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ABSTRACT In this research, we present an innovative Quadratic Residual Multiplicative Filter Neural
Network (QRMFNN) to effectively learn extremely complex sensor signals as a low-dimensional regression
problem. Based on this novel neural network model, we introduce two enhanced architectures, namely
FourierQResNet and GaborQResNet. These networks integrate the benefits of quadratic residual neural
networks, multiplicative filter neural networks, and several filters in signal processing to effectively capture
complex signal patterns, thereby addressing issues associated with convergence speed, precision, and
spectral bias. These architectures indicate effectiveness in reducing spectral bias, thereby improving the
accuracy of signal approximation. After conducting comprehensive experiments on ten very complex test
signals from diverse application domains, the proposed architectures have demonstrated superior ability in
approximating intricate sensor signals and mitigating spectral bias effectively. The numerical results of the
experiments reveal that FourierQResNet and GaborQResNet exhibit excellent performance compared to
other existing neural network architectures and models in accurately estimating complicated sensor signals,
with admiringly small errors. In addition, the findings emphasize the importance of mitigating spectral bias
in order to achieve reliable learning from sensor data. The implications of these results are significant in
various domains that require precise and reliable sensor data analysis, including healthcare, environmental
monitoring, aviation, IoT applications, and industrial automation. This research significantly advances the
field of sensor signal approximation and opens new avenues for enhancing data interpretation reliability and
accuracy in complex signal environments.

INDEX TERMS Multiplicative filter neural networks, quadratic residual neural networks, spectral bias
frequency principle, regression, implicit neural representations, neural networks, machine learning, deep
learning.

I. INTRODUCTION
The significance of complex sensor signals is paramount in
diverse fields such as healthcare, environmental surveillance,
and industrial automation. Neural networks are universal
function approximators that represent several types of signal
function [1]. Precise estimation and examination of these
signals present notable difficulties owing to their complex
patterns, vulnerability to noise interference, and spectral
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partiality [2]. The utilization of neural network (NN) mod-
eling has surfaced as a promising methodology for the
regression of sensor signals [3]. This approach has the capa-
bility to apprehend intricate relationships and provide precise
prognostication. The task of approximating complex sensor
signals is a formidable undertaking owing to their intri-
cate patterns and the existence of noise [4]. Conventional
techniques frequently encounter difficulties in capturing fun-
damental frameworks and precisely depicting the signal
dynamics. The utilization of neural networks has exhib-
ited exceptional achievements in diverse fields, capitalizing
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on their ability to acquire intricate patterns from extensive
datasets [5]. In the domain of sensor signal approximation,
the efficacy of neural networks may be substantially dimin-
ished by the presence of noise and spectral biases [6].

The application of neural networks in sensor signal
representation problems has been extensively discovered,
showcasing their effectiveness across diverse domains [7].
Neural network models have been utilized in the healthcare
sector [8], specifically for the analysis of electrocardiogram
(ECG) signals in the diagnosis of heart disease, as demon-
strated in [9]. The utilization of neural networks in predicting
air quality based on sensor readings has been observed in
environmental monitoring [10]. In the realm of industrial
automation, the utilization of neural network models has
been deemed essential for the optimization of manufacturing
processes through the analysis of sensor data [11]. The afore-
mentioned instances underscore the adaptability of neural
network modeling in the context of sensor-based applica-
tions [12]. The efficacy of neural networks in regression tasks
has been demonstrated, as they have the ability to provide
precise predictions for a range of problems. Neural networks
have demonstrated successful applications in the regression
of sensor signals. In [13], the authors introduced a deep neural
network framework for regression analysis of sensor data
in industrial systems. Their approach was found to outper-
form conventional techniques. In [14], researchers employed
neural networks to estimate soil moisture levels using sen-
sor measurements, exhibiting enhanced precision compared
to conventional methodologies. The aforementioned studies
highlight the capability of neural networks to perform tasks
related to regression.

Polynomial neural networks [15] provide a versatile
methodology for representing the intricate associations
among input signals and output forecasts [16]. Numerous
investigations have been conducted to examine the utilization
of polynomial neural networks for the purpose of address-
ing regression issues [17]. In [18], the authors introduced a
polynomial neural network model to predict the temperature
using sensor data, which resulted in a notable level of preci-
sion in forecasting. Researchers employed polynomial neural
networks to forecast energy consumption trends in intelligent
buildings based on sensor data [19]. The aforementioned
instances serve as evidence of the effectiveness of polyno-
mial neural networks when utilized in regression scenarios
[15]. As a special case of polynomial neural networks, the
utilization of quadratic neural networks presents a robust
structure for the acquisition of nonlinear connections and
interactions within sensor signals and also proves that they
are universal function approximators [20]. Quadratic neural
networks have been utilized by researchers in the context
of regression problems, yielding encouraging results [21].
In [22], the authors showed that quadratic neurons could be
employed as a means of simulating imprecise bearing data
and extracting attentional information from it and showed
that the presented model possesses inherent interpretability,

thereby facilitating efficacious and comprehensible diagnosis
of bearing faults. Several studies have underscored the bene-
fits of utilizing quadratic neural networks for sensor signal
regression [23], [24]. The utilization of quadratic residual
neural networks has surfaced as a propitious methodology for
augmenting the representational capacity of neural networks
in the context of regression assignments. In [25], researchers
suggested Quadratic Residual Networks (QRes), which are a
new type of neural network with high efficiency, convergence
speed, and accuracy. They showed that these networks can be
used in a broader range of ML applications owing to their
ability to learn higher frequencies and greater nonlinearity
than deep neural networks. In [26], a new form of quadratic
deep neural network (QDNN) was proposed as a quadratic
neuron design with theoretical effectiveness and efficiency
analysis. Extensive experiments on multiple learning tasks
demonstrated their superiority compared to first-order NNs.
They also showed that QDNNs have significant potential
for learning tasks, such as object detection, segmentation,
and position recognition, which can improve performance
by focusing on important objects while ignoring unimportant
backgrounds.

Coordinate-based networks (CBNs) such as Multiplica-
tive Filter Networks (MFNs) [27], Band-limited Coordinate
Networks (BACON) [28], and Residual Multiplicative Filter
Networks (RMFN) [29] provide a degree of control over
the frequency spectrum employed for the representation of
continuous signals. Multiplicative neural networks provide a
distinct approach to sensor-signal representation and mod-
eling by integrating multiplicative interactions among input
features. These networks have demonstrated potential for
problems related to regression [27]. Multiplicative filter net-
works circumvent the traditional approach of compositional
depth and instead employ concurrent multiplication of sinu-
soidal or Gabor wavelet basis functions that are applied to
the input. The aforementioned representation possesses a
significant benefit in that it enables comprehensive obser-
vation of the complete function as a function with a linear
approximator [30] across a vast number of Fourier or Gabor
basis functions [31]. Notwithstanding their lack of sophis-
tication, multiplicative filter networks demonstrate superior
or comparable performance to more advanced methods such
as, Fourier feature networks [32] with ReLU activation func-
tions or sinusoidal activation networks [33], in the domains
previously mentioned. BACON [28] is a coordinate-based
MFN utilized to enhance the interpretability and scalability
of coordinate networks. The authors proposed a method in
which the intermediate layers of the network can be analyzed
and controlled to enable the manipulation of the spectral
bandwidth, thereby facilitating the representation of signals
at multiple scales. The system also generates intermediate
outputs that facilitate the enhancement of inference times
through adaptive frequency evaluation. Their findings indi-
cated that BACON exhibits superior performance compared
to other single-scale coordinate networks in the domains of
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multi-scale image fitting, neural rendering, and 3D scene
representation. In [29], researchers presented a study, RMFN,
which introduced a novel coordinate network structure and
instructional strategy that facilitates optimization from a gen-
eral to a specific level while allowing for precise regulation
of the frequency support of acquired reconstructions. The
incorporation of skip connections and a unique initializa-
tion scheme are two pivotal advancements that enable the
regulation of the model frequency spectrum during each
optimization phase. By utilizing skip connections and a uni-
form initialization scheme, the suggested network was able
to guarantee that the lower levels of the network captured
broader scales of the signal. In another study, The Wavelet
Implicit Neural Representation (WIRE) [34] was introduced
and defined as a novel and precise Implicit Neural Repre-
sentation (INR) that employs a continuous complex Gabor
wavelet activation function, thereby enhancing its resilience
and dependability. The model exhibits greater representation
capacity, attains superior accuracy with increased speed, and
possesses robust inductive biases that render it highly suit-
able for addressing complex inverse problems. Consequently,
it has become the preferred solution for representing signals
and resolving inverse problems in the field of INR.

The term ‘‘spectral bias’’ pertains to the tendency of
neural networks to display a predilection towards particular
frequency components or patterns in the input signals [6].
The comprehension and reduction of spectral bias are of
the utmost importance in achieving precise estimation of
intricate sensor signals [35]. Numerous investigations have
been conducted on the issue of spectral bias [36] in various
types of neural networks, such as multiplicative [37], poly-
nomial [38], and quadratic (also quadratic residual) neural
networks [39]. In [40], researchers conducted an analysis of
the spectral bias present in Coordinate-based MLPs using
a novel model of training dynamics. Their results showed
that after a low-frequency representation was created, the
high-frequency components of the signal were learned, with
the degree of spectral bias dependent on how the network
allocated inputs to activation zones by using these CBNs.
Another finding is that positional encoding has the potential
to improve expressiveness and hasten convergence to high-
frequency components. In [41], Their study measured the
influences of the spectral behavior of image classification
tasks, helping to understand why deep models generalize
effectively. Another research [42] proposed two approaches
to quantify spectral bias in current image classification neural
networks and examined how training decisions affect learned
frequencies. Their experimental results indicated that the
proposed approach performed well over iterations with a
controlled spectral bias and outperformed existing denoising,
deblocking, inpainting, super-resolution, and detail enhance-
ment methods. In another work [43], the spectral bias was
explained using the ReLU neural network spectral bias,
and they proposed that replacing the ReLU activation func-
tion with a piecewise linear B-spline, such as the Hat

function, the Hat activation function significantly enhanced
image classification generalization accuracy. Several studies
have proposed using adaptive activation functions to reduce
spectral bias [44], [45], [46], [47]. In another study [48],
deep Kronecker NNs with rowdy adaptive activation func-
tions were proposed and tested as a function approximation
solution inference of partial differential equations using
physics-informed neural networks. In [49], a computable
depiction of Spectral Bias in neural networks was introduced.
In [35] and [50], researchers used Fourier analysis to find
an interesting way to explain why feed-forward deep learn-
ing works faster. According to their theoretical studies, the
impact of depth could be thought of naturally as a state
that changes the target function into a function with a lower
frequency; however, it could also be saturated. In [30], this
study demonstrated that the F-Principle holds true even when
using non-gradient-descent-based training for DNNs, such as
Powell’s method and Particle SwarmOptimization, neither of
which relies on gradient information for optimization.

Several studies have attempted o find a remedy for spectral
bias (F-Principle) and reduce its effects on NNs. In [51],
the study introduced a novel DNN architecture, namely
PhaseDNN, which exhibits consistent and broad conver-
gence in approximating high-frequency functions and wave
equation solutions. This approach leveraged the idea that
moderately sized DNNs were created and trained to address
specific high-frequency ranges. By utilizing phase shifts
in the frequency domain, it was possible to train each
DNN to approximate the higher frequency components of
a given function within a specific range while maintain-
ing a convergence rate similar to that of the low-frequency
range. Despite the method’s high level of accuracy, several
experiments have revealed that it is less efficient in fit-
ting broadband signals with smooth spectra [52]. Another
study [52] introduced a novel approach, namely the parallel
frequency function-deep neural network (PFF-DNN), which
leverages the frequency-domain analysis of broadband sig-
nals and the spectral bias characteristics of neural networks
to significantly enhance their efficiency. Extensive numerical
experiments yielded a significant enhancement in efficiency.
A recent study [53], introduced a novel approach called
coupled frequency predictor-corrector triangular deep neural
network (cFPCT-DNN) that demonstrates proficient conver-
gence in the estimation of high-frequency functions. Their
numerical findings exhibited the capacity of the cFPCT-DNN
to acquire knowledge of the functions and solutions of the
Helmholtz equations. This methodology enhanced the fre-
quency of the deep neural network (DNN) and effectively
augmented the learning capacity of the Corrector DNN.

After a thorough review of the existing literature, it was
observed that most neural networkmodels exhibit insufficient
learning capability, are very complex, and have computa-
tionally intensive operations. Most of the proposed methods
assume that the target signals are uniformly sampled in
real-world problems and seek solutions to the spectral bias
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problem using the classical Fourier transform. However, the
Fourier transform only provides accurate calculations when
the signals are uniformly sampled. This approach makes it
difficult for the proposed neural network models to provide
effective solutions and be used in real problems. Additionally,
it was noted that the phenomenon of spectral bias has yet to
be thoroughly investigated in novel studies on sensor signal
modeling. To the best of our knowledge, there is currently no
all-encompassing examination of regression-based modeling
for intricate sensor signals using multiplicative filter neural
networks. Additionally, there has been no thorough empirical
exploration of spectral bias concerning these models.

This study introduces two innovative Quadratic Residual
Multiplicative Filter Neural Networks, namely FourierQRes-
Net and GaborQResNet. The present study employed a
combination of quadratic residual neural networks, multi-
plicative filter networks, Fourier filters, and Gabor filters
to effectively approximate intricate sensor signals while
simultaneously examining their optimal spectral bias per-
formance. The utilization of Fourier filters allows networks
to effectively capture frequency components, whereas the
implementation of Gabor filters enhances the capacity of the
network to capture the local spatiotemporal patterns present
in the sensor signals. The objective is to overcome the diffi-
culties related to the estimation of intricate sensor signals and
proficiently manage the spectral bias through the integration
of these components.

The contributions of this study are twofold. First, we intro-
duce FourierQResNet and GaborQResNet as advanced meth-
ods for efficient approximation of complex sensor signals.
These networks offer improved accuracy compared with
traditional methods and existing neural network architec-
tures, enabling more reliable analysis of sensor data. Second,
we investigated the perfect spectral bias performance of these
networks, focusing on their ability to eliminate spectral bias
without any loss of signal information. Through rigorous
evaluation, we assessed their robustness in handling spectral
bias and demonstrated their effectiveness in real-world sce-
narios. The findings of this research have significant impli-
cations for various domains, including healthcaremonitoring,
environmental sensing, and industrial automation, where the
accurate and reliable analysis of sensor data is essential.
By addressing the challenges of convergence speed and
spectral bias, FourierQResNet and GaborQResNet open new
possibilities for improved signal approximation and enhance
the applicability of sensor data analysis in practical settings.

