IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 1 July 2023, accepted 19 July 2023, date of publication 21 July 2023, date of current version 16 August 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3297977

== RESEARCH ARTICLE

loT Network Cybersecurity Assessment With the
Associated Random Neural Network

EROL GELENBE -2, (Life Fellow, IEEE), AND MERT NAKIP"!, (Student Member, IEEE)

nstitute of Theoretical and Applied Informatics, Polish Academy of Sciences (PAN), 44100 Gliwice, Poland
2Université Cote d’ Azur, CNRS I3S, 06103 Nice, France

Corresponding authors: Erol Gelenbe (seg@iitis.pl) and Mert Nakip (mnakip @iitis.pl)

This work was supported by the European Commission (EC) Horizon 2020 Project IoTAC (Security By Design IoT Development and
Certificate Framework with Front-end Access Control) under Grant 952684.

ABSTRACT This paper proposes a method to assess the security of an n device, or IP address, IoT
network by simultaneously identifying all the compromised IoT devices and IP addresses. It uses a specific
Random Neural Network (RNN) architecture composed of two mutually interconnected sub-networks that
complement each other in a recurrent structure, called the Associated RNN (ARNN). For each of the n
devices or IP addresses in the IoT network, two distinct neurons of the ARNN advocate opposite views:
compromised or not compromised. The fully interconnected 2n neuron ARNN structure of paired neurons
learns offline from ground truth data. Thus rather than requiring a separate attack detector at each network
node, the ARNN offers a single overall attack detector that observes the incoming traffic at each node, learns
about the interdependencies between network nodes, and formulates a recommendation for each device or
IP address in an IoT network. The ARNN weight initialization and learning algorithm are discussed, and the
ARNN performance is evaluated using real attack data, and compared against several learning and testing
techniques. Results are obtained both for off-line learning with ground truth data, and for on-line incremental
learning using a simplified average metric measured from incoming packet traffic. Comparisons with the best
state-of-the-art techniques show that the ARNN significantly outperforms previously known approaches.

INDEX TERMS Internet of Things (IoT), cybersecurity, botnets, machine learning, associated random neural
network, MIRALI attacks.

I. INTRODUCTION

A “Botnet” is a cyberattack that can spread Distributed
Denial of Service (DDoS) attacks and malware [1], [2] over
thousands of devices [3], by targeting IoT devices or IP
addresses, and installing malware on its victims, which in
turn may become ‘“‘bots” which generate malicious traffic
and spread the malware further to yet other devices [4]. As an
example, in 2016, the massive MIRAI DDoS Botnet targeted
Domain Name System (DNS) provider Dyn [5] and gained
access to servers of several leading cybersecurity compa-
nies [6].

Botnets increase network congestion through additional
traffic that overwhelms the communication ports of the
devices they attack, but they also exploit the physical and
logical resources of victim devices, including their batteries,

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

processors, memory, operating systems and network soft-
ware [7]. Therefore, it is crucial to rapidly identify both
compromised IoT devices and malicious packets during a
Botnet attack to prevent its propagation and stop it before
it can do a huge amount of harm. However, other forms of
attacks can target simple IoT systems as well, causing a lot of
harm.

A. RELATED WORK

Botnet Attack Detection. In early work on Botnet attacks,
their source code [8] and capabilities [5], as well as other
characteristics of these attacks have been examined [9]. In
order to detect Botnet attacks, recent research has used
ML and deep learning approaches, such as Logistic Regres-
sion [10], the Multi-Layer Perceptron (MLP) [11], [12], [13],
[14], [15], Classification and Regression Trees (CART) [16],
Gradient Boosting [17],Long-Short Term Memory (LSTM)-
based techniques [18], [19], and sparse representation [20]. In

85501

https://orcid.org/0000-0001-9688-2201
https://orcid.org/0000-0002-6723-6494

IEEE Access

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

[21], the MLP and the Convolutional Neural Network (CNN)
were employed with learning on the focal loss to detect
IoT intrusions, while in [22] Naive Bayes was combined
with an evolutionary feature selection method to develop
a signature-based system to detect Botnet, DDoS, and port
scan attacks. In [23], a Botnet attack detection system that
classifies the network traffic using beta mixture model based
on a set of statistically extracted traffic features is discussed.

