
Received 1 July 2023, accepted 19 July 2023, date of publication 21 July 2023, date of current version 16 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3297977

IoT Network Cybersecurity Assessment With the
Associated Random Neural Network
EROL GELENBE 1,2, (Life Fellow, IEEE), AND MERT NAKIP 1, (Student Member, IEEE)
1Institute of Theoretical and Applied Informatics, Polish Academy of Sciences (PAN), 44100 Gliwice, Poland
2Université Côte d’Azur, CNRS I3S, 06103 Nice, France

Corresponding authors: Erol Gelenbe (seg@iitis.pl) and Mert Nakıp (mnakip@iitis.pl)

This work was supported by the European Commission (EC) Horizon 2020 Project IoTAC (Security By Design IoT Development and
Certificate Framework with Front-end Access Control) under Grant 952684.

ABSTRACT This paper proposes a method to assess the security of an n device, or IP address, IoT
network by simultaneously identifying all the compromised IoT devices and IP addresses. It uses a specific
Random Neural Network (RNN) architecture composed of two mutually interconnected sub-networks that
complement each other in a recurrent structure, called the Associated RNN (ARNN). For each of the n
devices or IP addresses in the IoT network, two distinct neurons of the ARNN advocate opposite views:
compromised or not compromised. The fully interconnected 2n neuron ARNN structure of paired neurons
learns offline from ground truth data. Thus rather than requiring a separate attack detector at each network
node, the ARNN offers a single overall attack detector that observes the incoming traffic at each node, learns
about the interdependencies between network nodes, and formulates a recommendation for each device or
IP address in an IoT network. The ARNN weight initialization and learning algorithm are discussed, and the
ARNN performance is evaluated using real attack data, and compared against several learning and testing
techniques. Results are obtained both for off-line learning with ground truth data, and for on-line incremental
learning using a simplified averagemetric measured from incoming packet traffic. Comparisons with the best
state-of-the-art techniques show that the ARNN significantly outperforms previously known approaches.

INDEX TERMS Internet of Things (IoT), cybersecurity, botnets, machine learning, associated randomneural
network, MIRAI attacks.

I. INTRODUCTION
A ‘‘Botnet’’ is a cyberattack that can spread Distributed
Denial of Service (DDoS) attacks and malware [1], [2] over
thousands of devices [3], by targeting IoT devices or IP
addresses, and installing malware on its victims, which in
turn may become ‘‘bots’’ which generate malicious traffic
and spread the malware further to yet other devices [4]. As an
example, in 2016, the massive MIRAI DDoS Botnet targeted
Domain Name System (DNS) provider Dyn [5] and gained
access to servers of several leading cybersecurity compa-
nies [6].

Botnets increase network congestion through additional
traffic that overwhelms the communication ports of the
devices they attack, but they also exploit the physical and
logical resources of victim devices, including their batteries,

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

processors, memory, operating systems and network soft-
ware [7]. Therefore, it is crucial to rapidly identify both
compromised IoT devices and malicious packets during a
Botnet attack to prevent its propagation and stop it before
it can do a huge amount of harm. However, other forms of
attacks can target simple IoT systems as well, causing a lot of
harm.

A. RELATED WORK
Botnet Attack Detection. In early work on Botnet attacks,
their source code [8] and capabilities [5], as well as other
characteristics of these attacks have been examined [9]. In
order to detect Botnet attacks, recent research has used
ML and deep learning approaches, such as Logistic Regres-
sion [10], the Multi-Layer Perceptron (MLP) [11], [12], [13],
[14], [15], Classification and Regression Trees (CART) [16],
Gradient Boosting [17],Long-Short Term Memory (LSTM)-
based techniques [18], [19], and sparse representation [20]. In

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 85501

https://orcid.org/0000-0001-9688-2201
https://orcid.org/0000-0002-6723-6494

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

[21], the MLP and the Convolutional Neural Network (CNN)
were employed with learning on the focal loss to detect
IoT intrusions, while in [22] Naive Bayes was combined
with an evolutionary feature selection method to develop
a signature-based system to detect Botnet, DDoS, and port
scan attacks. In [23], a Botnet attack detection system that
classifies the network traffic using beta mixture model based
on a set of statistically extracted traffic features is discussed.

Recent research on cyberattack detection has also used
self-supervised learning systems. For example, in [24], a self-
supervised learning algorithm combining LSTM with CNN
was developed for anomaly-based attack detection for net-
works inside vehicles. The bidirectional Generative Adver-
sarial Network (GAN) was used for anomaly detection [25],
and a Graph Neural Network (GNN) network-level IDS was
developed in [26].
Accurate results have also been obtained for the Deep

Random Neural Network (DRNN) with offline [27] and
incremental [28] learning to detect MIRAI attacks, while the
DRNN was shown to achieve high performance for detect-
ing different types of unknown attacks simultaneously [29].
Earlier work [30] examined the performance of the clas-
sical Random Neural Network (RNN) [31] with offline
gradient-descent learning [32] to detect SYN denial of ser-
vice (DoS) attacks. On the other hand, whereas the work
reviewed above focused on detecting cyberattacks and mali-
cious traffic, in this paper, we develop an ARNN-based
decision system that identifies the compromised IoT nodes.
Successful identification of compromised nodes along with
malicious traffic paves the way to fend off distributed
attacks (e.g. Botnet and DDoS attacks) in their early
stages.

Compromised Device Identification. Whereas the majority
of related papers identify compromised devices by detect-
ing malware conveyed by Botnets, some work focuses on
identifying compromised devices directly using a variety of
techniques including: optimization [33], analyzing commu-
nication features [34], using language analysis [35], tracking
device location [36], or monitoring the downlink channels
of a gateway [37]. Moreover, Reference [38] proposed an
ML-based system that analyzes traffic flows and packet
features in network layer to identify intrusions in an IoT
system. In [39], a Botnet detection system, called BotStop,
was developed based on extreme gradient boosting model
that analyzes packet traffic. In [40], a Compromised Device
Identification System (CDIS-DRNN) is developed based on
the DRNN model [41] that analyzes the network nodes’
incoming and outgoing traffic. The performance of different
attack detection techniques can depend on which datasets are
used for learning and testing, and prior to the current paper,
the CDIS-DRNN offered the best available state-of-the-art
performance for compromised device identification when the
publicly available Kitsune Botnet dataset [42], [43] is used.
However, none of these works considered the interrelation-
ships between IoT nodes and the propagation of a Botnet
attack through these nodes.

In recent work a method was proposed to evaluate a set
of network or IoT nodes simultaneously in a single recurrent
RNN architecture composed of two interconnected and asso-
ciated neural networks [44], trained and tested with ground
truth data. Therefore, in the sequel we will also compare the
ARNN technique developed in this paper using the Kitsune
dataset, against the performance offered by CDIS-DRNN.

B. CONTRIBUTIONS OF THIS PAPER
This paper develops an Associated Random Neural Network
(ARNN) decision system, designed to assess the overall secu-
rity of an IoT network by identifying compromised devices
using aggregated multi-node traffic information. The ARNN
utilizes two associated RNN neurons for each IoT device (or
IP address) in the network that is being assessed for security.
These neurons assess the security level of specific devices,
and advocate that the device is compromised or not based
on the information provided by traffic metrics measured
at the device, and inter-neuron weights with other neurons
that assess neighbouring network nodes. ARNN based attack
detection was previously introduced in [44], and initially
evaluated for a system that learns from ground truth data and
is then tested for the same ground truth data.