FourierQResNet and GaborQResNet play a role in enhanc-
ing the reliability and accuracy of data interpretation across
domains such as healthcare monitoring, environmental sens-
ing, and industrial automation. These networks address
challenges encountered in sensor data analysis, such as con-
vergence speed and spectral bias. By incorporating filters like
Fourier and Gabor filters, FourierQResNet and GaborQRes-
Net effectively capture patterns in signals and mitigate
the impact of spectral bias. For instance, in healthcare
monitoring FourierQResNet and GaborQResNet can be

utilized to analyze physiological sensor data like electro-
cardiograms (ECG) or electroencephalograms (EEG). These
networks excel in extracting frequency components and iden-
tifying patterns in the data, thereby assisting in the diagnosis
of abnormalities or neurological disorders. In the realm of
sense, FourierQResNet and GaborQResNet empower the
analysis of sensor data related to air quality, water qual-
ity, or weather conditions. These networks are capable of
detecting patterns or textures that indicate pollution levels
identifying anomalies in water samples, or accurately predict-
ing weather patterns. Moreover, in the field of automation,
FourierQResNet and GaborQResNet offer insights into sen-
sor data for tasks like predictive maintenance, fault detection,
or process optimization. These networks possess the capa-
bility to detect changes or anomalies in sensor readings,
thereby aiding in identifying equipment failures or opti-
mizing manufacturing processes. Utilizing the potentials of
FourierQResNet and GaborQResNet allows for a precise
and dependable analysis of sensor data. These networks can
improve the understanding of data patterns. Facilitate better
decision-making in domains that heavily rely on accurate
analysis of sensor data.

This paper is organized as follows: Section II provides
a comprehensive review of neural network modeling of
sensors and the learning of sensor signals for regression-
related problems, highlighting various architectures and their
applications, and focuses on polynomial neural networks,
quadratic neural networks, quadratic residual neural net-
works, and multiplicative neural networks. We present the
proposed architectures, FourierQResNet and GaborQResNet,
and the preliminaries for the methods and models used in
this study are briefly explained in this section. The studies
conducted to verify our research hypotheses are described
in Section III. The experimental setup, dataset, measurement
criteria, and training methods are described. In addition,
it covers precise design decisions and parameter values for
GaborQResNet and FourierQResNet. Section IV, the results
of the experiments are presented and analyzed. The perfor-
mance of FourierQResNet andGaborQResNet was compared
with that of traditional methods and existing neural network
architectures in terms of approximation accuracy for complex
sensor signals and spectral bias. The results of the experi-
ments are discussed in detail, highlighting the strengths and
limitations of the proposed architectures. Finally, Section V
concludes the paper by summarizing the contributions of
this study. It revisits the research hypotheses and offers con-
cluding remarks regarding the efficacy of FourierQResNet
and GaborQResNet in approximating complex sensor sig-
nals and addressing spectral bias. In addition, prospective
future directions and areas for further research in the field
of sensor-signal approximation are discussed.

This study seeks to advance the field of signal process-
ing by introducing novel neural network architectures and
analyzing their efficacy in approximating complex sensor
signals. To the best of our knowledge, this is the first
research that combines quadratic residual neural networks,
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multiplicative filter networks, Fourier filters, and Gabor
filters for the efficient approximation of complex sensor
signals and the investigation of their perfect spectral bias
performance.

II. MATERIALS AND METHODS
Recently, owing to the increasing prevalence of intricate sig-
nal approximation using deep neural networks, researchers
have directed their focus toward the spectral bias of neu-
ral networks. This issue arises when a neural network is
employed to fit the intricate sensor signals. Numerous math-
ematical computing issues entail resolving high-frequency
solutions within intricate domains, including but not limited
to dealing with high-frequency wave equations in non-
uniform media. These arise from phenomena such as the
propagation of electromagnetic waves in turbid media, rough
surface dispersion, seismic waves, and geophysical prob-
lems. The calculation challenges associated with discovering
effective solutions, particularly under arbitrary conditions,
are significant due to the extremely fluctuating nature of
the solutions. Although deep neural network-based tech-
niques may not yield numerical outcomes as precise as those
obtained through finite element methods, they offer the ben-
efit of straightforward implementation and circumvent the
significant expense of mesh generation while still providing
satisfactory accuracy for numerous engineering applications.
In order to enhance the proficiency of conventional deep
neural networks in acquiring knowledge of highly oscilla-
tory functions in physical spatial variables, we propose two
innovative deep neural network models that possess broad
learning capabilities to minimize errors in approximating all
frequencies of the intended function. This was achieved by
utilizing faster convergence of the neural networks at low
frequencies during the training process. The resolution of
this issue has emerged as a fundamental impediment to the
advancement of artificial intelligence technology.

Motivated by factors, the use of residual neural networks
(QResNets), in combination with multiplicative filter net-
works, Fourier filters, and Gabor filters, proves beneficial.
Firstly QResNets exhibit learning capacity and expressivity
compared to neural network architectures. They achieve this
by incorporating weight terms into their structure, enabling
them to model complex functions and enhance approxima-
tion performance. Additionally, integrating QResNets with
filter networks allows for the extraction of features through
interactions among input features. This unique approach to
signal representation and modeling leads to accuracy and
performance in regression tasks. Lastly, the incorporation of
Fourier filters and Gabor filters in the network architecture
facilitates the capture of components and local spatiotempo-
ral patterns, respectively. These filters enable the networks
to extract information from sensor data enhancing signal
representation accuracy. By combining QResNets with filter
networks, Fourier filters, and Gabor filters, this compre-
hensive network architecture offers improved approximation
performance and feature extraction capabilities. It efficiently

addresses the requirements of sensor data analysis with accu-
racy and efficiency.

In the following sections, we introduce two novel neural
networks to solve this problem.

A. PROBLEM DEFINITION
The prevalent use of deep networks is to approximate func-
tions [3] over inputs with high dimensions. However, recent
research has sparked a growing interest in utilizing neural
networks as function approximations [1] for complex func-
tions with low dimensions. These functions may include
expressing pictures as a function of pixel locations [54],
solving (partial) differential equations [45], describing signed
distance functions, or representing neural radiance fields. The
sensor signals [5]. However, these problems often require
neural networks with a high degree of representational power.
Moreover, spectral bias [6] is another problem that has a
negative impact on neural network training and prediction
performance [36], and the rate of convergence exhibited by
the neural network is associated with the frequency spectrum
of the signal that has been fitted, as noted in reference [6].
A quantitative analysis was conducted on the correlation
between the convergence speed and frequency of the fitted
signal [36]. The training time necessary to fit a signal using
a network exhibits exponential growth as the central fre-
quency of the component increases. The convergence speed
in network training is affected by spectral bias, resulting in
prolonged training times to fit high-frequency components in
sensor signals, which can be challenging to endure.

When the related literature is examined in detail, it is found
that the spectral bias can be caused by the different archi-
tectural components of neural networks [42], initialization
processes of neural networks [35], activation functions [43],
and frequency values contained in the signals [50]. Even
different optimization methods other than gradient-based
optimization can not help reduce the frequency bias [30].
In this research, to solve these problems, we proposed two
new neural networks based on multiplicative filter neural
networks and quadratic residual neural networks to obtain
much better learning capacity and less spectral bias than most
well-known neural networks.

In this research, we hypothesize the following:

• FourierQResNet and GaborQResNet will outperform
the traditional methods and existing neural network
architectures in terms of approximation accuracy for
complex sensor signals.

• The integration of quadratic residual neural networks
and multiplicative filter networks will significantly
enhance the feature extraction capabilities, leading to
improved approximation performance.

• The inclusion of Fourier filters and Gabor filters in
the network architecture will enable the networks to
effectively capture frequency components and local
spatiotemporal patterns, respectively, resulting in more
accurate signal representation.
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FIGURE 1. General neural network architecture.

By investigating these hypotheses, we aimed to demonstrate
the effectiveness of FourierQResNet and GaborQResNet in
efficiently approximating complex sensor signals and their
ability to handle spectral bias. The outcomes of this research
will contribute to the advancement of signal-processing tech-
niques and provide valuable insights for applications such as
healthcare monitoring, environmental sensing, and industrial
automation. The preliminaries of the methods and models
used in this study are briefly explained in the following
subsections.

B. MULTILAYER PERCEPTRON FEED FORWARD NEURAL
NETWORKS (MLP)
Deep neural networks can be utilized as universal approx-
imators for any nonlinear continuous function by using a
sufficient number of neurons [1], [4]. Hence, we employed
a DNN model to describe the nonlinear mapping between
the state and actions for an integrated guidance and control
policy.

Figure 1 shows the general layout of a DNN, which con-
sists of an input layer with an arbitrary number of features,
hidden layers stacked together, and an output layer. The
input-output mapping is achieved with sequential mathemat-
ical operations followed by nonlinear activation functions
using a finite number of free parameters called weights and
biases. The optimal combinations of these parameters are
optimized with gradient-based optimization methods.

Considering xl as an input vector to a specific layer l, then
the mathematical calculations performed can be expressed as
follows;

fl = σl(ω.xl + bl) (1)

In Equation 1,ωl ∈ RNl×Nl+1 are the weight matrices, and the
Nl,Nl+1 account for the number of neurons used in layers l
and l + 1 respectively. The bl ∈ RNl+1 denotes bias vector.

Lastly, the σl corresponds to the non-linear activation func-
tion used in the layer. There exist different kinds of functions
used in a DNN model in order to provide non-linearity. The
most common choices are Linear , Tanh, Relu, Gelu, and
Sigmoid . After defining the formulations for a specific layer,
the final prediction of the DNN model can be constructed,
as given in Equation 2.

ŷ(x) = (fl ◦ fl−1 · · · f2 ◦ f1)(x) (2)

In Equation 2, ◦ denotes the composition operator and, fl is
the lth NN layer. As mentioned before, the learnable param-
eters Wl and bl are trained by using the backpropagation
algorithm [55]. However, to perform the backpropagation
algorithm, it is necessary to define a performance index. For
instance, the first thing that comes to mind, and also the com-
mon choice for regression-related tasks, is to utilize the Mean
Squared Error (MSE) as a loss function.With the definition of
a loss function, the networks are trained to find the best com-
binations of weights and biases. It is possible to use different
variants of optimization algorithms during backpropagation,
such as stochastic gradient-descent, Momentum, ADAM, and
NADAM [56] according to the nature of the problem.

C. QUADRATIC NEURAL NETWORKS (QNN)
The Quadratic (deep) Neural Network is a burgeoning area of
research that draws heavily upon the foundational knowledge
of first-order neural networks. Quadratic neurons exhibit
inherent improvements in their capacity for representation,
which is attributable to their nonlinear computational pro-
cesses rather than an increase in parameters [20]. The
activation function of a regular neuron provides nonlinear
mapping, whereas a quadratic neuron incorporates additional
non-linear mapping through the utilization of the quadratic
combination function. It has been observed that a quadratic
neuron cannot be deemed identical to the mixture or aggrega-
tion of three traditional neurons. Assuming that the activation
function σ (·) is a Rectified Linear Unit (ReLU), it can be
inferred that the mixture of traditional neurons is limited to
a piecewise linear function. However, a quadratic neuron is
capable of representing a piecewise polynomial basis func-
tion [23]. It is widely acknowledged that a polynomial spline
is a superior method for approximating complex functions
compared to a linear basis [22].

Contrary to popular belief, while certain studies have
demonstrated the superior non-linear and learning capabili-
ties of QNNs in comparison with first-order NNs, their neu-
ron design is plagued by various limitations that hinder their
theoretical performance and practical deployment. In [26],
the QNN design was classified into four distinct categories
according to their neuron architecture. In another approach,
we redefined this classification into seven categories. Subse-
quently, a comprehensive analysis was conducted to identify
the limitations of each design type from various perspectives.
The mathematical definitions of the classified QNNs are
presented in Equations 3-9 based on the manner in which
the second-order term of input x is incorporated in each
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quadratic neuron.

Type 1: f (x) = xTwax+ wbx (3)

Type 2: f (x) = wax2 (4)

Type 3: f (x) = (wax)2 (5)

Type 4: f (x) = (wax) (wbx) (6)

Type 5: f (x) = xTwax+ wbx2 (7)

Type 6: f (x) = (wax) (wbx)+ wbx2 (8)

Type 7: f (x) = (wax) (wbx)+ wcx (9)

As a result of a detailed examination of the literature on
the proposed QNNs and the experimental results of these
neural networks, we decided to examine the Type-6 QResNet
models within the scope of this study and evaluate their
performance by comparing their performance with our pro-
posedmodels. In all subsequent sections, the type-6 quadratic
neural networks given in Equation 8 are referred to as QNN.

1) TYPE - 6 QUADRATIC RESIDUAL NEURAL NETWORKS
(QNN)
This type of neuron performs two inner products and one
power term operation on the input vector, which are then
integrated to produce a nonlinear activation function. The
quadratic neuron’s output function can be mathematically
represented as follows [22], [57]:

φl = σ
((
x⊤wr + br

) (
x⊤wg + bg

)
+ (x⊙ x)wb + c

)
(10)

In Equation 10, σ (·) is a nonlinear activation function,
⊙ denotes the Hadamard product, wr ,wg,wb ∈ Rn are
weight vectors, and br , bg, c ∈ R are biases. When wg =

0, bg = 1, and wb = 0, a quadratic neuron degenerates to a
conventional neuron: σ (f (x)) = σ

(
x⊤wr + br

)
.