Recent research on cyberattack detection has also used
self-supervised learning systems. For example, in [24], a self-
supervised learning algorithm combining LSTM with CNN
was developed for anomaly-based attack detection for net-
works inside vehicles. The bidirectional Generative Adver-
sarial Network (GAN) was used for anomaly detection [25],
and a Graph Neural Network (GNN) network-level IDS was
developed in [26].

Accurate results have also been obtained for the Deep
Random Neural Network (DRNN) with offline [27] and
incremental [28] learning to detect MIRAI attacks, while the
DRNN was shown to achieve high performance for detect-
ing different types of unknown attacks simultaneously [29].
Earlier work [30] examined the performance of the clas-
sical Random Neural Network (RNN) [31] with offline
gradient-descent learning [32] to detect SYN denial of ser-
vice (DoS) attacks. On the other hand, whereas the work
reviewed above focused on detecting cyberattacks and mali-
cious traffic, in this paper, we develop an ARNN-based
decision system that identifies the compromised IoT nodes.
Successful identification of compromised nodes along with
malicious traffic paves the way to fend off distributed
attacks (e.g. Botnet and DDoS attacks) in their early
stages.

Compromised Device Identification. Whereas the majority
of related papers identify compromised devices by detect-
ing malware conveyed by Botnets, some work focuses on
identifying compromised devices directly using a variety of
techniques including: optimization [33], analyzing commu-
nication features [34], using language analysis [35], tracking
device location [36], or monitoring the downlink channels
of a gateway [37]. Moreover, Reference [38] proposed an
ML-based system that analyzes traffic flows and packet
features in network layer to identify intrusions in an IoT
system. In [39], a Botnet detection system, called BotStop,
was developed based on extreme gradient boosting model
that analyzes packet traffic. In [40], a Compromised Device
Identification System (CDIS-DRNN) is developed based on
the DRNN model [41] that analyzes the network nodes’
incoming and outgoing traffic. The performance of different
attack detection techniques can depend on which datasets are
used for learning and testing, and prior to the current paper,
the CDIS-DRNN offered the best available state-of-the-art
performance for compromised device identification when the
publicly available Kitsune Botnet dataset [42], [43] is used.
However, none of these works considered the interrelation-
ships between IoT nodes and the propagation of a Botnet
attack through these nodes.

85502

In recent work a method was proposed to evaluate a set
of network or IoT nodes simultaneously in a single recurrent
RNN architecture composed of two interconnected and asso-
ciated neural networks [44], trained and tested with ground
truth data. Therefore, in the sequel we will also compare the
ARNN technique developed in this paper using the Kitsune
dataset, against the performance offered by CDIS-DRNN.

B. CONTRIBUTIONS OF THIS PAPER

This paper develops an Associated Random Neural Network
(ARNN) decision system, designed to assess the overall secu-
rity of an IoT network by identifying compromised devices
using aggregated multi-node traffic information. The ARNN
utilizes two associated RNN neurons for each IoT device (or
IP address) in the network that is being assessed for security.
These neurons assess the security level of specific devices,
and advocate that the device is compromised or not based
on the information provided by traffic metrics measured
at the device, and inter-neuron weights with other neurons
that assess neighbouring network nodes. ARNN based attack
detection was previously introduced in [44], and initially
evaluated for a system that learns from ground truth data and
is then tested for the same ground truth data.

Here, it is hypothesized that the ARNN successfully iden-
tifies compromised IoT nodes based on its ability to learn
both the interrelationships between those nodes and the
propagation of a cyberattack. Therefore, after detailing the
ARNN learning algorithm’s components: the error metric, the
weight restrictions, the ARNN initialization, and its learn-
ing algorithm are discussed in the Appendix, we thoroughly
evaluate its performance for Mirai Botnet attacks on an IoT
network with 107 nodes using the Kitsune dataset [42].

First, we train the ARNN on ground truth data from the
initial part of the Kitsune dataset, and test its prediction
capabilities with ground truth data from the disjoint latter part
of the dataset.