Here, it is hypothesized that the ARNN successfully iden-
tifies compromised IoT nodes based on its ability to learn
both the interrelationships between those nodes and the
propagation of a cyberattack. Therefore, after detailing the
ARNN learning algorithm’s components: the error metric, the
weight restrictions, the ARNN initialization, and its learn-
ing algorithm are discussed in the Appendix, we thoroughly
evaluate its performance for Mirai Botnet attacks on an IoT
network with 107 nodes using the Kitsune dataset [42].

First, we train the ARNN on ground truth data from the
initial part of the Kitsune dataset, and test its prediction
capabilities with ground truth data from the disjoint latter part
of the dataset.

Next, we discuss an average normalized metric based on
six relevant metrics [40] extracted from traffic data. We then
test the ARNN trained with ground truth data, using the
average input metric over the testing period which is disjoint
from the training period and is subsequent to it. In all cases we
evaluate the Accuracy, True Positive Rate and True Negative
Rate of the ARNN and observe very accurate attack detection
for most of the 107 nodes that are contained in the Kitsune
dataset.

Finally, we compare the performance of ARNN against
the state-of-the-art best-in-class CDIS-DRNN and four
well-known Machine Learning (ML) models for the same
problem [40]. In this case, we also train the ARNN without
the ground truth but using the ARNN incrementally on suc-
cessive short training cycles, followed by testing, and pursued
for all of the available Kistune data set. The experimental
results again indicate that the ARNN offers superior perfor-
mance – achieving 100% median accuracy and above 92%
accuracy for more than 75% of the network nodes in the
dataset – with about 3.5 ms of detection time.

85502 VOLUME 11, 2023

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

FIGURE 1. ARNN based Network-Wide Cyberattack Assessment for an n node network.

The proposed ARNN decision system has the following
characteristics:

1) It is an architecture based on the RNN [31] as shown in
Figure 1, which associates a pair Xi, Yi of neurons to
assess the security level of each of the i-the node in an
n-node IoT network, to determine which IoT devices
are compromised. Note that while we consider IoT
networks as the object of our research, this approach
can also be used for other collections of interconnected
IP addresses. While Xi’s role is to defend the thesis that
i is compromised, Yi defends the opposite thesis. Thus
the ARNN has a total of only 2n neurons for evaluating
an n-node network.

2) Using ground truth data, the ARNN is trained with a
specific gradient descent learning algorithm.

3) During usage or testing, the ARNN receives as input
the average value of the traffic characteristics that are
used to test the CDIS-DRNN and other ML models.
This results in substantial computational savings since
a scalar input replaces a vector of six elements.

4) Due to its associated and interconnected architecture
with a simplified ignorant weight initialization, the
ARNN provides accurate assessment on the security of
all devices or IP addresses in a network.

II. CONSTRUCTING THE ARNN FOR NETWORK-WIDE
CYBERSECURITY ASSESSMENT
We now detail the Network-Wide Cybersecurity Assessment
method based on a novel ARNN decision system. This
method provides an assessment of the overall security of
an IoT network, taking into account the interconnections of
devices and the local information provided by these devices.
In this method, the ARNN decision system learns direct and
indirect relationships between devices in a single network,
and estimates the spread of an attack among devices in the
IoT network.

The ARNN is composed of n pairs of neurons which are all
interconnected in a recurrent structure, where each pair corre-
sponds to an IoT device (or node or IP address) in the network
as shown in Figure 1.Xi and Yi act as ‘‘adversaries’’ indicating
whether the node i is compromised or not. Accordingly, the
internal state of Xi, denoted by Ki(t) ≥ 0 indicates that node

i is compromised, and that of Yi, denoted by ki(t) ≥ 0,
denotes the opposite. As one of the main properties of an
RNN neuron, if Ki(t) at any time t is strictly positive, then
Xi sends excitatory and/or inhibitory spikes to the neurons
of node j ̸= i respectively at rates W+ij , W−ij ≥ 0. Similarly,
if ki(t) is strictly positive, Yi sends excitatory and/or inhibitory
spikes to j ̸= i respectively at rates w+ij , w

−

ij ≥ 0. We define
the probability that these 2n neurons are firing as

For Xi : Qi = lim
t→∞

Prob[Ki(t) > 0], (1)

For Yi : qi = lim
t→∞

Prob[ki(t) > 0]. (2)

In this decision system, when any neuron of node i (Xi or Yi)
fires, the internal state of this neuron drops by 1 as Ki(t+) =
Ki(t) − 1 or ki(t+) = ki(t) − 1. When any neuron of node i
receives an excitatory spike, its internal state increases by 1,
i.e. Ki(t+) = Ki(t)+ 1 or ki(t+) = ki(t)+ 1. Similarly, when
it receives an inhibitory spike, its internal state drops by 1 if
the current state is not zero, i.e. Ki(t+) = max[0,Ki(t) − 1]
or ki(t+) = max[0, ki(t)− 1].
The ARNN equations are a special case of the RNN equa-

tions [31], so that:

Qi =
3i +

∑n
j=1W

+

ji Qj

λi +
∑n

j=1[W
+

ij +W
−

ij]+
∑n

j=1 w
−

ji qj
,

qi =
λi +

∑n
j=1 w

+

ji qj

3i +
∑n

j=1[w
+

ij + w
−

ij]+
∑n

j=1W
−

ji Qj
, (3)

where 3i is the rate of external excitatory spikes arriving to
Xi, while it is the rate of external inhibitory spikes arriving
to Yi. On the other hand, λi has exactly the opposite effect.
We will choose these two quantities to lie between zero and
one: 3i ∈ [0, 1], λi ∈ [0, 1].

A. RESTRICTING THE WEIGHTS AND INITIALIZING THE
ARNN
The ARNN weights are restricted to reduce the number of
gradient descent computations, namely:
• Throughout the network we set the ‘‘self-weights’’ to
zero: W+ii = W−ii = w+ii = w−ii = 0.

• For all i ̸= j we fix:

W = W+ij +W
−

ij = w+ij + w
−

ij , (4)

VOLUME 11, 2023 85503

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

for a given value of W > 0 that is detailed below,
so that the gradient descent computation only computes
W+ij , w+ij ∀i, j. Note that we are dealing with a fully
recurrent network so that all distinct nodes are inter-
connected, since each neuron is connected to all other
neurons when i ̸= j, while for the paired ‘‘opposing
neurons’’ which are not directly connected in one step,
they are connected indirectly to each other via other
neurons. The ARNN equations then become:

Qi =
3i +

∑n
j=1W

+

ji Qj

λi + (n− 1)W
∑n

j=1 qj(W − w
+

ji)
,

qi =
λi +

∑n
j=1 w

+

ji qj

3i + (n− 1)W +
∑n

j=1Qj(W −W
+

ji)
. (5)

• During learning, a total of 2n(n − 1) weights are com-
puted for an ARNN that is assessing the security of an
n-node IoT network. The inhibitory weights are obtained
directly from the value of W minus the excitatory
weight, since W remains constant. Because of the spe-
cific mathematics of the RNN learning algorithm [32]
only one inversion of a 2n× 2n matrix is needed at each
gradient descent step to update all of the weights for the
fully connected ARNN.

The ARNN is first initialized so that it does not know
initially whether any of the devices (or IP addresses) are
compromised. To this effect:

• To represent perfect ignorance for all neurons we select
the network input rates and weights that will result in
Qi = qi = 0.5 for all the neurons, with 3i = λi = 3,
where 3 is chosen below.

• Similarly for i ̸= j the weights are set to W+ij = W−ij =
w+ij = w−ij = 0.5W , where W > 0.

