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ABSTRACT Hyperspectral images are often contaminated with noise which degrades the quality of data.
Recently, tensor robust principal component analysis (TRPCA) has been utilized to remove noise from
hyperspectral images, improving classification accuracy. However, the high dimensionality and size of hyper-
spectral data present computational challenges both in terms of storage and processing power, especially in
the case of TRPCA. The situation is exacerbated when the data is too large to fit in available memory.
In this paper, we propose a tensor-robust CUR (TRCUR) algorithm for hyperspectral data compression and
denoising. We heavily downsample the input hyperspectral image to form small subtensors; and perform
TRPCA on the small subtensors. The desired hyperspectral image is recovered by combining the low-rank
solution of the subtensors using tensor CUR reconstruction. We provide a theoretical guarantee to show
that the desired low-rank tensor can be exactly recovered using our proposed TRCUR method. Numerical
experiments indicate that our method is up to 14 times faster than performing TRPCA on the original input
data while maintaining the classification accuracy.

INDEX TERMS Low-rank tensor recovery, tensor robust CUR, tensor robust PCA, hyperspectral image
denoising, noisy hyperspectral image classification.

I. INTRODUCTION
Hyperspectral images have been widely used in many remote
sensing applications e.g. classification [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], unmixing [13], [14],
[15], [16], [17], and target detection [18], [19], [20]. Often,
hyperspectral images are contaminated with noise [21], [22].
Therefore, recovering the desired information is of great
interest. Typically, a hyperspectral image consists of up to
several hundred spectral bands, exhibiting high correlation
across spectra. Principal component analysis (PCA) has been
widely used for spectral dimensionality reduction [23], [24],
[25], [26], [27], [28], [29], [30], [31], [32], [33]. A hyperspec-
tral image can be naturally represented by a 3-way tensor so,
to perform PCA, a hyperspectral data cube is first converted
into a data matrix by vectorizing spectral bands and stacking
them as columns of a matrix. Then, singular value decompo-
sition (SVD) is performed on the data matrix to obtain the
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dominant singular values and vectors. Farrell et al. [23] used
PCA to investigate the effect of dimension reduction on detec-
tion of difficult targets. Chen et al. [24] proposed a denoising
method based on PCA and wavelet shrinkage for high signal-
to-noise ratio (SNR) hyperspectral images. While PCA has
proven effective, it has some disadvantages when applied to
hyperspectral imagery. For example, some spectral bands can
have high noise levels, and PCA is sensitive to gross noise and
outliers. Moreover, vectorization of hyperspectral data breaks
the intrinsic structure of data leading to reduced algorithm
effectiveness.

To better exploit the spatial and spectral structures in data,
several multidimensional noise reduction techniques have
been proposed to effectively reduce noise in hyperspectral
data [34], [35], [36], [37], [38], [39]. Recently, Sun et al. [37]
used tensor robust PCA (TRPCA) to improve hyperspec-
tral image classification accuracy. TRPCA decomposes a
noisy hyperspectral image into a low-rank tensor which con-
tains the desired hyperspectral image, and a sparse tensor
which contains noise. Results [37] indicate that TRPCA can
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effectively remove noise from hyperspectral images. Lu et
al. [40] showed that the resulting TRPCAusing tensor nuclear
norm can exactly recover the low-rank and sparse tensors
from their sum.

Hyperspectral satellites transmit massive amount of high-
dimensional data. For example, the NASA’s Hyperspectral
Infrared Imager (HyspIRI) transmits a volume of 4.5 TBytes
per day [41]. TRPCA algorithms, despite their great perfor-
mance, require large memory and their complexity grows
with batch size. The computational complexity of performing
TRPCA on hypercube X ∈ Rm×m×n is O

(
m2n log n+ m3n

)
flops per iteration [40] which is prohibitive for many appli-
cations. The situation becomes particularly critical when data
does not fit in available memory.

In this paper, we propose a multi-dimensional divide-and-
conquer framework to drastically reduce the computational
complexity of TRPCA. We heavily downsample the large
input data tensor to obtain small subtensors, and then dis-
card the original data. Therefore, our method is memory-
efficient. We perform TRPCA on the small subtensors. The
low-rank solution of these subtensors is utilized to recover
the desired hyperspectral image via tensor CUR recon-
struction. The computational complexity of performing our
tensor robust CUR method on hypercube X ∈ Rm×m×n

is O
(
4mrn log n+ (3m+ r)r2n+ m2rn

)
flops per iteration

where r ≪ m. The main contributions of this work are as
follows.