Next, we discuss an average normalized metric based on
six relevant metrics [40] extracted from traffic data. We then
test the ARNN trained with ground truth data, using the
average input metric over the testing period which is disjoint
from the training period and is subsequent to it. In all cases we
evaluate the Accuracy, True Positive Rate and True Negative
Rate of the ARNN and observe very accurate attack detection
for most of the 107 nodes that are contained in the Kitsune
dataset.

Finally, we compare the performance of ARNN against
the state-of-the-art best-in-class CDIS-DRNN and four
well-known Machine Learning (ML) models for the same
problem [40]. In this case, we also train the ARNN without
the ground truth but using the ARNN incrementally on suc-
cessive short training cycles, followed by testing, and pursued
for all of the available Kistune data set. The experimental
results again indicate that the ARNN offers superior perfor-
mance — achieving 100% median accuracy and above 92%
accuracy for more than 75% of the network nodes in the
dataset — with about 3.5 ms of detection time.

VOLUME 11, 2023

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

IEEE Access

IoT Network with n Nodes anwjmj

n
> e
1 =1

7=

FIGURE 1. ARNN based Network-Wide Cyberattack Assessment for an n node network.

The proposed ARNN decision system has the following
characteristics:

1) Itis an architecture based on the RNN [31] as shown in
Figure 1, which associates a pair X;, Y; of neurons to
assess the security level of each of the i-the node in an
n-node IoT network, to determine which IoT devices
are compromised. Note that while we consider IoT
networks as the object of our research, this approach
can also be used for other collections of interconnected
IP addresses. While X;’s role is to defend the thesis that
i is compromised, Y; defends the opposite thesis. Thus
the ARNN has a total of only 2n neurons for evaluating
an n-node network.

2) Using ground truth data, the ARNN is trained with a
specific gradient descent learning algorithm.

3) During usage or testing, the ARNN receives as input
the average value of the traffic characteristics that are
used to test the CDIS-DRNN and other ML models.
This results in substantial computational savings since
a scalar input replaces a vector of six elements.

4) Due to its associated and interconnected architecture
with a simplified ignorant weight initialization, the
ARNN provides accurate assessment on the security of
all devices or IP addresses in a network.

Il. CONSTRUCTING THE ARNN FOR NETWORK-WIDE
CYBERSECURITY ASSESSMENT

We now detail the Network-Wide Cybersecurity Assessment
method based on a novel ARNN decision system. This
method provides an assessment of the overall security of
an IoT network, taking into account the interconnections of
devices and the local information provided by these devices.
In this method, the ARNN decision system learns direct and
indirect relationships between devices in a single network,
and estimates the spread of an attack among devices in the
IoT network.

The ARNN is composed of n pairs of neurons which are all
interconnected in a recurrent structure, where each pair corre-
sponds to an IoT device (or node or IP address) in the network
as shown in Figure 1. X; and Y; act as ““adversaries” indicating
whether the node i is compromised or not. Accordingly, the
internal state of X;, denoted by K;(¢) > 0 indicates that node

VOLUME 11, 2023

i is compromised, and that of Y;, denoted by k;(t) > O,
denotes the opposite. As one of the main properties of an
RNN neuron, if K;(¢) at any time ¢ is strictly positive, then
X; sends excitatory and/or inhibitory spikes to the neurons
of node j # i respectively at rates W; , Wl.j_ > 0. Similarly,
if k;(¢) is strictly positive, ¥; sends excitatory and/or inhibitory
* wl.; > 0. We define

spikes to j # i respectively at rates Wiis
the probability that these 2n neurons are firing as

For X;: Q; = tlirgo Prob[K;(t) > 0], (1)
For Y;: gi = tlim Problk;(t) > 0]. 2)
—00

In this decision system, when any neuron of node i (X; or Y;)
fires, the internal state of this neuron drops by 1 as K;(t+) =
Ki(t) — 1 or kj(tT) = ki(t) — 1. When any neuron of node i
receives an excitatory spike, its internal state increases by 1,
ie. Ki(tT) = Ki(t) + 1 or k;(t+) = k;(¢) + 1. Similarly, when
it receives an inhibitory spike, its internal state drops by 1 if
the current state is not zero, i.e. K;(t7) = max[0, Ki(t) — 1]
or ki(tT) = max|[0, k;i(t) — 1].