2) QUADRATIC RESIDUAL NEURAL NETWORKS
The concept of a quadratic neuron was introduced by [57],
and all neural networks are designed utilizing neurons of the
same type, which are distinguished by two key characteris-
tics. The first characteristic involves the computation of an
inner product between an input vector and a corresponding
weighting vector consisting of trainable parameters. The sec-
ond characteristic pertains to the utilization of a nonlinear
excitation function.Whilst it is true that these neurons possess
the capability to be interlinked in a manner that can simulate a
wide range of functions, it should be noted that the configura-
tion of the network is not necessarily exclusive. On the other
hand, with regard to this lack of uniqueness, the identification
of appropriate neuron types for general machine learning is a
novel area of research, as there is no singular type of neuron
that is universally applicable. The utilization of quadratic
neurons enables the substitution of the inner product with a
quadratic function of the input vector. This upgrade trans-
forms a 1st-degree neuron into a 2nd-degree neuron, which
enhances the capabilities of each neuron and simplifies the

optimization of neural networks [22]. The Quadratic Resid-
ual Network (QResNet) architecture was presented in [25].
The primary intent of this architecture is to enhance the
expressive power of the model to capture high-frequency
responses with fewer parameters than those of conventional
NNs. At each network layer, QResNet delivers quadratic
nonlinearity prior to applying activation functions. The for-
mulation of a quadratic neuron is given by Equation 11.

φl(x) = σl(wl1xl ⊙ wl2xl + wl1xl + bl) (11)

In Equation 11, φl is the output layer l, xl ∈ RN
l is the input

vector for the layer l, wl1 ∈ RNl×Nl+1 and wl2 ∈ RNl×Nl+1

are the weight matrices at layer numbers l and l + 1. The
Nl,Nl+1 account for the number of neurons used in layers l
and l + 1 respectively, and ⊙ denote the Hadamard product.
The term (wl1xl ⊙wl2xl) is the quadratic residual term and the
bl ∈ RNl+1 is the bias vector. Finally, the σl corresponds to
the non-linear activation function used in the layer.

8̂(x) = (φ(l) ◦ φ(l−1)
· · ·φ(2) ◦ φ(1))(x) (12)

In Equation 12, 8̂ is the output of QResNet, ◦ denotes the
composition operator, φ(l) is the output of the lth QResNet
layer, x is the input vector for the first layer. As men-
tioned previously, the learnable parameters wl1, w

l
2, and bl

can be trained with the backpropagation algorithm using
gradient-based optimization methods.

D. MULTIPLICATIVE FILTER NETWORKS: FourierNet AND
GaborNet
A conventional neural network, which consists of n-layers
and maps an input vector from Rp to an output vector in Rq,
f : Rp

→ Rq, is commonly formulated using a recursive
equation, as given in Equation 13 [27].

z(1) = x

z(l+1)
= σ

(
w(l)z(l) + b(l)

)
, l = 1, . . . , n− 1

f (x) = w(n)z(n) + b(n) (13)

The weight and bias of the lth layer are denoted as w(l)
∈

Rdl+1×dl and b(l) ∈ Rdl+1 , respectively. In addition, the
hidden unit in layer l is represented by z(l) ∈ Rdl . It should
be noted that σ denotes the nonlinearity applied element-
wise. This terminology is derived from the fact that each
nonlinearity is applied in a compositional manner to the out-
puts of the preceding nonlinearity, with the aim of achieving
a higher level of representational complexity. The networks
referred to in this context are known as compositional depth
networks (CDNs). In [27], the multiplicative filter network
employed an alternative recursion method that precludes the
composition of nonlinear functions. The definition of a mul-
tiplicative filter network is established through a recursive
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process, as shown in Equation 14.

z(1) = h
(
x; θ (1)

)
z(l+1)

= h
(
x; θ (l+1)

)
◦

(
w(l)z(l) + b(l)

)
, l = 1, . . . , n− 1

f (x) = w(n)z(n) + b(n) (14)

The symbol ◦ is used to represent element-wise multi-
plication. The variables w(l), b(l), z(l) are defined as stated
previously. However, the function h : Rp

→ Rdl is param-
eterized by θ (l) (which can have varying sizes to implicitly
establish the output dimensions dl). Furthermore, h denotes
a nonlinear filter directly applied to the input. Of primary
significance in this context is the avoidance of applying non-
linearity to the output of the preceding nonlinearity within the
network. The nonlinearity of the network is exclusively con-
fined to the h functions. Layers z(l), following their traversal
through a linear function, are solely subjected to multipli-
cation by fresh input filters. In [27], [29], and [54], two
variations of the MLP were introduced by employing either
sinusoids or a Gabor wavelet as the filter function h was
introduced. These two models are referred to as FourierNet
and GaborNet, respectively. For the implementation of Fouri-
erNet, a basic sinusoidal filter is being contemplated, and the
definition is given in Equation 15:

hl
(
x; θ (l)

)
= sin

(
w(l)x+ φ(l)

)
(15)

In Equation 15, involves the use of the parameters θ (l) ={
w(l)

∈ Rdl×n, φ(l) ∈ Rdl
}
. One notable advantage of Fouri-

erNet over composition-based networks is its capacity to
exhibit a linear function of Fourier bases that can be viewed
immediately and compellingly. This is achieved through a
low-rank set of coefficients that are defined by the network
parameters, despite the large number of Fourier basis func-
tions involved.

Pure Fourier bases are commonly acknowledged to pos-
sess an imperfection in that they exhibit global support,
whichmay pose challenges in representing localized features.
An often employed substitute for these bases involves the
utilization of Gabor filters, which are capable of capturing
both frequency and spatial locality components. In [27], [29],
and [54], the Gabor filter expressed in Equation 16:

hj
(
x; θ (l)

)
= sin

(
w(l)
j x+ φ

(l)
j

)
· exp

(
−

γ
(l)
j

2

∥∥∥x− µ
(l)
j

∥∥∥2
2

)
(16)

In Equation 16, The set of parameters θ (l) consists of real
valued variables γ (l)

1:dl
, µ(l)

1:dl
in Rn, w(l)

1:dl
in Rn, and φ(l)1:dl in

R. γ (l)
j is used to express the scaling term, and γ (l)

j µ
(l)
j is

utilized to represent the mean of the jth Gabor filter. For the
sake of clarity, the function h : Rn

→ Rdl is specified in
terms of each of its j = 1 . . . , dl coordinates. Similar to
FourierNet, a notable characteristic of GaborNet is that its
ultimate function f can be expressed as a linear mixture of
Gabor filters.

E. QUADRATIC RESIDUAL MULTIPLICATIVE FILTER
NEURAL NETWORKS: FourierQResNet AND
GaborQResNet
The study by [27] on Multiplicative Filter Networks high-
lights a novel approach to avoid the conventional method
of compositional depth. This is achieved through the simul-
taneous multiplication of sinusoidal or Gabor wavelet basis
functions, which are then applied to the input. Furthermore,
the incorporation of quadratic neurons facilitated the replace-
ment of the inner product with a quadratic function of the
input vector. According to [25], the process of upgrading a
1st-order neuron to a 2nd-order neuron results in improved
capabilities for each neuron and streamlines the optimization
of neural networks. The present study utilizes a multiplicative
filter network coordinate-based architecture and quadratic
residual neural networks, a specific type of polynomial neural
network-based architecture which was recently introduced.
Our objective is to utilize the learning capacity of multiplica-
tive neural networks. The filtering operation was employed in
lieu of nonlinear activation functions in multiplicative neural
networks, and quadratic weight terms were incorporated into
the architecture. Furthermore, the utilization of quadratic
residual neural networks with reduced spectral bias power in
high-order modeling results in increased robustness. Conse-
quently, the suggested structures exhibit rapid convergence
and heightened susceptibility to frequency bias.

The output of a FourierNet can be represented by a linear
mixture of sinusoidal basis functions [27], [28], [29]. In other
words, FourierNet can be described as a mathematical model
that expresses its ultimate function as a linear combination
of conventional Fourier bases. This property is given by
Equation 17.

fj(x) =

K∑
t=1

β̄ t sin
(
w̄tx+ φ̄t

)
+ b̄ (17)

In Equation 17, β̄1:K expresses several coefficients, ω̄1:K
represents frequencies, φ̄1:K represents phase offsets, and
b̄ is the bias term. The analysis of the intermediate layer
frequencies enables comprehension of the inner workings of
FourierNet [27], [29]. The utilization of the trigonometric
identity given in Equation 18:

sin(wx+ φ) ◦ sin(τx + ψ) =
1
2
cos((w− τ )x+ φ − ψ)

−
1
2
cos((w+ τ )x+ φ + ψ)

(18)

Similar to FourierNet, a noteworthy characteristic of Gabor-
Net is that the ultimate function f can be expressed as a
linear mixture of Gabor filters [27], [34]. The Gabor Network
produces its output by linearly combining the Gabor basis
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functions given in Equation 19.

fj(x) =

K∑
t=1

λ̄t exp
(

−
1
2
γ̄ t
∥∥x− µ̄t

∥∥2)
· sin

(
w̄tx+ φ̄t

)
+ b̄ (19)

In Equation 19, λ̄1:K expresses several coefficients, ω̄1:K rep-
resents frequencies, φ̄1:K are phase offsets, and b̄ is the bias
term. Using the property that the output functions specified
in Equations 17 and 19 can be represented by sinusoidal and
Gabor filter functions, we can define our proposed neural
networks. The definition of a multiplicative filter quadratic
residual neural network is established through a recursive
process, as shown in Equation 20:

z(1) = h
(
x; θ (1)

)
,

Q(l)(z) = (W (l)
1 z

(l)
⊙W (l)

2 z
(l)

+W (l)
1 z

(l)
+ b(l)q ),

z(l+1)
= h

(
x; θ (l+1)

)
⊙

(
Q(l)z(l) + b(l)z

)
, l = 1, . . . , n− 1

f (x) = Q(n)z(n) + b(n)f (20)

In Equation 20, The symbol ⊙ denotes the Hadamard prod-
uct. The weight and bias of the lth quadratic residual layer
Q(l)(z) are denoted asW (l)

1 andW (l)
2 ∈ Rdl+1×dl , b(l)q ∈ Rdl+1 ,

respectively. Additionally, the hidden unit in layer l is repre-
sented by z(l) ∈ Rdl , the bias value of the hidden unit in layer
l is b(l)z ∈ Rdl , and the bias value of the output unit in layer n
is b(n)f ∈ Rdn . Note that σ (l) denotes the nonlinearity applied
element-wise (Tanh). This terminology is derived from the
fact that each nonlinearity is applied in a compositional man-
ner to the outputs of the preceding nonlinearity with the aim
of achieving a higher level of representational complexity.
However, the function h : Rp

→ Rdl is parameterized by
θ (l) (which can have varying sizes to implicitly establish the
output dimensions dl). Furthermore, h denotes a nonlinear
filter directly applied to the input. Of primary significance in
this context is the avoidance of applying nonlinearity to the
output of a preceding nonlinearity within the network, and
the nonlinearity of the network is exclusively confined to the
h functions. Layers z(l), following their traversal through a
linear function, are solely subjected to multiplication by fresh
input filters. Two variations of the MFN were introduced by
employing either sinusoids or a Gabor wavelet as filter func-
tion h was introduced. These two models are referred to as
FourierQResNet and GaborQResNet, respectively. For Fouri-
erQResNet and GaborQResNet, h filter functions are given
in Equations 15 and 16, respectively. Training can be done
using the standard backpropagation algorithm with first and
also with second-order optimizationmethods such as ADAM,
RMSProb, and L-BFGS. etc. The final optimization prob-
lem entails minimizing a loss function by optimizing both
the newly introduced filter parameters and the NN weights
and biases. The trainable parameters for FourierQResNet
and GaborQResNet are given by Equations 21 and 22,

respectively.

0FQRN =

{
W (l)

1 ,W
(l)
2 , b

(l)
q , b

(l)
z , b

(l)
f ,w

(l), φ(l)
}n
l=1

(21)

3GQRN =

{
W (l)

1 ,W
(l)
2 , b

(l)
q , b

(l)
z , b

(l)
f ,w

(l), φ(l), γ
(l)
j , µ

(l)
j

}n
l=1

(22)

Now, our optimization problem can be defined for the Fouri-
erQResNet model parameters, and additional Fourier filter
parameters are given in Equation 23. Then, we can update
the γ l parameters using the loss function and its gradients by
using the gradient descent step with Equation 24.

γ ∗
FourierQResNetl = argmin

γl∈R
(L(γ )) (23)

γ lm+1 = γ lm − ηl∇γ lLm(0FQRN ) (24)

In Equations 23 and, 24, γ ∗
FourierQResNetl is the optimal value

of 0FQRN at layer l, L is the loss function, Lm is the loss
value at iteration step m, ηl is the learning rate, and m is the
number of iterations. γ lm, is the trainable parameter value at
the iteration step m in the layer l. ∇γ l is the gradient operator
for the Loss function with respect to γ l parameter at layer l,
and l = 1, · · · ,L; L ∈ N is the layer number.

λ∗
GaborQResNetl = argmin

λl∈R
(L(λ)) (25)

λlm+1 = λlm − ηl∇λlLm(3GQRN ) (26)

Similarly, we can define another optimization problem for the
GaborQResNet model parameters and the additional Gabor
filter parameters. This optimization problem is given by
Equation 25. Then, we can update the λl parameters using
the loss function and its gradients by utilizing the gradient
descent step with Equation 26. In Equations 25 and, 26,
λ∗
GaborQResNetl is the optimal value of 3GQRN at layer l, L is

the loss function, Lm is the loss value at iteration step m, ηl is
the learning rate, and m is the number of iterations. γ lm, is the
trainable parameter value at the iteration stepm in the layer l.
∇λl is the gradient operator for the Loss function with respect
to λl parameter at layer l, and l = 1, · · · ,L; L ∈ N is the
layer number.