As a result we write:

0.5 = qi = Qi =
3+ 0.5QiW (n− 1)

W (n− 1)+3+ 0.5qiW (n− 1)
,

yielding 3 = 0.75W (n− 1). (6)

Thus if we takeW = 1, we have 3 = 0.75(n−1), and obtain
Qi = qi = 0.5, 1 ≤ i ≤ n, so that the ARNN is ‘‘ignorant’’
before the learning algorithm is used.

B. THE ARNN EXTERNAL INPUTS 3i AND λi
The external inputs are obtained from data from packet statis-
tics in the network, or from ground truth that is used for
training the ARNN, regarding whether given packets are
attack packets or normal packets, or other data used for
training, or real operational data for testing.

We therefore consider that Qi ∈ [0, 1] and qi ∈ [0, 1] are
functions Qi(3i, λi) and qi(λi, 3i). Noting that:

Qi(1− qi)
qi(1− Qi)

= lim
t→∞

Prob[Ki(t) > ki(t)], (7)

we define the outputs of the ARNN for each network node i,
as being the binary Zi variables:

Zi = 1 if
Qi(1− qi)
qi(1− Qi)

> γ > 0, Zi = 0 otherwise, (8)

where Zi = 1 stands for node i being compromised, while
Zi = 0 has the opposite meaning, and 0 < γ < 1 is a
threshold.

C. THE LEARNING DATASET LD
The Learning Dataset is a set of packets LD where, for each
packet, we know in advance whether it is an attack or a
benign, i.e. ‘‘normal’’, packet. Thus the LD is used to train
the ARNN.

The set of packets LD that we use to train the ARNN,
as well as the dataset used for testing, contain the ground truth
for each packet denoted pk(t, s, d, a), where:
• t is the transmission instant of the packet from the source
node s, and d is the packet’s destination node,

• a is a binary label so that a = 1 indicates that it is an
‘‘attack’’ packet and a = 0 that it is a ‘‘benign’’ packet,

• The length of the packet in bytes, including the header,
is denoted by |pk(t, s, d, a)|.

• Packets are grouped into ‘‘slots’’ lasting τ = 10 sec-
onds, so that the packet’s slot number is l = ⌊∗⌋ t

τ
, i.e.

when (l − 1)τ ≤ t < lτ , and M is the total number of
slots in the dataset: 1 ≤ I ≤ M ,

In the dataset that we use, we observe that on average roughly
100 packets are contained in a 10 sec time slot.

We now determine the successive ARNN inputs from the
dataset LD, namely: 3l

Gi ∈ [0, 1] and λlGi = 1 − 3l
Gi, the

corresponding output K l
i , and the decision output Z lGi which

is a binary variable related to K l
i .

Let S l(i) and Rl(i) be the set of packets that have been
transmitted or received by node i from the first slot until the
end of the l = ⌊ t

τ
⌋-th time slot:

S l(i) = {pk(t, s, d, a) : 0 < t ≤ lτ, ∀d, a = 0, 1},

Rl(i) = {pk(t, s, d, a) : 0 < t ≤ lτ, ∀s, a = 0, 1},

and:

If |Rl(i)| > 0, then 3l
Gi =

|{pk(t, s, i, 1) : ∀s}|
|Rl(i)|

,

else 3l
Gi = 0. (9)

Furthermore

λlGi = 1−3l
Gi. (10)

When a node receives a significant number of attack packets,
one expects that it may be compromised, and in turn send out
attack packets. Therefore the l-th desired output for node i as
K l
i is the ratio of attack packets sent by node i to all other

nodes until the end of the l = ⌊ t
τ
⌋-th time window:

If |S l(i)| > 0 , then K l
i =
|{pk(t, i, d, 1), ∀d}|

|S l(i)|
,

else if |S l(i)| = 0 , then K l
i = 0. (11)

85504 VOLUME 11, 2023

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

We also define the i-th binary decision variable asDli for some
threshold 1 > θ > 0 regarding the ground truth:

Dli =

{
1 if K l

i > θ,

0, otherwise
(12)

so that Dli = 1 indicates that i is a compromised node in the
l-th slot, while Dli indicates the opposite.

On the other hand, since the ARNN is trained directly with
the values of K l

i as output, we use the metric defined in (8) to
evaluate the output decision from the ARNN, namely:

Z li =

 1 if
Qi(3l

i, λ
l
i)
[
1− qi(λli, 3

l
i)
]

qi(λli, 3
l
i)
[
1− Qi(3l

i, λ
l
i)
] > γ > 0,

0, otherwise
(13)

where(3l, λl) are the corresponding n-vectors obtained from
ARNN input data at the l-th slot.

D. LEARNING THE ARNN WEIGHTS FROM THE LD
To construct a balanced training dataset LD, the sequence of
slots in the MIRAI dataset [42] was scanned from the first
slot l = 1 up to and including the first slot where some node
sends attack packets, which turns out to be slot l = 445, and
the LD then included slot 433 up to and including slot 457
(a total of 25 slots). On the other hand, the test dataset TD
contains all the subsequent slots, starting with slot 458.

The ARNN is trained with the LD that uses the slots l
of the dataset which are being used for training using the
Gradient Descent Algorithm detailed in the Appendix, with
the learning rate η = 0.1. It adjusts the ARNN weights so
as to minimize the following error function (14) for each
successive bucket l within the LD:

El =
1
2

n∑
i=1

[(
Qi(3l

i, 1−3l
i)− K

l
i
)2

+
(
qli(1−3l

i, 3
l
i)− (1− K l

i)
)2]

, (14)

where Qli(.) and q
l
i(.) are obtained from (5).

E. TESTING THE ARNN’S PREDICTION CAPABILITY
We first test the ARNN’s ability to act as a predictor about
whether a node is compromised, based on training with the
LD composed of the sequence of 25 slots around the first slot
that contained some compromised nodes, namely slot 445.
The test data stream that is subsequent to the LD that is used,
namely slot l = 445+ 13 up to the last slot l = 713.
Testing therefore uses the input values 3l

i, λ
l
i for 458 ≤

l ≤ 713 in the trained ARNN, and the ARNN then outputs
the corresponding Z li values, with θ = 0.3 as the threshold
in obtaining the ground truth decision variables Dli from
expression (12). The threshold to produce the testing output
Z li is typically of the form γ = 1 − ϵ where ϵ is often zero
and always well under 0.1.

The Accuracy, True Positive Rate (TPR) and True Negative
Rate (TPR) of ARNN are detailed in Figures 2, 3, and 4.

On the other hand, Figure 5 shows a box-plot for the
statistics related to all the node addresses and indicates that
the ARNN offers high performance with a median accuracy
of 100%. In addition, although the TPR is almost zero for 9 of
the addresses, while TNR is almost 0 for 22 addresses; hence
the Accuracy exceeds 95% for 80% of all addresses.

Figure 2 displays the average decision accuracy for each
address i ∈ {1, . . . , 107}, showing that the accuracy of
ARNN is above 95% for 50% of the IP Addresses while
it is between 62% and 80% for only 20% of them without
ever being under 62%, while Figure 4 exhibits the average
TNR for the addresses. For 59% of the addresses, the TNR
lies above 95% while for 15% of them it is in the 62% to
80% range. Finally in Figure 3 the average TPR is shown
for the 39 addresses which were at least once compromised
according to the ground truth indicator. The TPR exceeds
95% for most (64%) addresses, and exceeds 90% in over 74%
of the them.

III. TESTING THE ARNN WITH THE AVERAGE TRAFFIC
METRIC
Six representative traffic metrics were introduced in recent
work [40] as being indicative of network attacks and were
shown to be effective for MIRAI Botnet detection using
available real datasets. Rather than using the full metrics,
in this section their average normalized value will be used
to test the ARNN attack detector.