The ARNN equations are a special case of the RNN equa-
tions [31], so that:

_ A+ Z;l:l W; O
b DA tW o+ Wil 3wy
+
_ Ai+ 2;1:1 Wi 4j
= — — —,
A+ 200wy + w1+ 200 Wi 0,
where A; is the rate of external excitatory spikes arriving to
X;, while it is the rate of external inhibitory spikes arriving
to Y;. On the other hand, }; has exactly the opposite effect.

We will choose these two quantities to lie between zero and
one: A; € [0, 1], A; € [0, 1].

Oi

qi 3

A. RESTRICTING THE WEIGHTS AND INITIALIZING THE
ARNN

The ARNN weights are restricted to reduce the number of
gradient descent computations, namely:

o Throughout the network we set the “‘self-weights” to
zero: W =W, =wl =w; =0.
o Forall i # j we fix:

W=Wi+W; =w;+w;, 4)

85503

IEEE Access

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

for a given value of W > 0 that is detailed below,
so that the gradient descent computation only computes
Wif , wlf; Vi, j. Note that we are dealing with a fully
recurrent network so that all distinct nodes are inter-
connected, since each neuron is connected to all other
neurons when i # j, while for the paired ‘“‘opposing
neurons’ which are not directly connected in one step,
they are connected indirectly to each other via other

neurons. The ARNN equations then become:

B Ai+ 20 Wi
M (= DW L, (W —wih)’

_ i+ D Wi
Ai4(n—=DW + 37 QW — Wjj)

Oi

&)

qi

o During learning, a total of 2n(n — 1) weights are com-
puted for an ARNN that is assessing the security of an
n-node [oT network. The inhibitory weights are obtained
directly from the value of W minus the excitatory
weight, since W remains constant. Because of the spe-
cific mathematics of the RNN learning algorithm [32]
only one inversion of a 2n x 2n matrix is needed at each
gradient descent step to update all of the weights for the
fully connected ARNN.

The ARNN is first initialized so that it does not know
initially whether any of the devices (or IP addresses) are
compromised. To this effect:

« To represent perfect ignorance for all neurons we select
the network input rates and weights that will result in
Q; = g; = 0.5 for all the neurons, with A; = X; = A,
where A is chosen below.

o Similarly for i # j the weights are set to Wl.;r = Wl.j_ =
wlT]'T =w; = 0.5W, where W > 0.

As a result we write:

05=qi=0i = A+0.50Wn—1) ’
Wn—-1)+A+05¢Wn-1)
vielding A = 0.75W((n — 1). (6)

Thus if we take W = 1, we have A = 0.75(n — 1), and obtain
Qi =¢q; =0.5, 1 <i < n,so that the ARNN is “ignorant”
before the learning algorithm is used.

B. THE ARNN EXTERNAL INPUTS A; AND);
The external inputs are obtained from data from packet statis-
tics in the network, or from ground truth that is used for
training the ARNN, regarding whether given packets are
attack packets or normal packets, or other data used for
training, or real operational data for testing.
We therefore consider that Q; € [0, 1] and ¢; € [0, 1] are
functions Q;(A;, A;) and g;(A;, A;). Noting that:
Q=90 = lim Prob[K;(t) > ki(1)], @)
qi(1 = Qi) 1=

85504

we define the outputs of the ARNN for each network node i,
as being the binary Z; variables:

Zi=11if M >y >0, Z;=0otherwise, (8)
gi(1 — Q)

where Z; = 1 stands for node i being compromised, while

Z; = 0 has the opposite meaning, and 0 < y < lisa

threshold.

C. THE LEARNING DATASET LD

The Learning Dataset is a set of packets LD where, for each
packet, we know in advance whether it is an attack or a
benign, i.e. “normal”’, packet. Thus the LD is used to train
the ARNN.