Our proposed NNs, GaborQResNet and FourierQRes-
Net, give greater importance to high-frequency elements
of the target values, which can mitigate the impact of the
F-principle [50]. When the loss function incorporates the gra-
dient of the DNN output with respect to the input, it impairs
a greater weight at a higher frequency in the loss func-
tion. The existence of an F-principle is contingent upon the
interplay between activation regularity and loss function.
Our proposed NNs are capable of assigning greater weights
to high-frequency components to offset the low-priority
attributed by the activation function using Fourier or Gabor
filter terms and second-order QNNs gradients during the
training. This gradient generation ability penalizes the errors
that might occur at the high frequencies and, as a result,
marginally reduces the spectral bias.
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F. TARGET SIGNALS USED FOR EXPERIMENTS
In order to verify our hypotheses and examine the perfor-
mance of the proposed innovative models, complex signals
with high-frequency components, which are difficult to
model, were used from the literature and were designed in
this study. These signals and the data set generation process
using them are described in the following sections:

1) TARGET SIGNAL 1
In particular, we are looking for signals that are well
supported in the Fourier domain, which means that their
amplitudes at high frequencies are not zero. The sine integral
function attenuated using the Gaussian function was selected
as the target function for this purpose [49].

f (x) = e
−x2
2

∫ x
α

0

sin(x)
x

dx (27)

In Equation 27, f : R → R is a one-dimensional function, xi
and yi ∈ R. This function can be considered as a homog-
enized step signal, where a true step response is obtained
when α → 0. For α > 0, the amplitudes in the frequency
spectrum decrease at a rate of 1

ω
until the frequency ω =

1
α
,

where it falls to zero. Figures 2a and 3a show target signal 1
and the Fourier transform of target signal 1, respectively, for
α = 0.01. For the experiment, input points {xi}Ni=1 were

sampled from a uniform distribution xi
iid
∼ U(0, 1). The

output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling 5120 i.i.d. points from this input
distribution, training, and test datasets,Dtrain = {(xi, yi)}

Ntrain
i=1

and Dval = {(xi, yi)}
Nval
i=1 , were generated.

2) TARGET SIGNAL 2
For Target Signal 2, a signal with a fast frequency shift
was investigated. This type of signal is often used in system
identification and broad-band communication signal model-
ing [52], and its shape and frequency spectrum are shown
in 2b and 3b. The explicit definition of the target Signal 2
is given by Equation 28.

f (x) = cos
[
π

(
ω0 +

ωT − ω0

β
x3
)
x3
]

(28)

In Equation 28, f : R → R is a one-dimensional function,
xi and yi ∈ R. Figures 2b and 3b show target Signal 2
and the Fourier transform of target signal 2, respectively, for
ω0 = 0.01, ωT = 50, and β = 1. Figure 2b shows that as x
increased, the oscillation frequency of the target signal grew
instantly. Figure 3b also shows that the amplitude and oscil-
lation frequency of the spectrum of the target signal decayed
gradually. For the experiment, the input points {xi}Ni=1 were

sampled from a uniform distribution xi
iid
∼ U(0, 1). The

output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling at 5120 i.i.d. points from this
input distribution, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

3) TARGET SIGNAL 3
The piecewise signal was utilized in [51] and [52] to
investigate several neural networks’ modeling performance.
We have also included this signal in our experiment. The
wave shape and corresponding frequency spectrum are shown
in Figures 2c and 3c. The mathematical definition of the
signal used in this experiment is given by Equation 29.

f (x) =


10 × (sin(x) + sin(3x)) x ∈ [−π, 0]
10 × (sin(23x) + sin(137x)
+ sin(203x)) x ∈ [0,+π ]

(29)

In Equation 29, f : R → R is a one-dimensional function, xi
and yi ∈ R. Figures 2c and 3c show target Signal 3 and the
Fourier transform of target signal 3, respectively. The spec-
trum of this signal includes several apparent spikes and many
small oscillations. For the experiment, input points {xi}Ni=1

were sampled from a uniform distribution xi
iid
∼ U(−π,+π ).

The output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling at 5120 i.i.d. points from this
input distribution, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

4) TARGET SIGNAL 4
This highly nonlinear signal was designed to investigate the
prediction performance of all neural networks. The wave
shape and its corresponding frequency spectrum are shown in
Figures 2d and 3d. The mathematical definition of the signal
is given by Equation 30:

f (x) =
1
2
(sin(k1x) + sin(k2x) + sin(k3x) + sin(k4x)

+ sin(k5x).e−
x
π + sin(k6x).e−

2x
π + sin(k7x)) (30)

In Equation 30, f : R → R is a one-dimensional function,
xi and yi ∈ R. Figures 2d and 3d show target signal 4,
and the Fourier transform of target signal 4, respectively for
k1 = 2π, k2 = 4π, k3 = 6π, k4 = 8π, k5 = 10π, k6 =

15π, k7 = 20π . The spectrum of this signal includes different
frequencies and frequencies with exponentially decreasing
components at the same time. For the experiment, input

points {xi}Ni=1 were sampled from a uniform distribution xi
iid
∼

U(−π,+π ). The output values {yi}Ni=1 are the function values
yi = f (xi), and by uniformly sampling at 5120 i.i.d. points
from this input distribution, training and validation data sets,
Dtrain = {(xi, yi)}

Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were

generated.

5) TARGET SIGNAL 5
Target Signal 5 was used to test the proposed methods’
approximation accuracy on a discontinuous signal, such as
square waves [51], [52]. The waveform and its corresponding
frequency spectrum are illustrated in Figures 2e and 3e. The
mathematical definition of the signal is given by Equation 31:

f (x) = sin(k0x) + sign[sin(k1x)]

+ sign[sin(k2x)] + sign[sin(k3x)] (31)
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FIGURE 2. Signal waveforms for Experiment 1 (a) Target Signal 1 given in Equation 27. (b) Target Signal 2 given in
Equation 28. (c) Target Signal 3 given in Equation 29. (d) Target Signal 4 given in Equation 30. (e) Target Signal 5 given in
Equation 31. (f) Target Signal 6 given in Equation 32. (g) Target Signal 7 given in Equation 33. (h) Target Signal 8 given
in Equation 34. (i) Target Signal 9 given in Equation 35.

FIGURE 3. Signal spectrum waveforms for Experiment 1 (a) Target Signal 1 given in Equation 27. (b) Target Signal 2
given in Equation 28. (c) Target Signal 3 given in Equation 29. (d) Target Signal 4 given in Equation 30. (e) Target Signal 5
given in Equation 31. (f) Target Signal 6 given in Equation 32. (g) Target Signal 7 given in Equation 33. (h) Target
Signal 8 given in Equation 34. (i) Target Signal 9 given in Equation 35.

In Equation 31, f : R → R is a one-dimensional func-
tion, xi and yi ∈ R, and the sign is the signum function.
Figures 2e and 3e display the target signal 5, and the Fourier
transform of the signal, respectively, for the parameters

k0 = 1, k1 = 13π, k2 = 23π, k3 = 47π . The spectrum of
this signal compromises many highly irregular spikes with
different amplitudes and also includes discontinuities in the
spatial domain. For the experiment, input points {xi}Ni=1 were
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sampled from a uniform distribution xi
iid
∼ U(−π,+π ). The

output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling at 5120 i.i.d. points from this
input distribution, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

6) TARGET SIGNAL 6
In order to measure the approximation accuracy of the
proposed methods on a polynomial signal with different
sinusoidal components, another signal from literature was
implemented [45], [53]. The waveform and its corresponding
frequency spectrum are illustrated in Figures 2f and 3f. The
mathematical definition of the signal is given by Equation 32:

f (x) = (x3 − x)
sin(k1x)
k1

+ sin(k2x) (32)

In Equation 32, f : R → R is a one-dimensional function,
xi and yi ∈ R. Figures 2f and 3f show target Signal 6
and the Fourier transform, respectively, for parameters k1 =

27, k2 = 50. For the experiment, input points {xi}Ni=1 were

sampled from a uniform distribution xi
iid
∼ U(−π,+π ). The

output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling at 5120 i.i.d. points from this
input distribution, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

7) TARGET SIGNAL 7
The signal of sine on the polynomial was used to investigate
the neural networks’ approximation capability, which is iden-
tical to the function implemented in the literature [3], [52].
Target Signal 7 is explicitly defined by Equation 33, whose
waveform and corresponding frequency spectrum are shown
in Figures 2g and 3g.

f (x) = 0.1 x3 − 0.1 x2 − 0.5 x + 0.3 + sin(50x) (33)

In Equation 33, f : R → R is a one-dimensional function,
xi and yi ∈ R. Merely the low-frequency component of this
signal can be easily approximated by using classical neural
networks. However, it has been reported in the literature [52]
that even when a large number of sampled points N is used,
the high-frequency component cannot be fitted with ordinary
neural networks. For the experiment, input points {xi}Ni=1 were

sampled from a uniform distribution xi
iid
∼ U(−π,+π ). The

output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling at 5120 i.i.d. points from this
input distribution, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

8) TARGET SIGNAL 8
The Double Sideband Suppressed Carrier (DSB-SC) trans-
mission scheme is a method of amplitude modulation in
which solely the sidebands are transmitted, while the carrier
wave is suppressed and not transmitted. The transmission of
the carrier signal is devoid of any informational content and is
associated with power loss. Therefore, merely sidebands that

carry information are transmitted. This leads to a reduction
in the energy consumption associated with the transmission.
The conserved energy may be incorporated into the two
sidebands. Consequently, guarantees a more robust transmis-
sion that can cover extended ranges. During the process of
suppression, the baseband signal remains unaffected. This
signal was used to test the proposed methods’ approximation
precision. The waveform and its corresponding frequency
spectrum are illustrated in Figures 2h and 3h. The mathemat-
ical definition of the signal is given by Equation 34:

f (x) =
1
2
cos(k1x)(cos(k2x) − cos(k3x)) (34)

In Equation 34, f : R → R is a one-dimensional function,
xi and yi ∈ R and the parameters k1 = 10000π, k2 = 1600π
and k3 = 2400π . The spectrum of this signal comprises
several spikes with different amplitudes at extremely high
frequencies. For the experiment, input points {xi}Ni=1 were

sampled from a uniform distribution xi
iid
∼ U(0, 5.10−3). The

output values {yi}Ni=1 are the function values yi = f (xi), and
by uniformly sampling at only 5120 i.i.d. points from this
input distribution, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

9) TARGET SIGNAL 9
The signal defined by Equation 35 is frequently used to
approximate the ENSO data set [52] in the literature. The
waveform and its companion frequency spectrum are shown
in Figures 2i and 3i.

f (x) = 4.7 cos(2π
x
12

) + 1.1 sin(2π
x
12

)

+ 0.2 cos(2π
x
1.7

) + 2.7 sin(2π
x
1.7

)

+ 2.1 cos(2π
x
0.7

) + 2.1 sin(2π
x
0.7

) − 0.5 (35)

In Equation 35, f : R → R is a one-dimensional function,
xi and yi ∈ R. It has been reported that this signal is more
sophisticated than expressed in Equation 33 [52]. For the
experiment, input points {xi}Ni=1 were sampled from a uniform

distribution xi
iid
∼ U(0, 25). The output values {yi}Ni=1 are the

function values yi = f (xi), and by uniformly sampling at
5120 i.i.d. points from this input distribution, training and
validation data sets, Dtrain = {(xi, yi)}

Ntrain
i=1 and Dval =

{(xi, yi)}
Nval
i=1 , were generated.

10) TARGET SIGNAL 10
The extended version of the signal defined in [6] is used to
investigate frequency/spectral bias experiments and is given
in Equation 36. The waveform and its companion frequency
spectrum are shown in Figures 4a and 4b. This signal con-
tains both low and high-frequency components with different
phase angles. Therefore, it helps investigate the spectral bias
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FIGURE 4. Spatial and spectral domain representation of Target Signal 10. (a) Spatial
Coordinate vs. Amplitude (b) Normalized FFT of The Signal Representation in Spectral
Domain.

phenomena of neural networks.

f (x) = A1 sin(2π.5 x + φ1) + A2 sin(2π.10x + φ2)

+ A3 sin(2π.15 x + φ3) + A4 sin(2π.20 x + φ4)

+ A5 sin(2π.25 x + φ5) + A6 sin(2π.30 x + φ6)

+ A7 sin(2π.35 x + φ7) + A8 sin(2π.40 x + φ8)

+ A9 sin(2π.100 x + φ9) + A10 sin(2π.110 x + φ10)

+ A11 sin(2π.120 x + φ11)+A12 sin(2π.130 x+φ12)

+ A13 sin(2π.150 x + φ13) (36)

In Equation 36, f : R → R is a one-dimensional function,
xi and yi ∈ R. For the experiment, input points {xi}Ni=1

were sampled from a uniform distribution xi
iid
∼ U(0, 1).

The output values {yi}Ni=1 are the function values yi = f (xi),
and by uniformly sampling 500 i.i.d. points from this input

distribution, {Ai}13i=1 = 1.0, and φi
iid
∼ {U(0, 2π )}13i=1. Using

these parameters, training and validation data sets, Dtrain =

{(xi, yi)}
Ntrain
i=1 and Dval = {(xi, yi)}

Nval
i=1 , were generated.

G. PERFORMANCE METRICS
In this study, we consider only regression-based modeling.
The performance metrics implemented for the comparison of
the models are given in Equations 37, 38, and 39.

MSE(y, ŷ) =
1
N

N∑
i=1

(
yi − ŷi

)2 (37)

The Mean Square Error (MSE) [58] is given by Equation 37.
Where y is the target label, ŷ is the model prediction value,
and N is the total number of data points of the sampled
target signal. It is a risk function that corresponds to the
expected value of the squared (quadratic) error or loss. This
can be defined as the average squared difference between the
estimated and actual values.

The Mean Absolute Error (MAE) is a metric [58] that
quantifies the average magnitude of errors in a set of pre-
dictions, disregarding their direction. The mean absolute
difference between the predicted values and the actual values
is a metric utilized to evaluate the efficacy of a regression

model. The definition of this metric is given in Equation 38.

MAE(y, ŷ) =
1
N

N∑
i=1

∣∣(yi − ŷi
)
| (38)

The definition of the coefficient of determination (R2) is given
in Equation 39 [58]. In this Equation, y is the target label, ŷ is
the model prediction value, and N is the number of total data
points of the sampled target signal. This represents the pro-
portion of variance of the target label that has been explained
by the independent variables in the model. It indicates the
goodness of fit and, therefore, measures how well the model
will likely predict the unseen samples through the proportion
of explained variance.