1) We develop a fast and memory-efficient tensor robust
CUR (TRCUR) algorithm for large-scale data sets.

2) We provide the theoretical guarantee to show that the
low-rank component can be exactly recovered using
our proposed TRCUR method.

3) We demonstrate the accuracy and computational ben-
efits of our method on three hyperspectral data sets.
Results indicate that ourmethod can significantly speed
up the computation, and effectively reduce noise in
hyperspectral images.

II. RELATED WORK
Robust PCA (RPCA) algorithms have been used in many
remote sensing applications [37], [42], [43], [44], [45].
Rambhatla et al. [43] proposed a dictionary-based RPCA
algorithm for target localization in hyperspectral imaging.
Liu et al. [44] developed a log-based RPCA algorithm to
remove noise in hyperspectral images. Lee et al. [42] devel-
oped a method for tree species classification using RPCA for
feature extraction. Recently, Cai et al. [46], [47] integrated
CUR decomposition with RPCA to speed up the computation
and reduce memory requirements for background subtraction
in videos. All the aforementioned methods [42], [43], [44],
[46], [47] can only operate on two-way (matrix) data, and
cannot directly be applied to hypercubes. Vectorization of
hyperspectral data ignores the spatial correlations among
neighboring pixels. It is widely accepted that utilizing both
spatial and spectral structures in hyperspectral data can sig-
nificantly improve classification accuracy [41].

Sun et al. [37] proposed a tensor RPCA method to exploit
the spatial and spectral structures in hyperspectral data.
TRPCA [37] can effectively reduce noise in hyperspectral
data, improving the classification accuracy. However, RPCA
and TRPCA algorithms [37], [40], [48] require the data to be
stored in memory for the SVD computation. Most (T)RPCA
algorithms require many iterations to converge. Therefore,
these methods require high memory overhead and are com-
putationally prohibitive for large-scale datasets. Recently,
Salut et al. [49] employed randomized techniques to acceler-
ate TRPCA. The authors [49] utilized their method for noisy
hyperspectral image classification. Results [49] indicate that
their randomized TRPCA method is significantly faster than
performing TRPCA via the full T-SVD while maintaining
classification accuracy. However, randomized TRPCA [49]
requires at least two passes over the input data per iteration.
When the input data is too large to fit in fast memory, this
aspect can be critical since the cost of memory access may
become higher than the theoretical costs of the algorithm.

Mahoney et al. [50] proposed tensor CUR decomposition
for compression based on the Tucker decomposition. The
Tucker decomposition decomposes a tensor into a small core
tensor multiplied by a set of basis matrices [51], [52]. How-
ever, their method [50] is not robust to noise and outliers.
Cai et al. [53] proposed a tensor-robust CUR algorithm for
background subtraction in videos based on Tucker decom-
position. Recently, Kilmer et al. [54], [55], [56] proposed
a new tensor decomposition technique based on T-product.
The main advantage of T-product-based TRPCA e.g. [37],
[40], and [49] over robust Tucker-based methods e.g. [53]
is the use of the tensor nuclear norm instead of the Tucker-
rank which preserves the data structures among modes [57].
Lu et al. [40] showed that T-product-based TRPCA using
tensor nuclear norm can exactly recover the low-rank and
sparse tensors from their sum.

Hyperspectral images consist of up to several hundred
spectral bands, possessing complex structures. Often hyper-
spectral images are contaminated with noise, predicting an
accurate class label to every pixel in an image is a challenging
task. In this paper, we propose a tensor-robust CUR algorithm
for compression and denoising of hyperspectral data based
on the recently proposed T-product [55], [56]. We sample the
large input data tensor to obtain small subtensors, and then
discard the original data. We perform TRPCA on the small
subtensors resulting in a fast and memory-efficient scheme.
We utilize the low-rank solution of these subtensors to recover
the desired hyperspectral image via tensor CUR reconstruc-
tion. We show that the classification accuracy of our method
is still maintained even after significant data compression.

III. PRELIMINARIES
In this paper, scalars are denoted by lowercase letters, e.g., c.
Vectors are denoted by boldface lowercase letters, e.g., c.
Matrices are denoted by capital letters, e.g., C . Third-
order tensors are denoted by Euler script letters, e.g., C ∈

Rn1×n2×n3 . The j-th lateral slice of C is denoted by a tensor
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−→
Cj ≡ C:j: ≡ C(:, j, :). The k-th frontal slice of tensor C is
denoted by a matrix C (k)

≡ C::k ≡ C(:, :, k). The block
circulant matrix of tensor C ∈ Rn1×n2×n3 is define as:

bcirc(C) =


C (1) C (n3) · · · C (2)

C (2) C (1)
· · · C (3)

...
...

