation of avatars in a virtual space, as illustrated in
Figure 13(b). This methodology provides improved outcomes
and a more efficient user experience.

Simulating real images using real-world data is an effective
technique that can enhance immersion in a metaverse
environment and meet users’ emotional needs to enhance
realism. However, there are challenges in obtaining and
processing large-scale and diverse real-world data to ensure
its accuracy and representativeness. The fidelity of an analog
image may be constrained by the quality and resolution of
the input data. Nevertheless, incorporating data into image
simulation methods has a positive effect.

2) INTERACTION ACTIONS TO ADAPT AGENT CHANGES

To cater to different operator categories, it is important to
adapt the agent’s approach based on the user’s interaction
actions. Recognizing this, researchers have devised methods
to evaluate users during their interactions and accordingly
select the most appropriate agent approach.

In the context of home rehabilitation games, Elor and
Kurniawan developed an upper limb exercise component that
assists users in learning and guiding their exercise move-
ments [70]. To personalize the rehabilitation strategy and
adapt to the exercise difficulty and assistance, they employed
a technique called generative imitation learning (GAIL)
and proximal strategy optimization (PPO) with the use of
virtual butterflies, as depicted in Figure 13(c). By leveraging
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of people and agents [70]. (d) The ‘Ant-Man Vision’ experience’s method [71].

these approaches, exercise difficulty and assistance can be
dynamically adjusted based on user performance, ensuring a
personalized rehabilitation experience.

In the case of museum anthropomorphic vision [71],
researchers took a different approach to process user inter-
actions, as shown in Figure 13(d). They trained a behavioral
model using Long Short-Term Memory (LSTM) and utilized
cameras and 3D skeleton position acquisition to detect user
behavior in real space. Based on this information, they
modified the state changes of the intelligent agent, Ant-Man,
in the museum. This adaptive approach enables the agent to
respond to user actions and to create a more immersive and
interactive museum experience.

By incorporating interaction actions to adapt to agent
changes, researchers can tailor the agent’s behavior and
responses to individual users, creating a more personalized
and engaging user-agent interaction.

3) INTERACTION PROCESSES TO ADAPT TO TASK
COLLABORATION

The interaction processes not only fine-tune the real-time
behavior of the agent but also address the issue of task
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collaboration, adding unpredictability and interest to the
VR experience. Various approaches have been employed to
address this challenge and to enhance task collaboration in
virtual environments.

For instance, in the case of Paladin, the challenge of work
distribution for cooperation was addressed by utilizing ESP
neural networks [72], [76], as depicted in Figure 14(a). This
approach allows efficient and balanced task allocation among
cooperative agents, ensuring smooth collaboration.

In the context of the IVTS [73], a declarative form based
on Petri Nets (PNs) [77] was utilized to describe training
task planning. Researchers have developed an algorithm to
create Task Planning Petri Nets (TP-PNets) and established a
Hierarchical Coloured Petri Net (HCPN) model to evaluate
agent task planning behavior, as shown in Figure 14(b).
These measures provided dependability and flexibility in
task planning, allowing agents to adapt their collabora-
tion strategies based on the specific requirements of the
tasks.

With the increase in the complexity of VR content,
researchers have focused on creating sophisticated virtual
internal agent models to facilitate intelligent and engaging
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Wi}., while the links from hidden neuron j to output neuron k are indicated by Wijz' [72]. (b) The IVTS suggested architectural [73]. (c) An intelligent virtual
training system’s framework [74]. (d) Using Q-learning, the target location generator architecture [75].

VR systems. A highly competent avatar model was developed
in the field of mine safety instruction [74], as illustrated in
Figure 14(c). This model incorporates perceptual, behavioral,
mental state, and cognitive modules, enabling the avatar to
execute training orders, exhibit the desired physical abilities,
and mediate interactions between real-world and virtual
contexts.

In the Flying with Friends motor disorder rehabilitation
system [75], the Deep Q-Networks (DQN) approach was
employed to tackle complex tasks, as shown in Figure 14(d).
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This approach has proven to be an effective choice for
improving task collaboration and achieving better rehabili-
tation outcomes.

While accurately modeling and predicting user intentions
and preferences, as well as ensuring seamless coordination
and synchronization among multiple agents, can be complex,
especially in dynamic and unpredictable environments,
researchers aim to enhance the collaborative behavior of
intelligent agents in virtual environments by incorporating
interaction processes. This approach aims to create a

76237



IEEE Access

J. Wang et al.: Intelligent Metaverse Scene Content Construction

dynamic, engaging, and realistic user experience. Despite
these challenges, there is optimism that the combination
of interaction processes and task collaboration can lead
to significant improvements in the collaborative behavior
of intelligent agents, offering users a more immersive and
satisfying metaverse environment.