R2(y, ŷ) = 1 −

∑N
i=1

(
yi − ŷi

)2∑N
i=1 (yi − ȳi)2

and ȳ =
1
N

N∑
i=1

yi (39)

For spectral/frequency bias evaluations, we defined and
used The Projection Based Relative Error (PBRE) and The
Frequency Band Correspondence Metrics (FBCM). Their
explicit mathematical definitions are given in Equations 40
and 41: Projection Based Relative Error metric [2] was imple-
mented to measure the spectral bias at different frequencies.
In this method, Let D = {(xi, yi)}Ni=1 is a dataset with
N sample points, the Fourier Transform of this data set is
F{{(xi, yi)}Ni=1} can be expressed as ŷk =

1
N

∑N
i=1 yie

−i2πk·xi .
In order to investigate the convergence behavior of various
frequency components during training, the relative discrep-
ancy between the neural network prediction and the target
function for specified important frequencies k at each training
step can be computed. The definition of this metric is given
by Equation 40:

1y,u(k) =

∣∣ŷk − ûk
∣∣∣∣ûk ∣∣ (40)

where ŷk and ûk are the one-dimensional Fourier transforms
of {yi}Ni=1 and the interrelated neural network output {ui}Ni=1,
respectively, along the first principal component of the input
space. During training, each response frequency component,
{ui}Ni=1, of the neural network model output changes and
converges to a final value.
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In addition to the Projection Based Relative Error metric,
we also used the Frequency Band Correspondence Met-
ric [42] to investigate the spectral bias. This metric analyzes
the input-output likeness in the frequency domain across
several frequency bands. It was proposed to examine the
Fourier spectrum of the output signal ŷ(k), k = 1, . . . ,N to
indicate the convergence dynamics of the distinct frequency
elements of the target signal. The frequency spectrum of the
output signal ŷ can be obtained using the Fast Fourier trans-
form, denoted as F{ŷq(k)} for each training step q (epoch).
Similarly, the Fast Fourier transform for the target signal û,
denoted as F{ûq(k)} is computed, and then the calculation
of an element-wise ratio between both transforms is given in
Equation 41.

FBCMq(ŷ, û) =
F{ŷq(k)}
F{ûq(k)}

(41)

Intuitively, FBCMq indicates the degree to which any model
prediction in the training step corresponds to the real signal
in the frequency domain. As a result, the closer the values are
to 1, the higher the correspondence. Because it is interested
in the spectral bias of the neural network model, its frequency
spectrum can be separated into N subgroups fitting to N non-
overlapping frequency bands as the similitude map. Because
the similitude map is balanced around the center frequency,
it can be uniformly grouped according to the span between
its elements and the center. The mean value of the N spectral
band was then calculated.

III. EXPERIMENTS
The present investigation utilized a thorough experimental
approach to assess the effectiveness of the GaborQResNet
and FourierQResNet models in comparison to conventional
methods and commonly employed neural network models for
the purpose of sensor signal regression. The study comprised
five discrete experiments, each aimed at assessing distinct
facets of the models’ performance and capabilities.

The first experiment involved an empirical investigation
of the learning and convergence capacities of the proposed
models. This study conducted a comparative analysis of
the performance outcomes of various model architectures,
namely MLP, QResNet, QNN, FourierNet, and GaborNet,
on a dataset comprising nine complex test signals. The mod-
els were subjected to a training process with pre-established
learning rates, unchanging layers, and neuron dimensions,
and without any exploration or adjustment of the hyperpa-
rameters. The training procedure utilized Stochastic Gradient
Descent optimization and the models were assessed based
on their capacity to acquire intricate target signals within
constrained circumstances.

The second experiment was conducted to investigate the
impact of changes in the depth of the hidden layer on the pro-
posed models. The models, namely GaborNet, GaborQRes-
Net, FourierNet, and FourierQResNet, underwent training
and testing procedures utilizing test signals with varying layer
depths. The training of the models was conducted using a

consistent learning rate and constant neuron size, while the
layer depth was varied. The aim of this study is to evaluate
the effects of varying layer depths on the learning and con-
vergence abilities of the models.

Experiment 3 aimed to investigate the impact of alterations
in the number of neurons within the hidden layers of the pro-
posed models. The GaborNet, GaborQResNet, FourierNet,
and FourierQResNet architectures were trained and evaluated
using piecewise and square wave signals. The neuron size for
each hidden layer varied during the experiment. The objective
was to examine the impact of varying neuron sizes on the
learning and convergence capabilities of the models while
maintaining a consistent layer depth.

The objective of Experiment 4 was to investigate the
impact of fluctuations in dataset size on the learning
and convergence abilities of the models. The GaborNet,
GaborQResNet, FourierNet, and FourierQResNet architec-
tures underwent training and evaluation of the test signals that
exhibited diverse quantities of data points. The models were
trained with unvarying learning rates, unchanging neuron
sizes, and consistent layer depths. The aim of this study was
to assess the impact of varying dataset sizes on the capacity
of models to acquire intricate target signals.

The fifth experiment was conducted with the aim of
examining the spectral bias and frequency principle in the
proposed models in comparison with other artificial neural
network models. The study employed three distinct method-
ologies, including the projection-based relative error and
the frequency band correspondence metrics, to validate the
conjecture that the suggested models demonstrate superior
efficacy in the presence of spectral bias and are comparatively
less susceptible to its impact. In general, the experiments
involved a comprehensive exploration of multiple facets
related to the performance of the proposed models. These
facets include the models’ learning capability, the impact
of layer depth and neuron size, variations in dataset size,
and spectral bias. The findings derived from these inquiries
serve to enhance comprehension of the proposed models’
abilities and offer perspectives on their potential benefits
compared to current methodologies in the realm of sensor
signal regression.

It is worth saying that computational experiments have
been carried out on a system with an Intel i7 CPU 3.0 GHz,
128 GB of RAM, and NVIDIA Titan X GPU.

IV. RESULTS
The results of all experiments are shared in this section.

A. EXPERIMENT 1: MODELS’ LEARNING CAPABILITY
In this experiment, we conducted an empirical investigation
into the learning and convergence capacities of the proposed
models. The performance results of our proposed neural
network models (GaborQResNet and FourierQResNet) were
compared with those of other model architectures (MLP,
QResNet, QNN, FourierNet, and GaborNet) using a set of
nine intricate test signals. These chosen nine test signals
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encompass a variety of frequency and phase information,
rendering it challenging to acquire proficiency using con-
ventional neural networks. Signal sampling was conducted
in accordance with their respective characteristics in order to
produce datasets for both training and testing purposes. Each
model underwent training with predetermined learning rates,
fixed layers, and neuron sizes without the application of any
hyperparameter search or tuningmethod. For this experiment,
the learning rate was set to 0.001, the layer size was set to 6,
and the number of neurons allocated for each layer was 256.
During the training process, a batch size of 64 was chosen,
and optimization was performed using Stochastic Gradient
Descent (SGD) optimizer. The models underwent training
for 1000 epochs using SGD and were tested on nine distinct
signals. Training and test results were recorded. This process
was repeated ten times using different random seeds. All the
models were initialized according to the patterns presented
in Section II. The Adam optimizer was intentionally excluded
from this experiment in order to examine the true convergence
patterns of the models. The utilization of the Adam optimizer
in the optimization processes can prove to be highly efficient
and expeditious because of its ability to adapt to the learning
rate. This study evaluated the learning capacity of the models
in acquiring complex target signals under restricted condi-
tions, including a fixed layer size, predetermined neuron size,
and a limited number of training epochs. Upon concluding
the training, an examination was conducted on the training
loss and test loss values, as well as the performance metrics
that were previously established. The definitions of all the test
signals and metrics utilized in this experiment are presented
in Sections II-F and II-G. Figure 5 shows the training and
test loss curves for all models under investigation for each
test signal. The results show that the GaborQResNet and
FourierQResNet models converge to the lowest loss value
the fastest for each test signal without exception. In addition,
it was found that the convergence rates of the GaborNet and
FourierNet models were much slower and could converge
to a rather high loss value. Finally, it was observed that the
QResNet, MLP, and QNN models could not effectively learn
and converge any of the test signals used. In light of these
results, for all target signals used, all the models under inves-
tigation can be evaluated by dividing them into three different
groups. The first group is models that cannot effectively learn
the target signals, including MLP, QNN, and QResNet. The
second group is more successful than the first group, which
includes GaborNet and FourierNet models but does not show
sufficient learning performance. The third group consists of
models with fast convergence and high learning capacity,
in which the GaborQResNet and FourierQResNet models are
suggested in this study. As a result, the following experiment
results will be explained according to these model groups.

In Table 1, the training and test loss values of all models
with respect to the target signals are listed. When the results
were examined, we discovered that the FourierQResNet and
GaborQResNet models had the lowest training and test loss
values for all the signals. Especially for target signals 3, 5,

and 9, when the proposed novel models were compared with
the other models, significant differences were observed in
the final values of the training and test loss values. In par-
ticular, it was determined that GaborQResNet could achieve
much lower training and test loss values than FourierQResNet
and other models. The MLP, QNN, and QResNet models
were found to have the highest training and test loss values.
In addition, it was observed that the FourierNet and GaborNet
models could not learn the target signals sufficiently, but they
provided a very limited performance improvement compared
to MLP, QNN, and QResNet.

An additional analysis was conducted to compare the per-
formance metrics of all the models with respect to all the
target signals. The results of this analysis are given are pre-
sented in Table 2. We discovered that the training and test
MSE values of FourierQResNet and GaborQResNet were the
lowest among all target signals. GaborQResNet achieved the
best MSE values among all the models for all target signals.
The same outcomes were observed for the training and test
MAE values with FourierQResNet and GaborQResNet for all
the target signals. When the test and training R2 values of
the models were examined, it was determined that the MLP,
QNN, and QResNet models remained at very low values for
all target signals and could not learn the variance in the signal
sufficiently; however, all other models reached the maximum
value of 1.0.

In Figure 6, the prediction results obtained using the test
dataset of all models are visualized for each test signal after
the training process was completed. As the figure shows,
our proposed novel neural network models exhibit exem-
plary prediction performance for all very complex target
signals. However, the MLP, QNN, and QResNet models did
not deliver adequate prediction performances for all target
signals.

This experiment confirms one of our hypotheses and shows
that our proposed neural network models, FourierQResNet
and GaborQResNet, have great convergence and learning
capabilities for learning very complex signals. However,
we performed this experiment using a specified number
of dataset points, fixed layer sizes, and a predefined num-
ber of neurons. To further observe the performance of the
proposed models and the effect of the variation in hyper-
parameters, we performed complementary experiments to
investigate these models’ performances. In the following sec-
tions, we discuss the outcomes of the additional experiments.

B. EXPERIMENT 2: THE EFFECT OF VARIATION IN HIDDEN
LAYER DEPTH FOR THE PROPOSED MODELS
In this experiment, we empirically investigated the effect of
changing the layer depth on the learning and convergence
capabilities of the GaborNet, GaborQResNet, FourierNet,
and FourierQResNet models by using the test signals given
in Equation 30 and Equation 32. All signals were sampled
according to their characteristics to generate training and
test datasets. All models were trained with fixed learning
rates, fixed neuron sizes with changing layer depth sizes
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FIGURE 5. Experiment 1: Training and test loss curves for all models (a) Target Signal 1 given in Equation 27. (b) Target Signal 2 given in Equation 28. (c)
Target Signal 3 given in Equation 29. (d) Target Signal 4 given in Equation 30. (e) Target Signal 5 given in Equation 31. (f) Target Signal 6 given in
Equation 32. (g) Target Signal 7 given in Equation 33. (h) Target Signal 8 given in Equation 34. (i) Target Signal 9 given in Equation 35 (y-axis is log-scaled
for all plots).

TABLE 1. Experiment 1: model training and test loss values for all target signals.

(layer depth/size ∈ {2, 3, 4, 5, 6, 7, 8}), and no specific
hyperparameter search/tuning method was applied. For this
experiment, we set the learning rate to 0.001, changed the
layer size of each model from 2 to 8, and fixed the number of
neurons in each layer to 256. For training, the batch size was
set to 64, and the Stochastic Gradient Descent (SGD) opti-
mizer was used for the optimization. All models were trained
in 2000 epochs with SGD, and the training and test progress
were recorded for each epoch. Again, we intentionally did
not use the Adam optimizer in this experiment to investigate
the actual convergence behavior of the models. We tested the
learning capability of the models for given complex target
signals with a changing layer depth in limited training epochs.

After completing the training, we investigated training loss
and test loss values and performance metrics defined in the
previous section (Section II-F and II-G). Results of this exper-
iment is given in Figures 7 and 8, and Tables 3, 4, and 5.

From Table 3, we discovered that FourierNet, GaborNet,
and our proposed models’ loss values are inversely correlated
with the layer size. This result means that the training and
test loss values diminish when the layer/dept size of the
model increases. This empirical observation is an expected
result, as increasing the layer size, increases model complex-
ity and capacity. However, when the FourierQResNet and
GaborQResNet loss values were examined closely, even with
two layers, their loss values were significantly lower than
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TABLE 2. Experiment 1: comparison of all model metrics against all target signals.

FIGURE 6. Model predictions for all signals (on the test data set) (a) Target Signal 1 given in Equation 27. (b) Target Signal 2 given in Equation 28.
(c) Target Signal 3 given in Equation 29. (d) Target Signal 4 given in Equation 30. (e) Target Signal 5 given in Equation 31. (f) Target Signal 6 given in
Equation 32. (g) Target Signal 7 given in Equation 33. (h) Target Signal 8 given in Equation 34. (i) Target Signal 9 given in Equation 35.

those of FourierNet and GaborNet. As a result, we can infer
that our proposed models have much higher learning capacity
and complexity. For both Target Signals 4 and 6, when we

increased the layer/depth size, we discovered that the training
and test loss values were improved, but this improvement
was not significant. Owing to the learning capacity of the
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TABLE 3. Experiment 2: comparison of model loss values for Target Signals 4 and 6.

proposedmodels, we can reach very low loss values evenwith
a smaller number of layers, and adding more layers does not
provide any significant improvement in either the training or
test loss values.

In Figure 7 (a) and (c), the loss values vs. layer/depth size
results are shown for Target Signal 4. Owing to the complex
structure and several high-frequency components of the target
signal, the final test loss value of FourierNet is approximately
2.24× 10−4. When we set the layer size to 3, the loss values
did not improve even after adding more layers. For GaborNet,
its final test loss value was 6.75 × 10−3, and after using
five layers, adding more layers into its architecture did not
help further improve the training and test loss values, even
worsening the loss values.