. . .
...

C (n3) C (n3−1)
· · · C (1)

 (1)

The block circulant matrix can be diagonalized by a discrete
Fourier transform (DFT). Using bar notation ( ·̄ ) to represent
the Fourier domain, we denote C̄ ∈ Cn1n3×n2n3 as the block-
diagonal matrix of data tensor C̄ ∈ Cn1×n2×n3 .

C̄ =
(
Fn3 ⊗ In1

)
· bcirc(C) ·

(
FHn3 ⊗ In2

)

= bdiag
(
C̄
)

=


C̄ (1)

C̄ (2)

. . .

C̄ (n3)

 (2)

where ‘‘⊗’’ denotes the Kronecker product. Fn is the DFT
matrix. FHn denotes the conjugate transpose of Fn. ‘‘·’’ rep-
resents matrix product. C̄ denotes the DFT of data tensor
C which is computed by taking the Fast Fourier Transform
(FFT) along each tube, using MATLAB notation:

C̄ = fft(C, [ ], 3) (3)

We can matricize a tensor by unfolding its frontal slices.

unfold(C) =


C (1)

C (2)

...

C (n3)

 (4)

The fold operator converts back unfold(C) to its original
tensor form.

fold(unfold(C)) = C (5)

A. T-PRODUCT
Let C ∈ Rn1×n2×n3 and D ∈ Dn2×n4×n3 . The T-product Y ∈

Rn1×n4×n3 is defined as [54], [55], [56]

Y = C ∗D = fold (bcirc (C) · unfold (D)) (6)

Computing the T-product in the original domain is computa-
tionally inefficient unless the tensors are sparse. In this paper,
we perform the T-product in the Fourier domain.

unfold(Y)
= bcirc (C) · unfold (D)

=

(
FHn3 ⊗ In1

)
·

((
Fn3 ⊗ In1

)
· bcirc(C) ·

(
FHn3 ⊗ In2

))
·

(
Fn3 ⊗ In2

)
· unfold (D)

=

(
FHn3 ⊗ In1

)
· C̄ · unfold

(
D̄

)
(7)

By multiplying both sides of (7) with
(
Fn3 ⊗ In1

)
, we obtain

Ȳ (i)
= C̄ (i)

· D̄(i) (8)

which is equivalent to multiplying each frontal slice of C̄ with
its counterpart in D̄. Due to the conjugate symmetry property
of the DFT for real-valued data, we only need to compute
Z̄ (i)

= C̄ (i)
· D̄(i) for about half of the transformed frontal

slices [40]. The T-product is summarized in Algorithm 1.

Algorithm 1 T-Product
Input: C ∈ Rn1×n2×n3 , D ∈ Rn2×n4×n3

Output: Y ∈ Rn1×n4×n3

1: C̄ = fft(C, [ ], 3)
2: D̄ = fft(D, [ ], 3)
3: for i = 1 : ⌈

n3+1
2 ⌉ do

4: Ȳ (i)
= C̄ (i)

· D̄(i)

5: end for
6: for i = ⌈

n3+1
2 ⌉ + 1 : n3 do

7: Ȳ (i)
= conj

(
Ȳ (n3−i+2)

)
8: end for
9: Y = ifft(Ȳ, [ ], 3)

B. CONJUGATE TRANSPOSE
The conjugate transpose of a tensor L ∈ Cn1×n2×n3 is
obtained by conjugate transposing each of the frontal slices
and reversing the order of frontal slices 2 through n3,
LH ∈ Cn2×n1×n3 .

C. IDENTITY TENSOR
I ∈ Rn1×n1×n3 is an identity tensor having its first frontal
slice being the n1 × n1 identity matrix, and zeros everywhere
else. The Fourier transform of identity tensor (I) along the
third dimension is denoted as Ī. Every frontal slice of Ī is an
identity matrix Ī(i) = I [58].