The set of packets LD that we use to train the ARNN,
as well as the dataset used for testing, contain the ground truth
for each packet denoted pk(t, s, d, a), where:

« tisthe transmission instant of the packet from the source

node s, and d is the packet’s destination node,

e ais a binary label so that @ = 1 indicates that it is an
“attack” packet and @ = O that it is a ““benign” packet,

« The length of the packet in bytes, including the header,
is denoted by |pk(¢, s, d, a)|.

« Packets are grouped into ‘“‘slots” lasting t = 10 sec-
onds, so that the packet’s slot number is [= || %, i.e.
when (I — 1)t <t < It, and M is the total number of
slots in the dataset: 1 <1 < M,

In the dataset that we use, we observe that on average roughly
100 packets are contained in a 10 sec time slot.

We now determine the successive ARNN inputs from the
dataset LD, namely: AIGI. e [0, 1] and)JGi =1- AIGi, the
corresponding output Kil, and the decision output Zél. which
is a binary variable related to Kl.l.

Let §' (i) and Rl(i) be the set of packets that have been
transmitted or received by node i from the first slot until the
end of the / = | £ |-th time slot:

Sli) = {pk(t,s,d,a): 0 <t <lt, Vd, a=0,1},
R(i) = {pk(t,s,d,a): 0 <t <lIt, Vs, a=0,1},

and:
k(t,s,i,1): ¥V
If [R'()| > 0, then AL, = [Pk, 5 ll .) SH,
[R'(D)]
else AL, = 0. ©)
Furthermore
Mg =1— Al (10)

When a node receives a significant number of attack packets,
one expects that it may be compromised, and in turn send out
attack packets. Therefore the /-th desired output for node i as
Kl.l is the ratio of attack packets sent by node i to all other
nodes until the end of the [= L%J-th time window:

Hpk(t,i,d, 1), Vd}|
NG ’
else if |S'(i)| = 0, then K} = 0. (11)

IfS'(i)] > 0, then K! =

VOLUME 11, 2023

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

IEEE Access

We also define the i-th binary decision variable as Df for some
threshold 1 > 6 > 0 regarding the ground truth:

Dl =

1

|1 if k! > 0, 12

0, otherwise

so that Dﬁ = 1 indicates that i is a compromised node in the
I-th slot, while Df indicates the opposite.

On the other hand, since the ARNN is trained directly with
the values of Kil as output, we use the metric defined in (8) to
evaluate the output decision from the ARNN, namely:

QAL AD[1 = qial, AD)]

i
qi(L AD[1 = Qi(al, D]
0, otherwise

>y >0,

Zil = (13)

where(A!, A!) are the corresponding n-vectors obtained from
ARNN input data at the /-th slot.

D. LEARNING THE ARNN WEIGHTS FROM THE LD

To construct a balanced training dataset LD, the sequence of
slots in the MIRAI dataset [42] was scanned from the first
slot / = 1 up to and including the first slot where some node
sends attack packets, which turns out to be slot / = 445, and
the LD then included slot 433 up to and including slot 457
(a total of 25 slots). On the other hand, the test dataset 7D
contains all the subsequent slots, starting with slot 458.

The ARNN is trained with the LD that uses the slots /
of the dataset which are being used for training using the
Gradient Descent Algorithm detailed in the Appendix, with
the learning rate n = 0.1. It adjusts the ARNN weights so
as to minimize the following error function (14) for each
successive bucket / within the LD:

E'= % 2o l(@ial 1= Ah —K])*
i=1

+(ga—alAh—a -k, a4

where Qf(.) and qf(.) are obtained from (5).

E. TESTING THE ARNN'S PREDICTION CAPABILITY
We first test the ARNN’s ability to act as a predictor about
whether a node is compromised, based on training with the
LD composed of the sequence of 25 slots around the first slot
that contained some compromised nodes, namely slot 445.
The test data stream that is subsequent to the LD that is used,
namely slot / = 445 4 13 up to the last slot / = 713.