From Figure 7 (b) and (d), it can be observed that the
FourierQResNet model’s training and test loss values were
enhanced by including additional layers in its architecture.
However, it remained constant when the layer/depth size was
set to 7 and 8. Nevertheless, when we set layer/dept size
from 4 to 7, we can observe a minimal improvement for
the loss values, but this improvement was very small and
not significant, and the test and training loss values were
approximately 2.85×10−6 and 2.87×10−6. The best results
for FourierQResNet were obtained by implementing seven
layers with training and test loss values around 2.86 × 10−6

and 2.83 × 10−6. Considering GaborQResNet, our experi-
mental results showed that the model’s training and test loss
values were not significantly decreased by including addi-
tional layers in its architecture. In addition, the final training
and test loss values were roughly 2.66 × 10−6 and 2.65 ×

10−6 for eight layers. The best model results were obtained
by implementing five layers with loss values 1.44 × 10−6

and 1.16 × 10−6. As we can realize from these results, the
proposed architectures have much higher learning capacity
and model complexity than the previous models (GaborNet,
FourierNet), and GaborQResNet is better than FourierQRes-
Net for learning Target Signal 4 by using a lower number
of depths/layer sizes. Their performance and accuracy are
higher than those of the original models using minimal layer
sizes.

In Figure 8 (a) and (c), the training and test loss values
vs. layer/depth size results are shown for Target Signal 6.
Target Signal 6 is less complex and includes fewer frequency
components than target signal 4. For this signal, the final

training and test loss values of the FourierNet area are approx-
imately 2.16 × 10−5 and 2.11 × 10−5. Again, when we set
the layer size to 3, the loss values did not improve even
after adding more layers. However, for this signal, lower
training and testing loss values were achieved using Fouri-
erNet. GaborNet’s final test loss value was 2.45 × 10−4 by
implementing eight layers. When six layers were used in
GaborNet, the training and test loss values were considered
minimal, and adding more layers to the model did not sig-
nificantly improve the training and test loss values. From
Figure 8 (b) and (d), it can be observed that the FourierQRes-
Net model’s training and test loss values were enhanced by
incorporating additional layers into its architecture. The best
results for FourierQResNet were obtained by implementing
eight layers with training and test loss values around 8.21 ×

10−7 and 7.90 × 10−7. Regarding the GaborQResNet, our
experimental results indicated that the model’s training and
test loss values were not significantly decreased by including
extra layers in its architecture. In addition, this model’s final
loss training and test values were roughly 5.65 × 10−7 and
4.66 × 10−7 for eight layers, and this was the best model
result. However, GaborQResNet reached at test loss value of
approximately 6.92 × 10−7 with five layers, and although
more layers were added to the model, the loss value changed
at the level of 10−7. We inferred that loss value levels of
10−7 were reached with five layers, but the same loss value
level was reached by implementing up to eight layers for
FourierQResNet. As we can realize from these results, the
proposed architectures have much more learning capacity
and model complexity than the previous models (GaborNet,
FourierNet), and GaborQResNet is better than FourierQRes-
Net for learning target Signal 6 by using a lower number
of depth/layer sizes. Again, their performance and accuracy
are beyond those of the original models using minimal layer
sizes.
Table 4 lists MSE , MAE , and R2 metric values vs. layer

size results for target signal 4. According to these results,
we observed the same behavior for all four models as for
the loss values when we investigated these metrics. Fourier-
Net reached a maximum R2 value of 1.0 with three layers.
GaborNet achieved a maximum R2 value of 0.999 with six
layers and decreased to 0.996 with eight layers. For our pro-
posed models, FourierQResNet and GaborQResNet obtained
R2 value of 1.0 using only two layers. For theMSE andMAE
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FIGURE 7. Experiment 2: loss value vs layer size for Target Signal - 4 (a) FourierNet (b) FourierQResNet (c) GaborNet (d)
GaborQResNet Neural Network Models (y-axis in log scale).

FIGURE 8. Experiment 2: loss value vs layer/depth size for Target Signal - 6 (a) FourierNet (b) FourierQResNet (c)
GaborNet (d) GaborQResNet Neural Network Models (y-axis in log scale).

TABLE 4. Experiment 2: comparison of model metrics for Target Signal 4.

metrics, FourierNet attained its best test values of 6.09×10−5

and 5.84×10−3 respectively, with three layers, and GaborNet
achieved its best testMSE andMAE values of 2.04×10−3 and
2.20 × 10−2 respectively using six layers. We also observed

that increasing the layer size from 3 to higher values degen-
erated MSE and MAE metrics for FourierNet. In addition,
we noticed that increasing the layer size from six even dete-
riorated the MSE and MAE metrics for GaborNet. For our
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proposed models, FourierQResNet obtained its best testMSE
andMAE values of 2.83×10−6 and 1.34×10−3 respectively
with seven layers, and GaborQResNet achieved its best test
MSE andMAE values of 1.16×10−6 and 5.94×10−4 respec-
tively using five layers. We also observed that increasing the
layer size from seven did not change MSE and MAE metric
values for FourierQResNet. In addition, we observed that
increasing the layer size from five even declined MSE and
MAE metrics for GaborQResNet. According to the experi-
mental results obtained for test signal-4, our proposed novel
neural network models had much less training and test losses,
MAE , and MSE values than the other models.
Table 5 shows MSE , MAE , and R2 metric values vs.

layer size results for Target Signal 6. Target Signal 6 is
slightly complicated and contains smaller frequency parts
than Target Signal 4. For The FourierNet, it reached the
maximum R2 value of 1.0 with 3 layers. GaborNet achieved
its maximum R2 value of 0.999 with 6 layers and diminished
to 0.996 with 8 layers included. For our proposed models,
FourierQResNet and GaborQResNet obtained R2 value of
1.0 using only 2 layers. For the MSE and MAE metrics, the
FourierNet attained its best test MSE and MAE values of
4.30× 10−6 and 1.15× 10−3 respectively with 3 layers, and
the GaborNet reached its best test MSE and MAE values of
2.73× 10−4 and 2.45× 10−3 respectively by using 8 layers.
We also observed that increasing the layer size from 3 degen-
erated MSE and MAE metrics for FourierNet. In addition,
we noticed that increasing the layer size from 5 improved
MSE and MAE metrics for GaborNet. For our proposed
models, FourierQResNet obtained its best testMSE andMAE
values of 7.90 × 10−7 and 7.09 × 10−4 respectively with
8 layers, and the GaborQResNet achieved its best test MSE
andMAE values of 4.66×10−7 and 4.09×10−4 respectively
by using 8 layers. We also observed that GaborQResNet
with 2 layers had much better MAE and MSE values than
FourierQResNet with 6 or more layers. According to the
experimental results obtained for Test Signal-6, our proposed
novel neural network models had much less training and test
losses,MAE , andMSE values than the othermodes evaluated.
When all the experimental results were examined, it was

found that the proposed novel artificial neural network
models, FourierQResNet and GaborQResNet, accomplished
higher performance levels than others that could not be man-
aged. Our experimental results also showed that GaborQRes-
Net achieved better learning capacity and expressivity
than FourierQResNet. In almost all cases (target signals),
GaborQResNet has significantly lower training and test loss
values, MAE , MSE values, and higher R2 values. Fouri-
erQResNet has these capabilities. Exploiting Hadamard-
product-based neural quadratic networks in conjunction with
multiplicative operations improves the performance of the
proposed neural networkmodels studied in this work. In addi-
tion to this layer/depth size comparison experiment, in the
next section, we planned another experiment to study the
effect of the number of neuron sizes for each layer to acquire

much better intuition on the suggested novel neural networks’
learning capability and expressivity.

C. EXPERIMENT 3: EFFECTS OF VARIATION IN THE
NUMBER OF NEURONS IN HIDDEN LAYERS FOR THE
PROPOSED MODELS
In Experiment 3, we aimed to empirically analyze the effect
of the change in the neuron sizes for each hidden layer on
the learning and convergence capacities of the GaborNet,
GaborQResNet, FourierNet, and FourierQResNet models by
using the test signals given in Equation 29 and Equation
31 (piecewise and square wave signals). All signals were
sampled according to their attributes to generate the train-
ing and test datasets. All models were trained with selected
learning rates and fixed layer depth with changing neuron
sizes in each layer, and no hyperparameter search/tuning
method was applied. For this experiment, we set the learn-
ing rate to 0.001, changed the neuron size of each layer
from 64 to 1024 (neuron size in each hidden layer ∈

{64, 128, 256, 512, 1024}), and kept layer dept constant at 5.
We intentionally selected a hidden layer/depth size of five
from the results of the previous experiment (Experiment 2).
For training, the batch size was set to 64, and the Stochastic
Gradient Descent (SGD) optimizer was used for the optimiza-
tion. All models were trained in 2000 epochs using SGD, and
the training and testing progress was recorded. Again, we did
not use the Adam optimizer in this experiment to investigate
the actual convergence behavior of the models. We tested
the learning capability of the models for extremely complex
target signals with changing neuron sizes in limited training
epochs. After completing the training, we investigated the
training and test loss values and other performance metrics
defined in the previous section. The results of this experiment
are shown in Figures 9 and 10, and Tables 6, 7, and 8.

In Table 6, and Figures 9 and 10, the variation of the model
training and test loss values of the models under investigation
(GaborNet, GaborQResNet, FourierNet, and FourierQRes-
Net) according to the number of neuron sizes in the hidden
layers for target signals 3 and 5 are shown. For target signal-3,
the training and test loss values of FourierNet and GaborNet
decreased when the neuron size was increased. The final test
loss values for FourierNet and GaborNet are 1.32 × 10−2

and 2.39 × 10−3, respectively, for 1024 neurons. For Fouri-
erQResNet, increased neuron size yielded a reduction in loss
values; however, with 256 neurons, this architecture started
to overfit. The best loss value on the test set was 7.13× 10−3

for 512 neurons. For GaborQResNet, increased neuron size
provoked a decline in training and test loss values, but after
256 neurons, this architecture also started to overfit. The best
loss value on the test set was 3.03 × 10−4 for 1024 neurons.

For target signal-5, the training and test loss values for
FourierNet and GaborNet diminished when the neuron size
was increased. The final test loss values for FourierNet and
GaborNet were 3.58×10−7 and 1.97×10−6, respectively, for
1024 neurons, respectively. For FourierQResNet, increased

VOLUME 11, 2023 75255



M. U. Demirezen: QRMFNNs for Efficient Approximation of Complex Sensor Signals

TABLE 5. Experiment 2: comparison of model metrics for Target Signal 6.

TABLE 6. Experiment 3: comparison of model loss values for Target Signal 3 and 5.

neuron size yielded a reduction in loss values; however, after
512 neurons, this architecture started to overfit. The best loss
value on the test set was 2.10 × 10−7 for 512 neurons. For
GaborQResNet, increased neuron size caused a drop in loss
values, but this time we did not detect an overfit for the archi-
tecture. The best loss value on the test set was 8.73 × 10−8

for 1024 neurons.
In Figure 9, It can be seen that the performances of all

models performances were generally improved when the
neuron size was increased for Test Signal 3. However, the per-
formance of the FourierQResNet model worsened when the
neuron size increased from 512 to 1024. For GaborQResNet,
this behavior was not observed, and loss values continued
to decrease while neuron size increased, and the loss’s final
training and test values were the smallest.

In Figure 10, It can be observed that the performances
of all models generally were enhanced when the neuron
size was raised for Test Signal 5. However, the performance
of the FourierQResNet model deteriorated when the neuron
size increased from 512 to 1024. For GaborQResNet, this
behavior was not detected, and all the loss values persisted in
decreasing as the neuron size increased, and the final training
and test loss values were the smallest among themodels under
investigation.

Table 7 showsMSE ,MAE , and R2 metric values vs. neuron
size results for Target Signal 3. Target Signal 3 is slightly
complicated and contains smaller frequency parts than Tar-
get Signal 5. For the FourierNet, it reached the maximum
R2 value of 1.0 with 128 neurons. GaborNet achieved its
maximum R2 value of 0.999 with 6 layers and diminished

to 0.996 with 8 layers included. For our proposed models,
FourierQResNet and GaborQResNet obtained R2 value of
1.0 using only 64 neurons. For the MSE and MAE metrics,
the FourierNet attained its best test MSE and MAE values of
1.32 × 10−2 and 2.02 × 10−2 respectively with 1024 neu-
rons, and the GaborNet reached its best test MSE and MAE
values of 2.39× 10−3 and 1.04× 10−2 respectively by using
1024 neurons. For our proposed models, FourierQResNet
obtained its best test MSE and MAE values of 7.13 × 10−4

and 5.19 × 10−3 respectively with 512 neurons, and the
GaborQResNet achieved its best test MSE and MAE val-
ues of 3.03 × 10−4 and 5.09 × 10−3 respectively by using
1024 neurons. We also observed that GaborQResNet with
1024 neurons had much better MAE and MSE values than
FourierQResNet with 1024 neurons. According to the experi-
mental results obtained for Test Signal - 3, our proposed novel
neural network models had much less training and test MAE
and MSE values than the other models evaluated.

Table 8 lists MSE , MAE , and R2 metric values vs.
layer size results for Target Signal 5. According to these
results, we observed the same behavior for all four models
as for the loss values when we investigated these met-
rics. FourierNet reached at maximum R2 value of 1.0 with
128 neurons. GaborNet achieved a maximum R2 value of
1.0 with 32 neurons. For our proposed models, FourierQRes-
Net and GaborQResNet obtained R2 value of 1.0 using only
32 neurons. For the MSE and MAE metrics, the Fourier-
Net attained its best test MSE and MAE values of 3.58 ×

10−7 and 4.29 × 10−4 respectively with 1024 neurons, and
the GaborNet achieved its best test MSE and MAE values
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FIGURE 9. Experiment 3: loss value vs neuron size for target signal - 3 (a) FourierNet (b) FourierQResNet (c) GaborNet
(d) GaborQResNet Neural Network Models (y-axis in log scale).

FIGURE 10. Experiment 3: loss value vs neuron size for target signal - 5 (a) FourierNet (b) FourierQResNet (c) GaborNet
(d) GaborQResNet Neural Network Models (y-axis in log scale).

TABLE 7. Experiment 3: comparison of model metrics for Target Signal 3.

of 1.97 × 10−6 and 4.51 × 10−4 respectively by using
1024 neurons. For our proposed models, FourierQResNet
obtained its best test MSE and MAE values of 2.10 × 10−7

and 3.61 × 10−4 respectively, with 512 neurons, whereas
GaborQResNet achieved its best test MSE , MAE values of
8.78×10−8 and 2.02×10−4 respectively, using 1024 neurons.
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TABLE 8. Experiment 3: comparison of model metrics for Target Signal 5.