D. TENSOR PSEUDO-INVERSE
The tensor pseudo-inverse of L ∈ Rn1×n2×n3 is denoted by
L† ∈ Rn2×n1×n3 and is obtained by computing the Moore-
Penrose pseudo-inverse of the frontal slices in the frequency
domain L̄(i)

†
[59]. The tensor pseudo-inverse satisfies the

following criteria [60]:
1) L ∗ L† ∗ L = L
2) L† ∗ L ∗ L† = L†

3)
(
L ∗ L†

)T
= L ∗ L†

4)
(
L† ∗ L

)T
= L† ∗ L

E. TENSOR SPECTRAL NORM
The tensor spectral norm of data tensor L is defined as [40]:

∥L∥ = ∥bcirc (L)∥ = ∥L̄∥ (9)

F. TENSOR CONDITION NUMBER
The tensor condition number of L ∈ Rn1×n2×n3 is defined as:

κ = ∥bcirc (L)∥∥(bcirc (L))†∥

= ∥L̄∥∥L̄†∥ =
σmax(L̄)

σmin(L̄)
(10)

77494 VOLUME 11, 2023



M. M. Salut, D. V. Anderson: Tensor Robust CUR for Compression and Denoising of Hyperspectral Data

where σmax(L̄) and σmin(L̄) are the the maximum and mini-
mum nonzero singular values of L̄, respectively.

G. ORTHOGONAL TENSOR
A tensorW ∈ Rn1×n1×n3 is orthogonal ifW ∗WT

= WT
∗

W = I.

H. F-DIAGONAL TENSOR
A tensor is f-diagonal if each frontal slice is a diagonal
matrix [54], [55], [56].

I. T-SVD
The T-SVD of L ∈ Rn1×n2×n3 factorizes L into the T-product
of three tensors L = W ∗ S ∗ VT whereW ∈ Rn1×n1×n3 and
V ∈ Rn2×n2×n3 are orthogonal tensors and S ∈ Rn1×n2×n3 is
a f-diagonal tensor [40], [61], [62]. Algorithm 2 summarizes
T-SVD factorization for real-valued data.

Algorithm 2 T-SVD
Input: L
Output: W, S, V
1: L̄ = fft(L, [ ], 3);
2: for i = 1 : ⌈

n3+1
2 ⌉ do

3: [W̄ (i) S̄(i) V̄ (i)] = svd
(
L̄(i)

)
4: end for
5: for i = ⌈

n3+1
2 ⌉ + 1 : n3 do

6: W̄ (i)
= conj

(
W̄ (n3−i+2)

)
7: S̄(i) = S̄(n3−i+2)

8: V̄ (i)
= conj

(
V̄ (n3−i+2)

)
9: end for

10: W = ifft(W̄, [ ], 3)
11: S = ifft(S̄, [ ], 3)
12: V = ifft(V̄, [ ], 3)

J. TENSOR TUBAL RANK
Let L ∈ Rn1×n2×n3 has the T-SVD L = W ∗ S ∗ VT . The
tensor tubal rank of L is defined as the number of nonzero
singular tubes of S [40]:

rankT (L) = #{i,S(i, i, :) ̸= 0}

= #{i,S(i, i, 1) ̸= 0} (11)

K. T-CUR
Let L ∈ Rn1×n2×n3 be a low-rank tensor. C ∈ Rn1×|J |×n3 is a
subtensor of L consisting of those lateral slices of L indexed
by J ⊂ {1, . . . , n2}. Similarly,R ∈ R|I |×n2×n3 is a subtensor
of L consisting of those horizontal slices of L indexed by
I ⊂ {1, . . . , n1}. The small linkage tensor U ∈ R|I |×|J |×n3

is the intersection of subtensors C and R. If rankT (U) =

rankT (L), then [60]

L = C ∗ U† ∗R (12)

Tensor CUR decomposition is also referred to as tensor
skeleton decomposition. Algorithm 3 summarizes T-CUR
decomposition.

Algorithm 3 T-CUR
Input: L ∈ Rn1×n2×n3 , |I |, |J |
Output: L̂
1: I ⊂ {1, . . . , n1}
2: J ⊂ {1, . . . , n2}
3: C = L:J :
4: R = LI ::
5: C̄ = fft(C, [ ], 3)
6: R̄ = fft(R, [ ], 3)
7: Ū = R̄:J :
8: for i = 1 : ⌈

n3+1
2 ⌉ do

9: ˆ̄L(i) = C̄ (i)
· Ū (i)†

· R̄(i)

10: end for
11: for i = ⌈

n3+1
2 ⌉ + 1 : n3 do

12: ˆ̄L(i) = conj
(

ˆ̄L(n3−i+2)
)

13: end for
14: L̂ = ifft( ˆ̄L, [ ], 3)

L. TENSOR ROBUST PCA
tensor robust PCA decomposes a given data tensor as X =

L+ E ∈ Rn1×n2×n3 , where L is a low-rank tensor and E is a
sparse tensor. The low-rank tensor L is recovered by solving
the following convex problem [40]

min
L,E

∥L∥∗ + λ∥E∥1, s.t X = L+ E (13)

where ∥·∥∗ and ∥·∥1 denote the tensor nuclear norm and
ℓ1 norm, respectively. λ is the regularization parameter. It has
been shown that the low-rank tensor can be exactly recov-
ered with high probability if it satisfies tensor incoherence
conditions [40].