Testing therefore uses the input values Af,)\ﬁ for 458 <
| < 713 in the trained ARNN, and the ARNN then outputs
the corresponding Zl.l values, with & = 0.3 as the threshold
in obtaining the ground truth decision variables Df from
expression (12). The threshold to produce the testing output
Zl.l is typically of the form y = 1 — € where € is often zero
and always well under 0.1.

The Accuracy, True Positive Rate (TPR) and True Negative
Rate (TPR) of ARNN are detailed in Figures 2, 3, and 4.

VOLUME 11, 2023

On the other hand, Figure 5 shows a box-plot for the
statistics related to all the node addresses and indicates that
the ARNN offers high performance with a median accuracy
of 100%. In addition, although the TPR is almost zero for 9 of
the addresses, while TNR is almost O for 22 addresses; hence
the Accuracy exceeds 95% for 80% of all addresses.

Figure 2 displays the average decision accuracy for each
address i € {1,...,107}, showing that the accuracy of
ARNN is above 95% for 50% of the IP Addresses while
it is between 62% and 80% for only 20% of them without
ever being under 62%, while Figure 4 exhibits the average
TNR for the addresses. For 59% of the addresses, the TNR
lies above 95% while for 15% of them it is in the 62% to
80% range. Finally in Figure 3 the average TPR is shown
for the 39 addresses which were at least once compromised
according to the ground truth indicator. The TPR exceeds
95% for most (64%) addresses, and exceeds 90% in over 74%
of the them.

IIl. TESTING THE ARNN WITH THE AVERAGE TRAFFIC
METRIC

Six representative traffic metrics were introduced in recent
work [40] as being indicative of network attacks and were
shown to be effective for MIRAI Botnet detection using
available real datasets. Rather than using the full metrics,
in this section their average normalized value will be used
to test the ARNN attack detector.

To define these metrics, let |p| be the size in bytes of some
packet p, including its header and all the data it contains. Let
Pls” be the set of all packets sent by all network nodes to node
iin slot/, and let the maximum length in bytes of packets sent
by node s to i up to the end of slot /, be Lé = max{|p| : p €
Pl(s)}. The six metrics from [40], all normalized to a value
between 0 and 1, are as follows:

« Average packet size of packets received by device i in
slot [:

Zpeplsvi Ipl
Sies LEx 1PV
sES s l

« The maximum size of any packet received at node i in
slot [:

il

xl (15)

(16)

Denial of Service attacks are not always carried out with
large packets; for instance, SYN attack packets can be
quite short since their effect is to overload the receiving
node with requests to open a connection, rather than
with the amount of traffic that is being sent. However,
the amount of traffic sent by other types of Denial of
Service attacks are often meant to cause link and node
congestion, so that the amount of attack traffic can be
large, and the length of packets that are sent by attackers
can be large too. Thus, the amount of traffic and packet
size are often relevant metrics for detecting attacks.

85505

IEEE Access

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

Performance of ARNN with Offline Learning

100 R TG, e T
6

Accuracy
"

O Il Il Il Il *
20 40 60 80 100

TP Addresses

FIGURE 2. The average accuracy of the ARNN predictions for all
addresses 1 </ < 107 is shown for the test data 7D, by comparing the
ground truth binary value Y,.’ with the ARNN'’s binary output Z’.’.

o The average number of packets received at i in slot / from
all nodes:
S,i
. P
X7 = IPi Yli . (17)
2ses HIP| > 0]

Note that the denominator in the above expression can
be computed iteratively in an efficient manner, so that
xll’3 can be obtained directly from xl’fl)

o The (normalized) maximum number of packets received
by node i from any single source in the slot /:

S, i
- maxses | P}
xll,4 — S l (18)

maXgses, 1<u<l |P;’l|

where Pf’i denotes the set of packets sent from node s to
node i during slot /.

o Finally, the last two metrics, both normalized to lie
between 0 and 1, describe the total number of bytes sent
to all destinations d by node i, and the total number of
packets sent by i to all d:

. 1 . n .
,5 ,6 .d
X, =§§ E pl. x =—B’_ E P41, (19)
Lg i.d La
PEP;

where, L!" is the maximum length of any packet that i
sends, and B; is the maximum number of bytes sent out
by i in any slot:

Bi=max(» > IplIP}Y|: 1<1<M}.
d pePﬁd

Since each neuron at any node of ARNN has a single input,
i.e. A; or A;, for testing purposes we only use the average
value of the normalized metrics as the input to each neuron

of ARNN for slot /:
6 i,k
I 20=1% l !
i,mean — 6 ’ i,mean — 1 - Ai,mean' (20)

85506

Performance of ARNN with Offline Learning
100 i

True Positive Percentage

0 Il Il Il Il Joo
20 40 60 80 100

IP Addresses
FIGURE 3. The average percentage TPR is shown over all the slots for
each of the 107 addresses in the network, obtained by comparing Y,.’ and
Z! for those values of I where Yi’ = 1. Note that if Y,.’ = 0 for an address i
in all the slots / in the 7D, then the TPR cannot be measured for i. Thus
only 39 out of 107 addresses are concerned by the TPR, as shown in the
figure.

Performance of ARNN with Offline Learning
100 e = T

80 1

60 1

40 1

201 1

True Negative Percentage

0 L L L L Ry ol

20 40 60 80 100
IP Addresses

FIGURE 4. The average percentage TNR is shown over all the slots for

each of the 107 addresses in the network, obtained by comparing Y’.’ and

Z! for those values of I where Y/ = 1. Note that if Y/ = 1 for an address i

i . i i .

in all the slots / in the 7D, then the TNR cannot be measured for i.

Performance of ARNN with Offline Learning

100 —

E 807 . 4
g
8
T 601 .]
o}
& ;
® t
%‘) 401]
;
g 200 .]
o

0 e + 3

Accuracy TPR TNR

Metrics
FIGURE 5. The Accuracy, TPR and TNR performance of the ARNN
algorithm is illustrated by box-plots for the statistics obtained from the
results in Figures 2, 3, 4.

A. THE ARNN TRAINED WITH THE GT AND TESTED WITH
AVERAGE METRICS

In the first test using the average metric based input data,
we use the ARNN trained with the ground truth GT from real
attack LD sequence of 25 slots starting at [= 432 up to 457,
as before. Then for each i we use the average metric value
to compute Aimean for I = 458 to [= 713. We input the
corresponding values Af,me[m, Af,melm =1- Af’m&m into the
ARNN for testing.

VOLUME 11, 2023

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

IEEE Access

Performance of ARNN
1 with Offline Learning on Ground Truth Input
00 v \ :
g 80| 3
5) i
“g 60+
[
& 40f
2 20 : i
o)
[
Accuracy TPR TNR
Metrics

FIGURE 6. The Accuracy, TNR and TPR of the ARNN algorithm are shown
as box-plots for the ARNN trained with the GT and tested with the
average metric values for 458 </ < 713.

The ARNN output is the Zil value for each successive [and
for each node i, as given in (13) with a threshold which can
differ in the range 0.96 < y < lor0 < € < 0.04. The
threshold & = 0.3 is used for the output decision variables Df
for the known GT. The results are summarized in Figure 6,
where we see that the median performance with respect to
each of Accuracy, TPR, and TNR is 100%.

ARNN achieves Accuracy above 99% for 97 of 107 IP
Addresses, while there are 10 nodes with outlier performance,
three with Accuracy below 30%, two between 60% — 30%,
and five node addresses with Accuracy between 80% — 60%.
In addition, as the lower whisker shows, TPR is above 86%
for 75% of all nodes, and while lowest TNR performance is
about 98.5%.

B. ARNN TRAINED AND TESTED WITH THE AVERAGE
METRICS

We now consider training as well as testing the ARNN using
the average metric inputs Af)mwn and)Lf,me(m =1- Af’mean.
To this effect, we still use the ground truth data represented
by Kl.l, in the algorithm detailed in the Appendix. The error

function that needs to be minimized during training becomes:

1 &
E[= 5 Z [(Qi(Af,mean’ 1-

i=1

2
+ (qf(l - Ag,mean’ Ag,mean) - (1 - Kil))]’ (21)

)— Kil)z

I
Ai,meun

with Qf(.) and qf(.) are given by equation (5), and the gradient
descent parameters is as previously n = 0.1.