We also observed that increasing the neuron size from 512 to
1024 did not improve the MSE and MAE metric values for
the FourierQResNet. According to the experimental results
obtained for Test Signal 5, our proposed novel neural network
models had much less training and testing MAE and MSE
values than the other models under investigation. When all
the experimental results were examined, it was discovered
that the proposed novel quadratic multiplicative filter-based
neural network models, FourierQResNet and GaborQRes-
Net, achieved higher performance levels than the others that
could not be managed. Our experimental results also show
that GaborQResNet performed better than FourierQResNet,
and has a much higher learning capacity and expressivity.
In almost all cases (target signals), GaborQResNet has con-
siderably lower training and test loss values, MAE and MSE
values, and higher R2 values. FourierQResNet possesses
these capabilities. Exploiting Hadamard-product-based neu-
ral quadratic networks in conjunction with multiplicative
operations improves the performance of the proposed neural
network models studied in this work. In addition to this
neuron size comparison experiment, in the next section,
we design another experiment to investigate the effect of
the number of dataset sizes for each model to gain much
more intuition on the learning capacity and expressivity of
the proposed novel neural networks.

D. EXPERIMENT 4: THE EFFECT OF THE DATA SET SIZE
VARIATION
We empirically examined the effect of varying the dataset size
on the learning and convergence capabilities of the GaborNet,
GaborQResNet, FourierNet, and FourierQResNet models by
using the test signals given in Equation 28, Equation 30,
and Equation 34 in Experiment 4. All signals were sampled
with different numbers of points (data set sample points ∈

{512, 1024, 2048, 4096, 10240}) according to their charac-
teristics to generate the training and test datasets. All models
were trained with specified learning rates, a fixed neu-
ron size with constant layer depth, and no hyperparameter
search/tuning method was applied. For this experiment,
we set the learning rate to 0.001, the layer size of each model
to five, and the number of neurons for each layer to 256. For
training, the batch size was set to 64, and the Stochastic Gra-
dient Descent (SGD) optimizer was used for the optimization.

All models were trained in 2000 epochs with SGD for three
different test signals, and the training and testing progress
was recorded. We did not use the Adam optimizer for this
experiment to investigate the actual convergence behavior of
the models. We tested the learning ability of the models for
the given complex target signals with different data set sizes
in limited training epochs. After completing the training,
we investigated the training and test loss values and other
performance metrics defined in the previous section. The
results of this experiment are shown given in Figures 11, 12
and 13, and Tables 9, 10, 11, and 12.

Table 9 shows a comparison of the model training and test
loss values for Target Signals 2, 4, and 8. Figures 11, 12
and 13 depict the training and test loss values with respect
to the dataset size for target signals 2, 4, and 8, respectively.
From the results in Table 9, it can be seen that training
and test loss values of the FourierNet and GaborNet mod-
els were not improved by increasing the dataset size and
remained nearly constant around the values of 3.0 × 10−5

and 2.0 × 10−2 respectively, for Test Signal 2. However,
FourierQResNet and GaborQResNet models’ test loss values
were around 1.84 × 10−6 and 2.67 × 10−7 for 1024 data
points, respectively. In light of these numerical results, our
proposed models provided much better performance using
only 1024-point data for Test Signal 2, and adding more data
did not further improve the loss values. Similar results were
obtained for Test Signal 4. For Test Signal 8, we observed
similar behavior with the number of data points. Because this
signal includes very high-frequency components, the number
of required data points for the train models was higher than
the other models. For all models, only 4096 data points were
required, and increasing this value beyond 4096 did not help
to improve the model performance. We obtained the best
results with FourierQResNet and GaborQResNet with test
loss values of 3.37 × 10−7 and 7.53 × 10−8.
In Figure 11, the training and test loss values of the models

with respect to the dataset size for Target Signal - 2 are shown.
The training loss values of the FourierNet and GaborNet
models were not enhanced by expanding the dataset size
and remained almost constant for Test Signal 2. Nonethe-
less, training and test loss values of the FourierQResNet and
GaborQResNet models were less than those of the FourierNet
andGaborNet models for every data set size, and addingmore
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TABLE 9. Experiment 4: comparison of model loss values for Target Signals 2, 4 and 8.

data points to the dataset did not further enhance the loss
values.

In Figure 12, the training and test loss values of the models
with respect to the dataset size for Target Signal - 4 are
shown, and we observed similar results for Test Signal 2.
Training and test loss values of the FourierNet and GaborNet
models were not improved by extending the dataset size and
nearly remained steady for Test Signal 4. Nevertheless, Fouri-
erQResNet and GaborQResNet models’ training and test loss
values were smaller than the FourierNet and GaborNet mod-
els for every dataset size, and including more additional data
points in the dataset did not further enhance the loss values.

In Figure 13, the training and test loss values of the models
with respect to the dataset size for Target Signal - 8 are shown.
We can see that only 4096 data points were required to train
all the models, and increasing this value beyond 4096 did
not help to improve the model performances. We obtained
the best results with FourierQResNet and GaborQResNet.
In addition, the training and test loss values of the Fouri-
erQResNet and GaborQResNet models were less than those
of FourierNet and GaborNet models for every data set size,
and including extra data points in the data set did not posi-
tively affect the loss values further.

In Table 10, the effect of dataset size on MSE , MAE , and
R2 metric values for Target Signal 2 is presented. Fouri-
erNet reached a maximum R2 value of 1.0 with 512 data
points. GaborNet achieved a maximum R2 value of 0.96 with
4096 data points, and it did not reach a value of 1.0. For
our proposed models, FourierQResNet and GaborQResNet
obtained R2 value of 1.0 using only 512 data points, and
further increasing the data point size did not affect this metric.
For the MSE and MAE metrics, FourierNet attained its best
test MSE and MAE values of 2.81 × 10−5 and 4.25 × 10−3

respectively with 4096 data points, and GaborNet achieved
its best test MSE and, MAE values of 1.65 × 10−2 and
4.27 × 10−2 respectively, using 4096 data points. For our
proposed models, FourierQResNet obtained its best testMSE
andMAE values of 1.16×10−6 and 8.23×10−4 respectively
with 4096 data points, and the GaborQResNet achieved its
best test MSE and, MAE values of 2.49 × 10−7 and 3.25 ×

10−4 respectively, using 2048 data points. We also observed
that increasing the dataset size from 1024 to 10240 did not
improve MSE and MAE metric values for FourierQResNet

and GaborQResNet. According to the experimental results
obtained for Test Signal 2, our proposed novel neural network
models had much less training and testing MAE and MSE
values than the other models under investigation for Test
Signal 2.
In Table 11, the impact of dataset size on MSE , MAE ,

and R2 metric values for Target Signal 4 is presented. Fouri-
erNet reached a maximum R2 value of 1.0 with 512 data
points. GaborNet achieved amaximumR2 value of 0.998with
2048 data points, and it did not reach a value of 1.0. For
our proposed models, FourierQResNet and GaborQResNet
archived an R2 value of 1.0, using only 512 data points. For
the MSE and MAE metrics, FourierNet achieved its best test
MSE and MAE values of 6.96 × 10−5 and 6.71 × 10−3

respectively, with 1024 data points, and GaborNet achieved
its best test MSE and MAE1 values of 3.68 × 10−3 and
2.94 × 10−2 respectively, using 1024 data points. The addi-
tional data points did not improve the results of these models.
For our proposed models, FourierQResNet obtained its best
test MSE , MAE values of 3.76 × 10−6 and 1.56 × 10−3

respectively with 2048 data points, and the GaborQResNet
achieved its best test MSE , MAE values of 1.46 × 10−6

and 6.93 × 10−4 respectively by using 4096 data points.
We also observed that increasing the dataset size from 2048 to
10240 did not improve MSE and MAE metric values for
FourierQResNet or GaborQResNet. Based on the experimen-
tal findings for Test Signal 4, compared to the other models
under consideration for Test Signal 4, our innovative neural
network models exhibited much lower training and testMAE
andMSE values.
The effect of the dataset size on the MSE , MAE , and

R2 metric values for Target Signal 8 is shown in Table 12.
Using 512 data points, FourierNet achieved the highest
R2 value of 1.0. Using 512 data points, GaborNet reached
a maximum R2 value of 0.994 with 2048 data points but
fell short of the value of 1.0. With just 512 data points,
FourierQResNet and GaborQResNet produced an R2 value
of 1.0 for our suggested models. The best test MSE and
MAE values for FourierNet and GaborNet, respectively, were
8.59× 10−6 and 2.28× 10−3 for theMSE andMAE metrics
for 10240 data points, and 7.55 × 10−4 and 1.39 × 10−2,
respectively, for the MSE and MAE metrics for 2048. The
findings of these models do not benefit from additional data
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FIGURE 11. Loss value vs. dataset size for Target Signal - 2 (a) FourierNet (b) FourierQResNet (c) GaborNet
(d) GaborQResNet Neural Network Models (y-axis in log scale).

FIGURE 12. Loss value vs. dataset size for Target Signal - 4 (a) FourierNet (b) FourierQResNet (c) GaborNet
(d) GaborQResNet Neural Network Models (y-axis in log scale).

TABLE 10. Experiment 4: comparison of model metrics for Target Signal 2.

points. FourierQResNet and GaborQResNet each achieved
their best test MSE and MAE values with 10240 data points,
and the best test MSE and MAE values were 7.25 × 10−8

and 2.28 × 10−3, respectively. FourierQResNet’s best test
MSE and MAE values were 3.59 × 10−7 and 2.10 × 10−4,
respectively. Based on the test results for Test Signal 4, our
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FIGURE 13. Loss value vs. dataset size for Target Signal - 8 (a) FourierNet (b) FourierQResNet (c) GaborNet
(d) GaborQResNet Neural Network Models (y-axis in log scale).

TABLE 11. Experiment 4: comparison of model metrics for Target Signal 4.

novel neural network models showed much lower training
and test MAE and MSE values than the other models taken
into account for Test Signal 4.

The findings of this experiment led us to conclude that
FourierQResNet and GaborQResNet, our proposed inno-
vative quadratic multiplicative filter-based neural network
models, outperformed other models with smaller data sets.
Additionally, the findings of our experiment demonstrate
that GaborQResNet is more capable of learning than Fouri-
erQResNet. GaborQResNet has significantly reduced train-
ing and test loss,MAE andMSE values, and higher R2 values
in virtually all circumstances (target signals). Likewise, these
abilities were possessed by FourierQResNet. The perfor-
mance of our suggested models was enhanced by using
Hadamard-product-based neural quadratic networks together
with multiplicative operations.

The success of the proposed new models and the changes
in the hyper-parameters that affect this success, specific to
different signals from previous experiments, were investi-
gated. From these experiments, it was discovered that the
performance of the proposed innovative models was better
than that of other models when evaluated from different
perspectives. The fact that sensor signals contain different
frequency components shows sudden changes, and contain

noise makes it very difficult to model such signals using deep
neural networks. An experiment was designed to examine and
evaluate the proposed innovative neural network models and
other neural network models in terms of spectral bias. The
findings are presented in the following section.

E. EXPERIMENT 5: SPECTRAL/FREQUENCY BIAS
This experiment aims to compare the spectral bias of our
proposed GaborQResNet and FourierQResNet models with
other artificial neural network models. All models were
examined using three different approaches to confirm our
other hypothesis, which claims that the proposed models
can achieve more successful results under the influence of
spectral bias and are less affected by this phenomenon. For
spectral/frequency bias inspections, we used the projection-
based relative error and the frequency band correspon-
dence metrics, and their explicit definitions are given in
Equations 40 and 41 in Section II-G. In addition, an extended
version of the signal defined in [6] was used to investigate
the frequency/spectral bias, and its definition is given by
Equation 36. The waveform and its accompanying frequency
spectrum are shown in Figures 4a and 4b, respectively. This
signal contains both low and high-frequency components
with different phase angles. It also contains very low and
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TABLE 12. Experiment 4: comparison of model metrics for Target Signal 8.

FIGURE 14. Evolution of the frequency spectrum (a) QNN Model (b) QResNet Model (c) MLP model.

high-frequency components; some of the frequency compo-
nents are very close (densely placed), and some are distant
from each other. Therefore, it helps investigate the spectral
bias concept of neural networks at both low and high frequen-
cies with different spectral distances.

In this experiment, all models examined were divided into
three different groups according to the results obtained in
Experiment 1. The first of these groups was determined to be
models that could not effectively learn target signals, such as
MLP, QNN, and QResNet. The second group, which includes
the GaborNet and FourierNet models, was chosen as the
model that did not show sufficient learning performance but
was more successful than the first group. The third group
consists of the GaborQResNet and FourierQResNet models
proposed in this study, which exhibit fast convergence and
high learning capacity. The groups determined in Experi-
ment 1 were used to present the results of this experiment to
facilitate our analyses and to make more evident inferences
when comparing the models.

For the first analysis, we assessed the evolution of the
frequency spectrum for all models using target signal 10 given
in Equation 36. The input points {xi}Ni=1 are sampled from a

uniform distribution xi
iid
∼ U(0, 1). The output values {yi}Ni=1

are the function values yi = f (xi), and by uniformly sam-
pling 500 i.i.d. points from this input distribution, {Ai}13i=1 =

1.0, and φi
iid
∼ {U(0, 2π )}13i=1. By using these parameters,

training, and testing data sets, Dtrain = {(xi, yi)}
Ntrain
i=1 and

Dtest = {(xi, yi)}
Ntest
i=1 , were generated. All models were

trained with specific learning rates, fixed neuron size, and
fixed layer depth, and no hyperparameter search/tuning
method was applied. For this experiment, we set the learn-
ing rate to 0.001, the layer size of each model to six,
and the number of neurons for each layer to 256 for
all models. For training, the batch size was set to 64,
and the Stochastic Gradient Descent (SGD) optimizer was
used for the optimization. All the models were trained in
6000 epochs with SGD with the data generated from the
target signal 10, and training and testing progress, PBRE ,
and FBCM metrics were recorded for all models. This
process was repeated ten times with different random num-
ber seeds. Our target signal includes the frequencies of
f ∈ {5, 10, 15, 20, 25, 30, 35, 40, 100, 110, 120, 130, 150}
Hz with different phase information (sampled randomly).
We assessed the models’ prediction power on these specific
frequencies for the target signal 10 and investigated the eval-
uation of the effect of the spectral bias phenomenon on all
models during the training by using the metrics described
previously. (In Figures 14,15, and 16, the colors in the visual
representation indicate the magnitude of the network spec-
trum at a given frequency, which has been normalized by
the target magnitude at that same frequency, represented as
|f̃ki |/Ai. The color bar has been adjusted to display values
between 0 and 1.)