To define these metrics, let |p| be the size in bytes of some
packet p, including its header and all the data it contains. Let
PS,i
l be the set of all packets sent by all network nodes to node
i in slot l, and let the maximum length in bytes of packets sent
by node s to i up to the end of slot l, be L ls = max{|p| : p ∈
Pl(s)}. The six metrics from [40], all normalized to a value
between 0 and 1, are as follows:
• Average packet size of packets received by device i in
slot l:

x i,1l =

∑
p∈PS,i

l
|p|∑

s∈S L
l
s × |P

S,i
l |

. (15)

• The maximum size of any packet received at node i in
slot l:

x i,2l =
maxp∈PS,i

l
|p|

L lS
. (16)

Denial of Service attacks are not always carried out with
large packets; for instance, SYN attack packets can be
quite short since their effect is to overload the receiving
node with requests to open a connection, rather than
with the amount of traffic that is being sent. However,
the amount of traffic sent by other types of Denial of
Service attacks are often meant to cause link and node
congestion, so that the amount of attack traffic can be
large, and the length of packets that are sent by attackers
can be large too. Thus, the amount of traffic and packet
size are often relevant metrics for detecting attacks.

VOLUME 11, 2023 85505

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

FIGURE 2. The average accuracy of the ARNN predictions for all
addresses 1 ≤ i ≤ 107 is shown for the test data TD, by comparing the
ground truth binary value Y l

i with the ARNN’s binary output Z l
i .

• The average number of packets received at i in slot l from
all nodes:

x i,3l =
|PS,i
l |∑

s∈S 1[|P
s,i
l | > 0]

. (17)

Note that the denominator in the above expression can
be computed iteratively in an efficient manner, so that
x i,3l can be obtained directly from x i,3l−1.

• The (normalized) maximum number of packets received
by node i from any single source in the slot l:

x i,4l =
maxs∈S |P

s,i
l |

maxs∈S, 1≤u≤l |P
s,i
u |

. (18)

where Ps,il denotes the set of packets sent from node s to
node i during slot l.

• Finally, the last two metrics, both normalized to lie
between 0 and 1, describe the total number of bytes sent
to all destinations d by node i, and the total number of
packets sent by i to all d :

x i,5l =
1
Bi

∑
d

∑
p∈Pi,dl

|p|, x i,6l =
Lmi
Bi

∑
d

|Pi,dl |, (19)

where, Lmi is the maximum length of any packet that i
sends, and Bi is the maximum number of bytes sent out
by i in any slot:

Bi = max{
∑
d

∑
p∈Pi,dl

|p|.|Pi,dl | : 1 ≤ l ≤ M} .

Since each neuron at any node of ARNN has a single input,
i.e. 3i or λi, for testing purposes we only use the average
value of the normalized metrics as the input to each neuron
of ARNN for slot l:

3l
i,mean =

∑6
k=1 x

i,k
l

6
, λli,mean = 1−3l

i,mean. (20)

FIGURE 3. The average percentage TPR is shown over all the slots for
each of the 107 addresses in the network, obtained by comparing Y l

i and
Z l

i for those values of l where Y l
i = 1. Note that if Y l

i = 0 for an address i
in all the slots l in the TD, then the TPR cannot be measured for i . Thus
only 39 out of 107 addresses are concerned by the TPR, as shown in the
figure.

FIGURE 4. The average percentage TNR is shown over all the slots for
each of the 107 addresses in the network, obtained by comparing Y l

i and
Z l

i for those values of l where Y l
i = 1. Note that if Y l

i = 1 for an address i
in all the slots l in the TD, then the TNR cannot be measured for i .

FIGURE 5. The Accuracy, TPR and TNR performance of the ARNN
algorithm is illustrated by box-plots for the statistics obtained from the
results in Figures 2, 3, 4.

A. THE ARNN TRAINED WITH THE GT AND TESTED WITH
AVERAGE METRICS
In the first test using the average metric based input data,
we use the ARNN trained with the ground truthGT from real
attack LD sequence of 25 slots starting at l = 432 up to 457,
as before. Then for each i we use the average metric value
to compute 3l

i,mean for l = 458 to l = 713. We input the
corresponding values 3l

i,mean, λ
l
i,mean = 1−3l

i,mean into the
ARNN for testing.

85506 VOLUME 11, 2023

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

FIGURE 6. The Accuracy, TNR and TPR of the ARNN algorithm are shown
as box-plots for the ARNN trained with the GT and tested with the
average metric values for 458 ≤ l ≤ 713.

The ARNN output is the Z li value for each successive l and
for each node i, as given in (13) with a threshold which can
differ in the range 0.96 ≤ γ ≤ 1 or 0 ≤ ϵ ≤ 0.04. The
threshold θ = 0.3 is used for the output decision variablesDli
for the known GT . The results are summarized in Figure 6,
where we see that the median performance with respect to
each of Accuracy, TPR, and TNR is 100%.

ARNN achieves Accuracy above 99% for 97 of 107 IP
Addresses, while there are 10 nodes with outlier performance,
three with Accuracy below 30%, two between 60% − 30%,
and five node addresses with Accuracy between 80%−60%.
In addition, as the lower whisker shows, TPR is above 86%
for 75% of all nodes, and while lowest TNR performance is
about 98.5%.

B. ARNN TRAINED AND TESTED WITH THE AVERAGE
METRICS
We now consider training as well as testing the ARNN using
the average metric inputs 3l

i,mean and λli,mean = 1−3l
i,mean.

To this effect, we still use the ground truth data represented
by K l

i , in the algorithm detailed in the Appendix. The error
function that needs to be minimized during training becomes:

El =
1
2

n∑
i=1

[(
Qi(3l

i,mean, 1−3l
i,mean)− K

l
i
)2

+
(
qli(1−3l

i,mean, 3
l
i,mean)− (1− K l

i)
)2]

, (21)

withQli(.) and q
l
i(.) are given by equation (5), and the gradient

descent parameters is as previously η = 0.1.
With regard to the previous case where the ARNN was

trained with the GT , we see some very very minor variations
in Accuracy, True Positive Rate and True Negative Rate. For
instance, in our experiments we only observed 3 network
nodes out of 107 where Accuracy differed between the previ-
ous sub-section and this one. In particular we observed that:

• For i = 37, Accuracy using Average Metric based
learning is ACC = 92.68% while using the GT it is
92.54%,

• For i = 46 we have ACC = 95.49% while with GT
training it is ACC = 95.63%, and

FIGURE 7. The Accuracy, TPR, TNR of the ARNN algorithm are shown as
box-plots for the ARNN trained and tested with the average metric values
for 458 ≤ l ≤ 713.

• For i = 47 we have ACC = 93.1% using the Average
Metric for training, while using the GT it is ACC =
93.94%.

In fact, we also observe that using the Average Metric for
training results in general in somewhat fewer False Alarms,
i.e. a higher True Negative Rate. The corresponding results
are summarized in the Box Plot Diagram for Accuracy, True
Positive and True Negatives given in Figure 7.

IV. INCREMENTAL TRAINING OF THE ARNN
In recent work [40], the CDIS-DRNN, a compromised device
identification method was presented. This attack detection
method is trained sequentially on the assumption that off-line
ground truth data is not available. CDIS-DRNN is composed
of a deep learning feedforward RNN architecture which does
not exploit knowledge of the interconnections between net-
work nodes.