VI. DISCUSSION AND CONCLUSION

This paper introduced innovative aspects in the field of
intelligent visual content generation, providing a com-
prehensive overview of Al methods in scene content
generation, simulated biology, personalized content, and
intelligent agents. The integration of Al algorithms with
real-world data and external knowledge systems is high-
lighted, enabling the creation of authentic and contex-
tually rich virtual scenarios. This study emphasizes the
importance of interdisciplinary collaboration and considers
human cognitive and emotional factors. Key limitations
and challenges were identified, inspiring future research
on creative content generation, ethics, and computational
efficiency. Overall, this study enriches the knowledge and
drives the development of immersive visual content in virtual
environments.

Intelligent visual-content generation has significantly
impacted content creation and user experience by enabling
the creation of visually stunning scenes, personalized content,
and adaptive intelligent agents in virtual environments. In the
following sections, we summarize and discuss three potential
research trends in the construction of intelligent metaverse
scene content, namely the improvement of personalized
methods and the integration of brain-computer interfaces,
the integration of Al with real-world data and external
knowledge systems, and the importance of interdisciplinary
collaboration.

A. POTENTIAL TREND DISCUSSION: IMPROVEMENT OF
PERSONALIZED METHODS AND INTEGRATION OF
BRAIN-COMPUTER INTERFACES

The demand for personalized content tailored to individual
user preferences and emotions is increasing. With the con-
tinuous improvement Al algorithms for recognizing human
emotions, methods such as speech emotion recognition [78],
physiological signal emotion recognition [79], facial image
emotion recognition [80], text mixing analysis [81], cultural
subdivision and overall analysis [82] have significantly
enhanced the accuracy of emotion recognition. The advance-
ment of formulaic feedback theory [83], [84] has also
contributed to more perfect adaptive emotion generation in
metaverse scenes. Additionally, the rapid development of
brain-computer interface technology [85] provides the possi-
bility for real-time emotional feedback, ensuring the real-time
and accuracy of adaptive changes in scenes. Integrating
intelligent analysis of electroencephalogram (EEG) data [86]
can further enhance the efficiency and diversity of content
generation, resulting in more realistic and personalized
metaverse content.
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B. POTENTIAL TREND DISCUSSION: INTEGRATION OF Al
WITH REAL-WORLD DATA AND EXTERNAL KNOWLEDGE
SYSTEMS

In the future, a deeper analysis of data relationships [87],
more refined data collection and simulation [88], extraction
and growth of anthropomorphic knowledge [89], and the
cross-fusion analysis of knowledge data obtained from
diverse real-world sources [90] will provide new possibilities
for the intelligent generation of three-dimensional simulation
metaverse scenes. The integration of Al algorithms with
real-world data and external information systems will con-
tinue to improve, enabling the creation of more realistic and
contextually rich virtual scenes. This integration will lead to
the development of smarter and more creative agents, thereby
enhancing the overall immersive experience for users.

C. POTENTIAL TREND DISCUSSION: INTERDISCIPLINARY
COLLABORATION

Collaboration between different disciplines, such as psy-
chology, neuroscience, and computer science, will play a
crucial role in enhancing our understanding of the cognitive
and emotional impact of intelligent metaverse scene content.
The demand for intelligent visual content generation in
scientific fields such as education [91], medicine [92],
chemistry [93], physics [94], and geology [95] is expected
to increase. Intelligent content generation can help beginners
in various disciplines gain a fast, effective, and interesting
understanding, while providing experts with a more intuitive,
rich, and immersive experience. In humanities fields, such as
education and art, content sensitivity outweighs accuracy. For
example, cross-modal metaverse scene generation, including
direct text generation [96], will find popularity in artistic
fields like ancient poetry and artistic styles. In the scientific
and engineering fields, accuracy takes precedence over recep-
tivity. For instance, intelligent construction of biologically
variable metaverse models based on medical knowledge
services [97] may become a direction of interest.

In conclusion, the generation of intelligent metaverse
scene content has transformed content creation and the
user experience. Continued advancements in Al algorithms
and interdisciplinary collaborations hold promise for further
improvement. This survey aims to stimulate more ideas about
scene content construction through the use of intelligent
metaverse immersive technology.
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