As depicted in Figure 14, it can be observed that the
QNN, QResNet, and MLP models (group one models) are
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FIGURE 15. Evolution of the frequency spectrum (a) FourierNet Model (b) GaborNet model.

FIGURE 16. Evolution of the frequency spectrum (a) FourierQResNet Model (b) GaborQResNet model.

significantly affected by the phenomenon of spectral bias.
It was discovered that these models did not acquire infor-
mation for frequencies greater than 100 Hz even after
6000 epochs. All the models were capable of acquiring infor-
mation at frequencies below 50 Hz after reaching 1200 rev-
olutions. After 1200 epochs, information in the frequency
range of 0-50 Hz was gradually learned with increasing iter-
ation/epoch count in all models. However, when the iteration
number was increased to 6000, the QNN, QResNet, andMLP
models were unable to reach accurate values at these fre-
quencies. Among these models, we discovered that QResNet
was the least affected by the phenomenon of spectral bias,
QNN was the second least affected model, and MLP was
the worst affected model. When we investigate the group
two model (FourierNet and GaborNet) results, depicted in
Figure 15, we notice that these models were slightly affected
by the phenomenon of spectral bias. It was discovered that
these models accurately acquired information for frequencies
between 0-50 Hz in 1200 epochs. After 1200 epochs, the
signal information in the 50-150 Hz frequency range was

almost equally learned with increasing iteration/epoch count
by all models. However, when the iteration count reached
6000 epochs, all models could reach accurate final values
of 1.0 in the entire frequency range. Among these mod-
els, we found that GaborNet was the least affected spectral
bias and was negligibly better than FourierNet. Figure 16
shows the outcomes of the evolution of the frequency spec-
trum for FourierQResNet and GaborQResNet training, which
were evaluated as part of the final visual inspection of the
group three models. It was determined that the impact of
spectral bias on these models was negligible. The findings
indicate that the models effectively obtained signal informa-
tion within the 0-50 Hz frequency range after a mere 20-40
epochs. Following 40-50 iterations, all models demonstrated
comparable acquisition of signal information within the 50-
150 Hz frequency range as the number of iterations/epochs
increased. Upon reaching approximately 60 epochs, all mod-
els were able to attain precise final values of 1.0 across the
entire frequency range. Among the set of models examined,
GaborQResNet exhibited the least susceptibility to spectral
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bias and demonstrated a marginal improvement over Fouri-
erQResNet. In conclusion, the suggested models exhibited
rapid convergence in the frequency intervals of 40-150 Hz
and 0-40 Hz.

According to the findings of the preceding analysis, the
proposed models exhibit superior performance in terms
of spectral bias, rapid convergence, and learning capacity.
Despite being affected by spectral bias, the influence of
this phenomenon was negligible. Furthermore, these models
were able to acquire knowledge of intricate signal features,
including high-frequency components, within a short train-
ing period. In a subsequent analysis, we demonstrated this
proficiency with regard to two distinct metrics. As a brief
reminder, in order to measure the spectral bias at distinct
frequencies, we used FBCM and PBRE . FBCM reveals the
degree to which any model prediction at the training step
corresponds to the actual signal in the frequency domain, and
PBRE is the relative discrepancy between the neural network
prediction and the target function for defined target frequen-
cies k at each training step that can be calculated. These
metrics have considerable advantages and provide numerical
values for each training step.

Our analysis reveals that the group one models, namely
QNN, QResNet, and MLP, were notably affected by the
occurrence of spectral bias. The PBRE metric variations of
the QNN, QResNet, and MLP models during the training
are presented in Figure 17. The PBRE values exhibited an
earlier convergence within the frequency range of 5-40 Hz in
the QNN model compared to frequencies exceeding 100 Hz.
However, it is noteworthy that this metric remained constant
even at the 6000th epoch for higher frequencies. The QRes-
Net model exhibited an earlier convergence of the PBRE
values within the frequency range of 5-25 Hz. Nevertheless,
the aforementioned metric exhibited a comparatively lower
rate of decline for frequencies of 30, 35, and 40 Hz. Ulti-
mately, the PBRE metric value stabilized for frequencies
exceeding 100 Hz subsequent to the conclusion of training.
Similar results were observed for the MLP model, as in
the case of QNN. However, the convergence rates for the
frequencies of 30, 35, and 40 Hz were comparatively slower.
However, the convergence rate for the frequencies of 5, 10,
15, 20, and 25 Hz was even slower than that of QNN and
QResNet. In conclusion, it was observed that the PBRE
metric exhibited significant oscillations for the MLP and
QResNet models in the lower frequency range. The increase
in frequency results in a reduction in the amplitude of the
ripple.

According to the observations, the spectral bias phe-
nomenon had little impact on the GaborNet and FourierNet
models (which are part of Group Two). The PBRE metric
variations of the GaborNet and FourierNet models dur-
ing training are shown in Figure 18. In contrast to prior
models in group one, it was observed that during training,
the decrease rates of PBRE values for frequencies rang-
ing from 5 to 140 Hz reached comparable final values
(around ∼ 10−6) earlier than for the 150 Hz frequency in

both models. Furthermore, GaborNet exhibited a marginally
superior convergence rate compared with FourierNet, partic-
ularly during the initial 1000 epochs. In conclusion, there was
no variability in the PBRE measure across all frequencies in
the aforementioned models.

Empirical observations revealed that the spectral bias
phenomenon barely affected the GaborQResNet and Fouri-
erQResNet models (group three models). The PBRE metric
variations of the GaborQResNet and FourierQResNet models
during training are shown in Figure 19. In contrast to earlier
group one and two models, the reduction rates of PBRE
values across all frequencies ranging from 5 to 150 Hz con-
verged to comparable final values (approximately ∼ 10−9)
in a rapid manner during the training process. The ultimate
PBRE metric outcome exhibited a significantly lower mag-
nitude than the models of groups one and two. In conclusion,
we noted a marginal fluctuation in the PBRE measure across
all frequencies subsequent to the attainment of the ultimate
values, which persisted until the termination of the training
process for these models.

Figure 20 illustrates the variation in the QNN, QResNet,
and MLP models during training, specifically in the context
of the FBCM variation. The QNN model demonstrated a
faster convergence of FBCM values in the frequency range
of 5-40 Hz as opposed to frequencies above 100 Hz. It is
important to note that the aforementioned metric exhibited a
relatively stable trend after the 1000th epoch with respect to
lower frequencies. The QResNet architecture demonstrated
accelerated convergence of FBCM metrics in the frequency
range of 5-25 Hz. However, the metric demonstrated a rel-
atively lower rate of escalation for frequencies of 30, 35,
and 40 Hz. The FBCM metric value exhibited no improve-
ment beyond 100 Hz at the end of the training. Comparable
results were noted in the MLP model, similar to those in
the QNN and QResNet scenarios. The convergence rates of
QNN and QResNet were higher than that of 5, 10, 15, 20,
and 25 Hz frequencies. However, the convergence rates for
the frequencies of 30, 35, and 40 Hz were comparatively
slower. Ultimately, the FBCM metric displayed notable fluc-
tuations across all frequency spectra for each model. The
heightened occurrence of this phenomenon led to a decrease
in the oscillation magnitude. In all the models examined,
it was observed that the FBCM metric did not attain the best
value of 1.0. Instead, the metric remained either below or
above the ideal value at each frequency for all models in group
one.

The interpretation of the training process of the FourierNet
and GaborNet models, which belong to group two models,
using FBCM is depicted in Figure 21. The frequency compo-
nents of the signal reached convergence before 1500 epochs
for both models in group two. Both models demonstrated a
marginal overshoot before converging to an optimal metric
value of 1.0. In contrast to the group one models, the group
two models exhibited a constant FBCM value throughout the
training process without any observed oscillatory behavior.
The disparity in the convergence rate between the lower and
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FIGURE 17. Relative errors with projection method (a) QNN Model (b) QResNet Model (c) MLP model.

FIGURE 18. Relative errors with projection method (a) FourierNet Model (b) GaborNet model.

FIGURE 19. Relative errors with projection method (a) FourierQResNet Model (b) GaborQResNet model.

FIGURE 20. Frequency band correspondence metric (a) QNN Model (b) QResNet Model (c) MLP model.

higher frequencies was negligible. In summary, the study
found that spectral bias had a minor effect on the performance
of the group two models, yet it remained present in these
models.

Figure 22 depicts the change in the value of FBCM value
for the FourierQResNet and GaborQResNet models belong-
ing to group three over the course of their training. The

frequency components of the signal achieved convergence
prior to 80 epochs for both models in group three. The
FourierQResNet model demonstrated a notable overestima-
tion phenomenon which was particularly evident in the lower
frequency range of up to 40 Hz. The GaborQResNet model
exhibited a minor overshoot for the aforementioned frequen-
cies, after which both models reached a state of stability and
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FIGURE 21. Frequency band correspondence metric (a) FourierNet Model (b) GaborNet model.

FIGURE 22. Frequency band correspondence metric (Zoomed View Epochs From 0 to 125) (a) FourierQResNet Model (b)
GaborQResNet model.

ultimately converged toward an optimal metric value of 1.0.
In contrast to the models in group one, the group three models
exhibited a consistent FBCM value throughout the training
process without any observed oscillatory behavior. The rate
of convergence exhibited a disparity between the lower and
higher frequencies, which was comparatively lower than that
observed in the models belonging to groups one and two.
Furthermore, the rapidity of the convergence of the frequency
components was observed to be the highest among all the
models employed in this experiment. In summary, it was dis-
covered that the models still exhibited spectral bias, although
their influence was found to be insignificant in group three
models.

This study validates our prior hypotheses and demon-
strates that the neural network models we have proposed,
namely FourierQResNet andGaborQResNet, exhibit remark-
able convergence and learning aptitudes for the purpose of
learning. Significantly, the proposed neural network models
exhibited negligible spectral bias in comparison to the other
models examined in this research.

V. CONCLUSION
In this study, we introduced two novel Quadratic Residual
Multiplicative Filter Neural Networks (QRMFNNs), Fouri-
erQResNet and GaborQResNet, for the efficient approx-
imation of complex sensor signals and investigated their
perfect spectral bias performance. The study also exam-
ined their optimal spectral bias performance. The empirical
findings revealed the enhanced efficacy of FourierQRes-
Net and GaborQResNet compared to conventional tech-
niques and pre-existing neural network architectures. Both

networks demonstrated exceptional precision in approximat-
ing intricate sensor signals, proficiently mitigating conver-
gence speed. In addition, the networks exhibited remarkable
capability in addressing spectral bias, a crucial challenge
frequently encountered in analyzing sensor signals and other
learning-related tasks.

Through careful examination and assessment, we mea-
sured the optimal spectral bias efficacy of FourierQResNet
and GaborQResNet in diverse scenarios. The exhibited
networks demonstrated resilience and dependability in mit-
igating the unfavorable impacts of spectral bias, rendering
them exceedingly appropriate for practical implementations.
The ability of these networks to capture intricate patterns and
minimize the impact of spectral bias makes them powerful
tools for sensor signal analysis. As a result, the investigation
of the perfect spectral bias performance of FourierQResNet
and GaborQResNet revealed their robustness and reliability
in mitigating spectral bias. By effectively handling varia-
tions in signal acquisition conditions and sensor limitations,
these networks performed remarkably in eliminating spec-
tral bias, thus ensuring more accurate and reliable signal
approximation. These findings have important implications
for real-world applications in which spectral bias can signif-
icantly affect the quality of sensor data analysis.

FourierQResNet and GaborQResNet present a range of
opportunities and potentials to enhance the reliability and
appropriateness of sensor data analysis. These advanced
neural network architectures effectively address existing
challenges and introduce improvements to the field. Firstly
they incorporate Fourier and Gabor filters to capture pat-
terns and textures in sensor data. This approach overcomes
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convergence speed and spectral bias issues, which often
impede data interpretation. FourierQResNet makes use of
the Fourier bases to capture patterns in the domain, while
GaborQResNet leverages Gabor filtering to extract local
spatiotemporal patterns. Both networks excel in approximat-
ing sensor signals and exhibit resilience in handling bias
resulting in more precise and trustworthy analysis without
using activation functions. Moreover, by integrating proper-
ties of quadratic residual neural networks and multiplicative
filter neural networks, FourierQResNet and GaborQResNet
demonstrate improved learning capacity, expressivity, and
error reduction when approximating sensor signals compared
to traditional methods. The combination of recursive filter-
ing operations instead of activation functions and quadratic
residual neural network properties positions FourierQResNet
and GaborQResNet as tools for enhancing the reliability and
suitability of sensor data analysis across diverse domains.

Although the results are promising, it is essential to
acknowledge the limitations of this study. First, the experi-
ments were conducted on a diverse dataset of sensor signals.
However, further validation on more extensive and various
datasets would strengthen the generalizability of the findings.
Additionally, this research focused on perfect spectral bias
performance, and future investigations could explore network
performance in scenarios with imperfect spectral bias. Future
research could explore several areas for further improvement
and application. Firstly, the optimization of network archi-
tectures and training strategies can enhance the efficiency and
accuracy of FourierQResNet andGaborQResNet. In addition,
the integration of other advanced filtering techniques and data
augmentation methods may offer further improvements in
signal approximation and noise reduction. As another future
study, experimenting with these models in high-dimensional
learning problems would prove their effective use in the
domains that require processing high-dimensional data, such
as image and sensor signal classification.

In conclusion, the FourierQResNet and GaborQResNet
models constitute noteworthy progress within the domain
of sensor signal approximation. The findings of this study
contribute to the advancement of sensor signal analysis and
offer new possibilities for improving the reliability and accu-
racy of data interpretation in various domains. By addressing
these limitations and exploring future research directions,
we can continue to refine and enhance the capabilities of these
networks, fostering progress in sensor data analysis and its
practical applications.
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