Thus, as with CDIS-DRNN, in this section we will assume
that offline training data is not available in advance of the
exploitation of the ARNN for attack detection. In such a case,
the ARNN will be trained incrementally in parallel to its
online operation. To this end, we update the weights of the
ARNN every successive 6 slots, i.e. at the end of slot l such
that mod(l, 6) = 0, where each training window corresponds
to 1 minute, whereas the ARNN provides a decision for
each device i at the end of each individual slot l, i.e. every
10 seconds.

Thus using the data for a successive set of 6 slots,
the ARNN is trained with the algorithm presented in the
Appendix, using the training data TD constructed a follows:

TD = {(Al
′

i ,K
l′
i), l

′
= l − 5, . . . , l}.

We now present the performance of the incrementally
trainedARNNdecision system for compromised device iden-
tification. During the performance evaluation, we set 2 =

0.3 and 0.96 ≤ γ ≤ 1. The Accuracy, True Negative Rate
(TNR), and True Positive Rate (TPR) of the ARNN with
incremental training are presented in Figure 9 as a Box-plot.
The results in this figure show that the ARNN achieves a
median accuracy of 100% while Accuracy is shown to be
greater than 97% for 75% of all network nodes. These results

VOLUME 11, 2023 85507

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

FIGURE 8. Performance comparison of the ARNN with the CDIS-DRNN approach [40] with respect to (left) Accuracy, (middle)
TNR, and (right) TPR.

FIGURE 9. The accuracy, TPR, TNR of the ARNN algorithm are shown as
box-plots for the ARNN trained and tested with the average metric values.

also show that the TNR is above 99% for approximately
72% of nodes, while 58% of the nodes are 100% accurately
identified as being compromised, which provides a median
TPR value of 100%.

In Figure 8, we compare the performance of the ARNN
with similar results obtained recently with the CDIS, which
is a DRNN-based system [40], with respect to Accuracy,
TNR and TPR. The results show that the ARNN significantly
outperforms the CDIS-DRNN by providing approximately
50% higher Accuracy for all network nodes. This appears to
be due to the fact that the ARNN, through its internal neuron
connections, is able to simultaneously process information
regarding the nodes themselves, and also regarding their con-
nections to other nodes.

We further compare the performance of ARNN against
four well-known ML models 1-Dimensional Convolutional
Neural Network (1D CNN), Long-Short Term Memory
(LSTM), Multi-Layer Perceptron (MLP), and Decision Tree
(DT), which are often used for intrusion detection systems
in recent research [10], [11], [14], [19], [45]. The MLP is
comprised of three fully connected layers each with n neu-
rons. 1D CNN and LSTM respectively consist of convolution
and LSTM layers connected to two fully connected layers,
where each layer is comprised of n neurons. In addition,

TABLE 1. Comparison of the ARNN with well-known ML models with
respect to execution and training times.

all activation functions in 1D CNN, MLP, and LSTM are
sigmoids, and we implemented these models using Keras
API in Python. For the implementation of DT, we used the
Scikit-learn library in Python setting the maximum depth and
maximum number of features equal to n.

Figure 10 displays the comparison of ARNN with 1D
CNN, LSTM, MLP, and DT with respect to Accuracy, TPR,
TNR, F1 Score, Recall, and Precision. These results show
the superior overall performance of ARNN against these
well-known ML models. It can be seen that the performance
of the ARNN is slightly lower than DT in terms of average
Accuracy, TNR and Precision but significantly higher than
the other models in terms of TPR, F1 Score and Recall. Thus
although DT is slightly better than ARNN at detecting neg-
ative samples (i.e. DT gives fewer false positives compared
to ARNN), ARNN significantly outperforms all models (at
least by 19%) in detecting compromised nodes.

Finally, Table 1 compares the same set of ML models
with respect to execution and training times, showing that
the ARNN is the second fastest in online operation, among
the five methods that were tested, with an execution time of
≈ 3.5ms to rapidly identify nodes compromised bymalicious
Bots in real time, but it is the slowest one regarding learning.
For an n-node IoT or IP network’s attack prediction, the Deep
LearningAlgorithm for theARNNbased on a fully connected
‘‘recurrent’’ RNN with 2n neurons [32], requires at each

85508 VOLUME 11, 2023

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

FIGURE 10. Performance comparison of the ARNN with well-known ML models with respect to Accuracy, TNR, TPR, F1
Score, Recall, and Precision.

learning step (1) the inversion of a 2n × 2n matrix of time
complexity A(2n)3 = 8An3, (2) the solution of the equation
for the state vectors Q, q of time complexity B(2n)(2n)2 =
8Bn3, and the updates 2n(2n − 1) individual weights, for a
total computation time per learning step:

TARNN (n) ≈ 8(A+ B)n3 + 4Cn2, (22)

for positive constants A, B, C . On the other hand, the CNN
or the MLP are feedforward models, typically with three
feedforward layers, whose learning algorithm is of time com-
plexityO(n2). Thus they will require the update of some most
2n2 weights, yielding a Learning computational time:

TFF(n) ≈ 2bn2, (23)

for a positive constant b which is comparable to C . This
simplistic calculation suggests an approximate 8(A+B)n3

2bn2
=

4nA+Bb fold increase in learning times for the ARNN with
respect to an MLP or CNN model. For the n = 107 network
that is evaluated in this paper, this corresponds to a 428× A+B

b
fold increase, and for A+B ≈ 20b this analysis is compatible
with the results shown in Table 1.

V. DISCUSSION REGARDING THE RESULTS
During our experimental evaluation:
• The ARNN is first trained offline with ground truth data
and tested with disjoint ground truth data exhibiting a
high level of precision.

• Then, the offline trained ARNN is tested with a sim-
plified average input metric directly extracted from
measurements, and again a high level of precision is
observed.

• The average metric is then used as input for offline train-
ing, while the ground truth is used in the error function,
and testing is carried out with the average metric using
disjoint data.

• Finally, online incremental training using the testing
data output for learning is also tried, without use of the
ground truth.

All these experiments use the Kitsune dataset, and confirm
the high level of accuracy of the ARNN’s predictions.

Experiments are also conducted to compare the ARNN
for the identification of compromised IoT nodes using
real MIRAI Botnet attack data from the Kitsune dataset,
with the recent state-of-the-art CDIS-DRNN technique
[40] and the well-known 1D CNN, LSTM, MLP and
DT models are also carried out, indicating that the
ARNN:

• Provides significant improvement compared to CDIS-
DRNN, achieving 92% median accuracy and minimum
60% accuracy per node,

• Outperforms the ‘‘best-of-class’’ CDIS-DRNN by a
wide margin with respect to both TNR and TPR, and

• Identifies compromised nodes in just under 3.5 ms at
least 19% more accurately than 1D CNN, LSTM, MLP
and DT models.

Accordingly, as its main advantage, the ARNN success-
fully captures the interrelationships and communication pat-
terns between devices, thus providing considerably high
identification performance that is superior to state-of-the-art
techniques. On the other hand, although the ARNN provides
a detection in under 3.5 ms, it requires significantly longer
training time compared to well-known ML models. That is,
while the current design and implementation of the ARNN
learning algorithmmay not be suitable for time-limited online
learning applications, it is highly successful and promising
in identifying compromised nodes with offline learning and
online detection.

VI. CONCLUSION
This paper presents and evaluates the novel ARNN cyber-
attack decision system that utilizes two interconnected
competing RNN neurons for each IoT node, where each
network node is related to a neuron pair connected with
all the neurons associated with other nodes in the network.
The unique structure of the ARNN evaluates the security

VOLUME 11, 2023 85509

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

of each node in a given network by including locally rel-
evant data from incoming traffic as well as the relation-
ship between all nodes, as part of the decision mechanism.
In this way, ARNN learns, as one of its most important
features, both the normal communication patterns between
nodes and the propagation of a cyberattack over the IoT
network.