With regard to the previous case where the ARNN was
trained with the GT', we see some very very minor variations
in Accuracy, True Positive Rate and True Negative Rate. For
instance, in our experiments we only observed 3 network
nodes out of 107 where Accuracy differed between the previ-
ous sub-section and this one. In particular we observed that:

e For i = 37, Accuracy using Average Metric based
learning is ACC = 92.68% while using the GT it is
92.54%,

e For i = 46 we have ACC = 95.49% while with GT
training it is ACC = 95.63%, and

VOLUME 11, 2023

Performance of ARNN
with Input of Average Metric Values and Offline Learning

100 .

g _/
3 80 ;
5 ' _:_
5 60
o

% 40

3 :

g 201 : H
o

Accuracy TPR TNR
Metrics

FIGURE 7. The Accuracy, TPR, TNR of the ARNN algorithm are shown as
box-plots for the ARNN trained and tested with the average metric values
fora58 </ <713.

e Fori = 47 we have ACC = 93.1% using the Average
Metric for training, while using the GT it is ACC =
93.94%.

In fact, we also observe that using the Average Metric for
training results in general in somewhat fewer False Alarms,
i.e. a higher True Negative Rate. The corresponding results
are summarized in the Box Plot Diagram for Accuracy, True
Positive and True Negatives given in Figure 7.

IV. INCREMENTAL TRAINING OF THE ARNN

In recent work [40], the CDIS-DRNN, a compromised device
identification method was presented. This attack detection
method is trained sequentially on the assumption that off-line
ground truth data is not available. CDIS-DRNN is composed
of a deep learning feedforward RNN architecture which does
not exploit knowledge of the interconnections between net-
work nodes.

Thus, as with CDIS-DRNN, in this section we will assume
that offline training data is not available in advance of the
exploitation of the ARNN for attack detection. In such a case,
the ARNN will be trained incrementally in parallel to its
online operation. To this end, we update the weights of the
ARNN every successive 6 slots, i.e. at the end of slot / such
that mod(l, 6) = 0, where each training window corresponds
to 1 minute, whereas the ARNN provides a decision for
each device i at the end of each individual slot /, i.e. every
10 seconds.

Thus using the data for a successive set of 6 slots,
the ARNN is trained with the algorithm presented in the
Appendix, using the training data 7D constructed a follows:

D = (A K!), I'=1-5,...,1}.

We now present the performance of the incrementally
trained ARNN decision system for compromised device iden-
tification. During the performance evaluation, we set ® =
0.3 and 0.96 < y < 1. The Accuracy, True Negative Rate
(TNR), and True Positive Rate (TPR) of the ARNN with
incremental training are presented in Figure 9 as a Box-plot.
The results in this figure show that the ARNN achieves a
median accuracy of 100% while Accuracy is shown to be
greater than 97% for 75% of all network nodes. These results

85507

IEEE Access

E. Gelenbe, M. Nakip: loT Network Cybersecurity Assessment With the ARNN

ARNN DRNN ARNN DRNN ARNN DRNN
(Interconnected) (Not Interconnected) (Interconnected) (Not Interconnected) (Interconnected) (Not Interconnected)
100 ——= e -
8 + * +
c 80f $ §
© H]
€ 3 p
£ 60 ! : ;
() ' '
D. RN S 1
o} :
> 40t :
c :
2 :
o 20f :
D_ 1
Accuracy TPR TNR
Metrics

FIGURE 8. Performance comparison of the ARNN with the CDIS-DRNN approach [40] with respect to (left) Accuracy, (middle)

TNR, and (right) TPR.

Performance of ARNN with Input of Average Metric Values
0 — N ————

80 t X
!

601

40+

20

Percentage Performance

Il Il Il

Accuracy TPR TNR
Metrics

FIGURE 9. The accuracy, TPR, TNR of the ARNN algorithm are shown as

box-plots for the ARNN trained and tested with the average metric values.

also show that the TNR is above 99% for approximately
72% of nodes, while 58