The ARNN can be particularly useful for private or
industrial networks containing a few hundred nodes. It
can be used to detect attacks such as Botnets, where dis-
tinct node behaviours are correlated due to the propaga-
tion of the attack. Its use with average traffic metrics
measured directly on incoming traffic at each network
node, removes the need for separate computationally costly
attack detectors that are placed at each node in the
network. Thus, in sharp contrast with traditional attack
detectors, the ARNN collectively evaluates a large num-
ber of interconnected nodes in a single neural network
architecture at a low additional computation cost per
node.

We have presented the ARNN architecture, with weight
restrictions to simplify learning, and ‘‘ignorant initialization’’
that helps to avoid initial biases of the ARNN. The error func-
tion used for ARNN learning is introduced, and the specific
gradient learning algorithm is detailed in the Appendix. Most
of the paper is then devoted to evaluating the performance
of the ARNN using real Botnet attack data, and real benign
traffic and comparing that against the state of the art meth-
ods based on the commonly used metrics of Accuracy, True
Positive Rate, True Negative Rate, F1 Score, Recall, and Pre-
cision. The results revealed that ARNN achieved significantly
superior performance with highly accurate detection of com-
promised nodes and low false alarms, but with high training
time.

In future work, the computational complexity of ARNN
learning which was discussed in this paper from a theo-
retical perspective, will be analyzed in detail from prac-
tical experimental data, and incremental schemes will be
considered for on-line learning to reduce the amount of
energy that such algorithms consume [46]. Since many
IoT devices have limited battery power, this is impor-
tant for sustainability, and it can also enhance IoT
security.

APPENDIX
THE ARNN LEARNING ALGORITHM
The ARNN uses the Random Neural Network (RNN) which
is an effective approximator for continuous and bounded
functions [47], based on principles in [48], whose gradient
descent learning is described in [32]. Other RNN learning
algorithms are described in [49] and [50], and the G-Network
queueing model [51], [52], [53], [54], [55] is a generalization
of the RNN.

The gradient descent algorithm for the ARNN weights
seeks local minima of E in (14), and computes the

partial derivatives:

QU ,V
i =

∂Qi
∂W+U ,V

, Qu,vi =
∂Qi

∂w+u,v
,

qU ,V
i =

∂qi
∂W+U ,V

, qu,vi =
∂qi

∂w+u,v
,

that are needed in the computation (24):

EU ,V
≡

∂E
∂W+U ,V

=

n∑
i=1

[(Qi − Ki)Q
U ,V
i + (qi − 1+ Ki)q

U ,V
i], (24)

Eu,v ≡
∂E

∂w+u,v

=

n∑
i=1

[(Qi − Ki)Q
u,v
i + (qi − 1+ Ki)q

u,v
i]. (25)

Equations (24), (25) are used to update the ARNN weights
for steps k = 1, 2, . . . of the Gradient Descent Rule with
η > 0:

W+U ,V ,k+1← W+U ,V ,k − ηEU ,V
|W+U ,V ,k

,

w+u,v,k+1← w+u,v,k − ηEu,v|w+u,v,k . (26)

As indicated earlier, the value η = 0.1 is used. From the
inputs 3 = (31, . . . 3n), λ = (λ1, . . . , λn), we derive
the derivatives needed in (26) from (5):

QU ,V
i =

QU
DV

1[i = V]+
n∑
j=1

W+ji
Di

QU ,V
j

−

n∑
j=1

Qi[W − w
+

ji]

Di
qU ,V
j , (27)

qU ,V
i =

n∑
j=1

w+ji
di

qU ,V
j −

n∑
j=1

qi[W −W
+

ji]

di
QU ,V
j

+
qU
dV

1[i = V], (28)

whereDi, di are the denominators ofQi, qi respectively in the
expression (5):

Di = 3i +

n∑
j=1,j̸=i

W +
n∑

j=1,j̸=i

[W − w+ji] .qj,

di = λi +

n∑
j=1,j̸=i

W +
n∑

j=1,j̸=i

[W −W+ji] .Qj. (29)

We write the state vectors Q = (Q1, . . . ,Qn) and
q = (q1, . . . , qn), the corresponding derivatives QU ,V

=

(QU ,V
1 , . . . ,QU ,V

n) and qU ,V
= (qU ,V

1 , . . . , qU ,V
n), and

define the n× n matrices as:

B+ = {
W+ij
Dj
}, C = {

Qj[W − w
+

ij]

Dj
},

F+ = {
w+ij
dj
}, G = {

qj[W −W
+

ij]

dj
}, (30)

85510 VOLUME 11, 2023

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

where vector δV has zero elements everywhere, except for
position V where the value is 1. Then (27) and (28) expressed
as vectors yield:

QU ,V
= B+QU ,V

− CqU ,V
+ δV .

QU
DV

,

qU ,V
= F+qU ,V

− GQU ,V
+
qU
dV

δV ,

= [−GQU ,V
+
qU
dV

δV][I − F+]−1,

resulting in:

QU ,V
= {−

qU
dV

CδV [I − F+]−1 +
QU
DV

δV }.

.{I − B+ − CG[I − F+]−1}−1. (31)

We can then write the matrices:

B+∗ = {
w+ij
dj
}, C∗ = {

qj[W −W
+

ij]

dj
},

F+∗ = {
W+ij
Dj
}, G∗ = {

Qj[W − w
+

ij]

Dj
},

and by the symmetry ofQU ,V and qu,v, and ofQu,v and qU ,V ,
we have:

qu,v = {−
Qu
Dv

C∗δv[I − F+∗]
−1
+
qu
dv

δv}

× {I − B+∗ − C∗G∗[I − F
+
∗]
−1
}
−1,

Qu,v = {−G∗qu,v +
Qu
Dv

δv}[I − F+∗]
−1, (32)

which provides us with the derivatives of Q and q.

REFERENCES
[1] E. Gelenbe, P. Campegiani, T. Czachórski, S. K. Katsikas, I. Komnios,

L. Romano, and D. Tzovaras, Security in Computer and Informa-
tion Sciences. Cham, Switzerland: Springer, 2018. [Online]. Available:
http://library.oapen.org/handle/20.500.12657/23295

[2] E. Gelenbe, M. Jankovic, D. Kehagias, A. Marton, and A. Vilmos,
Security in Computer and Information Sciences, vol. 1596. Nice,
France: Springer, 2021. [Online]. Available: https://link.springer.
com/content/pdf/10.1007/978-3-031-09357-9.pdf

[3] C. Douligeris and A. Mitrokotsa, ‘‘DDoS attacks and defense mecha-
nisms: Classification and state-of-the-art,’’ Comput. Netw., vol. 44, no. 5,
pp. 643–666, Apr. 2004.

[4] D. Goodin. (Dec. 2017). 100,000-Strong Botnet Built on
Router 0-Day Could Strike at Any Time. [Online]. Available:
https://arstechnica.com/information-technology/2017/12/100000-strong-
botnet-built-on-router-0-day-could-strike-at-any-time/

[5] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim, and J. N. Kim, ‘‘An in-depth
analysis of the Mirai botnet,’’ in Proc. Int. Conf. Softw. Secur. Assurance
(ICSSA), Jul. 2017, pp. 6–12.

[6] N. Statt. (Oct. 2016). How an Army of Vulnerable Gadgets Took
Down the Web Today. [Online]. Available: https://www.theverge.
com/2016/10/21/13362354/dyn-dns-ddos-attack-cause-outage-status-
explained

[7] B. Tushir, H. Sehgal, R. Nair, B. Dezfouli, and Y. Liu, ‘‘The impact of DoS
attacks on resource-constrained IoT devices: A study on the Mirai attack,’’
2021, arXiv:2104.09041.

[8] H. Sinanovic and S. Mrdovic, ‘‘Analysis of Mirai malicious software,’’
in Proc. 25th Int. Conf. Softw., Telecommun. Comput. Netw. (SoftCOM),
Sep. 2017, pp. 1–5.

[9] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis,
and D. Kumar, ‘‘Understanding the Mirai botnet,’’ in Proc. 26th USENIX
Secur. Symp., Vancouver, BC, USA, Aug. 2017, pp. 1093–1110. [Online].
Available: https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/antonakakis

[10] A. O. Prokofiev, Y. S. Smirnova, and V. A. Surov, ‘‘A method to
detect Internet of Things botnets,’’ in Proc. IEEE Conf. Russian Young
Researchers Electr. Electron. Eng. (EIConRus), Jan. 2018, pp. 105–108.

[11] R. Doshi, N. Apthorpe, and N. Feamster, ‘‘Machine learning DDoS detec-
tion for consumer Internet of Things devices,’’ in Proc. IEEE Secur.
Privacy Workshops (SPW), May 2018, pp. 29–35.

[12] T. A. Tuan, H. V. Long, R. Kumar, I. Priyadarshini, and N. T. K. Son,
‘‘Performance evaluation of botnet DDoS attack detection using machine
learning,’’ Evol. Intell., vol. 13, pp. 283–294, Jun. 2019.

[13] I. Letteri, M. Del Rosso, P. Caianiello, and D. Cassioli, ‘‘Performance
of botnet detection by neural networks in software-defined networks,’’ in
Proc. ITASEC, 2018, pp. 1–10.

[14] S. Sriram, R. Vinayakumar, M. Alazab, and K. P. Soman, ‘‘Network flow
based IoT botnet attack detection using deep learning,’’ in Proc. IEEE
INFOCOM Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
Jul. 2020, pp. 189–194.

[15] Y. N. Soe, Y. Feng, P. I. Santosa, R. Hartanto, and K. Sakurai, ‘‘Machine
learning-based IoT-botnet attack detection with sequential architecture,’’
Sensors, vol. 20, no. 16, p. 4372, Aug. 2020.

[16] C. S. Htwe, Y. M. Thant, and M. M. Su Thwin, ‘‘Botnets attack detection
using machine learning approach for IoT environment,’’ J. Phys., Conf.,
vol. 1646, no. 1, Sep. 2020, Art. no. 012101.

[17] M. Banerjee and S. Samantaray, ‘‘Network traffic analysis based IoT botnet
detection using honeynet data applying classification techniques,’’ Int. J.
Comput. Sci. Inf. Secur. (IJCSIS), vol. 17, no. 8, pp. 1–6, 2019.

[18] C. D. McDermott, F. Majdani, and A. V. Petrovski, ‘‘Botnet detection in
the Internet of Things using deep learning approaches,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1–8.

[19] J. Liu, S. Liu, and S. Zhang, ‘‘Detection of IoT botnet based on deep
learning,’’ in Proc. Chin. Control Conf. (CCC), Jul. 2019, pp. 8381–8385.

[20] C. Tzagkarakis, N. Petroulakis, and S. Ioannidis, ‘‘Botnet attack detection
at the IoT edge based on sparse representation,’’ in Proc. Global IoT
Summit (GIoTS), Jun. 2019, pp. 1–6.

[21] A. S. Dina, A. B. Siddique, andD.Manivannan, ‘‘A deep learning approach
for intrusion detection in Internet of Things using focal loss function,’’
Internet Things, vol. 22, Jul. 2023, Art. no. 100699.

[22] R. Panigrahi, S. Borah, M. Pramanik, A. K. Bhoi, P. Barsocchi,
S. R. Nayak, and W. Alnumay, ‘‘Intrusion detection in cyber-physical
environment using hybrid Naïve Bayes-decision table and multi-objective
evolutionary feature selection,’’Comput. Commun., vol. 188, pp. 133–144,
Apr. 2022.

[23] J. Ashraf, M. Keshk, N. Moustafa, M. Abdel-Basset, H. Khurshid,
A. D. Bakhshi, and R. R. Mostafa, ‘‘IoTBoT-IDS: A novel statistical
learning-enabled botnet detection framework for protecting networks of
smart cities,’’ Sustain. Cities Soc., vol. 72, Sep. 2021, Art. no. 103041.

[24] H. M. Song and H. K. Kim, ‘‘Self-supervised anomaly detection for in-
vehicle network using noised pseudo normal data,’’ IEEE Trans. Veh.
Technol., vol. 70, no. 2, pp. 1098–1108, Feb. 2021.

[25] X. Zhang, J. Mu, X. Zhang, H. Liu, L. Zong, and Y. Li, ‘‘Deep anomaly
detection with self-supervised learning and adversarial training,’’ Pattern
Recognit., vol. 121, Jan. 2022, Art. no. 108234.

[26] E. Caville, W. W. Lo, S. Layeghy, and M. Portmann, ‘‘Anomal-E: A self-
supervised network intrusion detection system based on graph neural
networks,’’ Knowl.-Based Syst., vol. 258, Dec. 2022, Art. no. 110030.

[27] M. Nakip and E. Gelenbe, ‘‘MIRAI botnet attack detection with auto-
associative dense random neural network,’’ inProc. IEEEGlobal Commun.
Conf. (GLOBECOM), Dec. 2021, pp. 01–06.

[28] M.Nakip and E. Gelenbe, ‘‘Botnet attack detectionwith incremental online
learning,’’ in Proc. Int. ISCIS Secur. Workshop. Nice, France: Springer,
Oct. 2021, pp. 51–60.

[29] E. Gelenbe and M. Nakip, ‘‘G-networks can detect different types of
cyberattacks,’’ in Proc. 30th Int. Symp. Model., Anal., Simul. Comput.
Telecommun. Syst. (MASCOTS), Oct. 2022, pp. 9–16.

[30] S. Evmorfos, G. Vlachodimitropoulos, N. Bakalos, and E. Gelenbe, ‘‘Neu-
ral network architectures for the detection of SYN flood attacks in IoT
systems,’’ in Proc. 13th ACM Int. Conf. Pervasive Technol. Rel. Assistive
Environments, Jun. 2020, pp. 1–4.

VOLUME 11, 2023 85511

E. Gelenbe, M. Nakıp: IoT Network Cybersecurity Assessment With the ARNN

[31] E. Gelenbe, ‘‘Random neural networks with negative and positive signals
and product form solution,’’ Neural Comput., vol. 1, no. 4, pp. 502–510,
Dec. 1989.

[32] E. Gelenbe, ‘‘Learning in the recurrent random neural network,’’ Neural
Comput., vol. 5, no. 1, pp. 154–164, Jan. 1993.

[33] A. Kumar and T. J. Lim, ‘‘Early detection of Mirai-like IoT bots in
large-scale networks through sub-sampled packet traffic analysis,’’ in
Proc. Future Inf. Commun. Conf. Cham, Switzerland: Springer, 2019,
pp. 847–867.

[34] M. Chatterjee, A. S. Namin, and P. Datta, ‘‘Evidence fusion for malicious
bot detection in IoT,’’ in Proc. IEEE Int. Conf. Big Data (Big Data),
Dec. 2018, pp. 4545–4548.

[35] T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni, N. Asokan, and
A.-R. Sadeghi, ‘‘DÏoT: A federated self-learning anomaly detection system
for IoT,’’ in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2019, pp. 756–767.

[36] M. Taneja, ‘‘An analytics framework to detect compromised IoT devices
using mobility behavior,’’ in Proc. Int. Conf. ICT Converg. (ICTC),
Oct. 2013, pp. 38–43.

[37] N. V. Abhishek, T. J. Lim, B. Sikdar, and A. Tandon, ‘‘An intrusion
detection system for detecting compromised gateways in clustered IoT net-
works,’’ in Proc. IEEE Int. Workshop Tech. Committee Commun. Quality
Rel. (CQR), May 2018, pp. 1–6.

[38] M. M. Alani and A. I. Awad, ‘‘An intelligent two-layer intrusion detection
system for the Internet of Things,’’ IEEE Trans. Ind. Informat., vol. 19,
no. 1, pp. 683–692, Jan. 2023.

[39] M. M. Alani, ‘‘BotStop: Packet-based efficient and explainable IoT bot-
net detection using machine learning,’’ Comput. Commun., vol. 193,
pp. 53–62, Sep. 2022.

[40] E. Gelenbe andM. Nakip, ‘‘Traffic based sequential learning during botnet
attacks to identify compromised IoT devices,’’ IEEE Access, vol. 10,
pp. 126536–126549, 2022.

[41] E. Gelenbe and Y. Yin, ‘‘Deep learning with random neural networks,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN). Cham, Switzerland: Springer,
Jul. 2016, pp. 3–18.

[42] (Aug. 2020). Kitsune Network Attack Dataset. [Online]. Available:
https://www.kaggle.com/ymirsky/network-attack-dataset-kitsune

[43] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, ‘‘Kitsune: An ensem-
ble of autoencoders for online network intrusion detection,’’ in Proc. Netw.
Distrib. Syst. Secur. Symp., 2018, pp. 1–15.

[44] E. Gelenbe andM. Nakip, ‘‘Associated random neural networks for collec-
tive classification of nodes in botnet attacks,’’ 2023, arXiv:2303.13627.

[45] G. D. L. T. Parra, P. Rad, K.-K.-R. Choo, andN. Beebe, ‘‘Detecting Internet
of Things attacks using distributed deep learning,’’ J. Netw. Comput. Appl.,
vol. 163, Aug. 2020, Art. no. 102662.

[46] B. Pernici, M. Aiello, J. vom Brocke, B. Donnellan, E. Gelenbe, and
M. Kretsis, ‘‘What IS can do for environmental sustainability: A report
from CAiSE’11 panel on green and sustainable IS,’’ Commun. Assoc. Inf.
Syst., vol. 30, no. 1, p. 18, 2012.

[47] E. Gelenbe, Z.-H.Mao, andY.-D. Li, ‘‘Function approximationwith spiked
random networks,’’ IEEE Trans. Neural Netw., vol. 10, no. 1, pp. 3–9,
Jan. 1999.

[48] G. Cybenko, ‘‘Approximation by superpositions of a sigmoidal function,’’
Math. Control Signals Syst., vol. 2, no. 4, pp. 303–314, Dec. 1989, doi:
10.1007/BF02551274.

[49] S. Basterrech, S. Mohammed, G. Rubino, and M. Soliman, ‘‘Levenberg—
Marquardt training algorithms for random neural networks,’’ Comput. J.,
vol. 54, no. 1, pp. 125–135, Jan. 2011, doi: 10.1093/comjnl/bxp101.

[50] S. Timotheou, ‘‘Fast non-negative least-squares lerning in the random neu-
ral network,’’ Probab. Eng. Informational Sci., vol. 30, no. 3, pp. 379–402,
Jul. 2016.

[51] E. Gelenbe, ‘‘G-networks with instantaneous customer movement,’’
J. Appl. Probab., vol. 30, no. 3, pp. 742–748, 1993.

[52] P. G. Harrison and E. Pitel, ‘‘Sojourn times in single-server queues by neg-
ative customers,’’ J. Appl. Probab., vol. 30, no. 4, pp. 943–963, Dec. 1993.

[53] P. G. Harrison and E. Pitel, ‘‘The M/G/1 queue with negative customers,’’
Adv. Appl. Probab., vol. 28, no. 2, pp. 540–566, Jun. 1996.

[54] J.-M. Fourneau, L. Kloul, and F. Quessette, ‘‘Multiple class G-networks
with jumps back to zero,’’ in Proc. 3rd Int. Workshop Model., Anal., Simul.
Comput. Telecommun. Syst., 1995, pp. 28–32.

[55] M. U. Caglayan, ‘‘G-networks and their applications to machine learning,
energy packet networks and routing: Introduction to the special issue,’’
Probab. Eng. Informational Sci., vol. 31, no. 4, pp. 381–395, Oct. 2017.

EROL GELENBE (Life Fellow, IEEE) received
the B.S. degree from Middle East Technical Uni-
versity, the M.S. and Ph.D. degrees in electrical
engineering from the Tandon School, New York
University, and the D.Sc. degree in mathematical
sciences from Sorbonne University, Paris. He was
a Chair Professor with the University of Liège, the
University of Paris-Saclay, Paris-Descartes Uni-
versity, NJIT, Duke University, UCF, and Imperial
College London. He is currently a Professor with

the Institute of Theoretical and Applied Informatics, Polish Academy of Sci-
ences, a Research Professor with Yaşar University, Turkey, and a Researcher
with the I3S CNRS Laboratory, University Côte d’Azur. He invented meth-
ods to optimize computer and network performance, including diffusion
approximations, G-networks, the random neural network and its machine
learning algorithms, and AI-based network routing that enables multi-party
internet communications, for which he received the 1996 Grand Prix France
Télécom of the French Academy of Sciences, the 2008 ACM SIGMET-
RICS Life-Time Achievement Award, and the 2017 Mustafa Prize. The
Mathematics Genealogy Project ranks him among the world’s top 25 Ph.D.
advisors for graduating 95 Ph.D. students. He also develops methods that
enhance cybersecurity, performance and sustainability in computer systems
and networks. He is a fellow of ACM, IFIP, RSS, IET, the National Academy
of Technologies of France, the Science Academy of Turkey, the Royal
Academy of Science, Arts and Letters of Belgium, and the Science Academy
of Poland, and an Honorary Fellow of the Hungarian Academy of Sciences
and the Islamic Academy of Sciences. He received the honors of Knight of
the Légion d’Honneur, the Commander of Merit by both France and Italy,
and the Commander in the Order of the Crown of Belgium. He chairs the
Informatics Section of Academia Europaea.

MERT NAKIP (Student Member, IEEE) received
the B.Sc. (Hons.) and M.Sc. degrees in electrical
and electronics engineering from Yaşar Univer-
sity, Izmir, Turkey, in 2018 and 2020, respectively.
He is currently pursuing the Ph.D. degree with
the Institute of Theoretical and Applied Informat-
ics, Polish Academy of Sciences, Gliwice, Poland.
His thesis focused on the application of machine
learning methods to the IoT and was supported
by the National Graduate Scholarship Program of

TÜBİTAK 2210C in High-Priority Technological Areas. He is a Research
Assistant with the Institute of Theoretical and Applied Informatics, Polish
Academy of Sciences, Gliwice, Poland. He is a Researcher with the IoTAC
Research and Innovation Action of the European Commission H2020 Pro-
gram. His design of a multi-sensor fire detector via machine learning
methods was ranked #1 nationally at the Industry-Focused Undergraduate
Graduation Projects Competition organized by the Turkish Scientific and
Technological Research Council (TÜBİTAK).

85512 VOLUME 11, 2023

http://dx.doi.org/10.1007/BF02551274
http://dx.doi.org/10.1093/comjnl/bxp101