M. TENSOR INCOHERENCE CONDITIONS
Let L ∈ Rn1×n2×n3 be a low-rank tensor of tubal-rank r
whose compact T-SVD is given by W ∗ S ∗ VT , where
W ∈ Rn1×r×n3 and S ∈ Rr×r×n3 and V ∈ Rn2×r×n3 . L is
{µ1, µ2, µ3}-incoherent if

max
i

∥WT
∗

−→ei ∥ ≤

√
µ1r
n1n3

(14)

max
j

∥VT ∗
−→ej ∥ ≤

√
µ2r
n2n3

(15)

∥W ∗ VT ∥∞ ≤

√
µ3r

n1n2n23
(16)

for some constants µ1, µ2, and µ3.
−→ei ∈ Rn1×1×n3 is

the tensor standard basis with all entries equal to 0 but its
(i, 1, 1)-th entry equal to 1. If we let µ1, µ2, and µ3 be the
smallest numbers, satisfying eq. (14 − 16), then the joint
incoherence parameter µ3 is the dominant factor in these
bounds µ3 ≥ max(µ1, µ2). In some important settings, µ3 is
as large as µ1µ2 [63].
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IV. PROPOSED ALGORITHM
Wepresent ourmulti-dimensional divide-and-conquer frame-
work to drastically reduce the computational complexity
of TRPCA without sacrificing the accuracy. Our proposed
algorithm takes as inputs a noisy hyperspectral image X =

L + E ∈ Rn1×n2×n3 , and the sample size parameters |I | and
|J |. A hyperspectral image consists of n1 × n3 pixels, and
n2 spectral bands. We are interested in decomposing X into
the desired low-rank hyperspectral image L and the sparse
noise tensor E . In this paper, we consider uniform random
sampling of horizontal and lateral slices of data cube X to
produce a skeleton decomposition. Let I be a set of ran-
dom indices of size |I | uniformly chosen from {1, · · · , n1}.
We construct subtensor R̃ ∈ R|I |×n2×n3 by selecting those
horizontal slices of X indexed by I . Similarly, subtensor
C̃ ∈ Rn1×|J |×n3 is obtained by restricting X to the lateral
slices indexed by J . Then, we discard the noisy hyperspec-
tral image X . This reduces memory space from O(n1n2n3)
to O (|I |n2n3 + n1|J |n3 + |I ||J |n3) where |I | ≪ n1 and
|J | ≪ n2. Thus, the compression ratio of our proposed
method is given by:

Compression Ratio =
n1n2n3

n1|J |n3 + |I ||J |n3 + |I |n2n3
(17)

In our numerical experiments; as will be shown later,
we selected only 10% − 20% of the slices of the input data
tensor to form the subtensors, resulted in comparable or even
improved accuracy when compared to performing TRPCA on
the original hyperspectral image. The compression attained
using our proposed method indicates that high redundancy
intrinsically exists in hyperspectral data.

We apply TRPCA [40] on the noisy subtensors C̃ = C+Ec
and R̃ = R + Er to recover their low-rank components C
and R. Subsequently, we compute the small linkage tensor
U as U = R:J : ∈ R|I |×|J |×n3 . To successfully recover C
and R form their noisy measurements, the subtensors must
be incoherent. The desired hyperspectral image is obtained
using T-CUR reconstruction L̂ = C ∗ U† ∗ R. The compu-
tational cost of performing TRPCA [40] on subtensor C̃ and
R̃ is O(n1|J |n3log(n3) + n1|J |2n3) and O(|I |n2n3log(n3) +

n2|I |2n3) flops per iteration. The cost of performing the
T-CUR reconstruction isO(n1|J |n3log(n3)+|I ||J |n3log(n3)+
|I |n2n3log(n3)+max(|I |, |J |)2min(|I |, |J |)n3 + n1|I ||J |n3 +

n1|I |n2n3). Algorithm 4 summarizes our tensor robust CUR
algorithm.

A. EXACT RECOVERY GUARANTEE OF TRCUR
We provide the sufficient conditions that guarantee the suc-
cess of our method. We begin with finding bounds on inco-
herence of randomly sampled subtensors C, U , and R in
terms of the incoherence and condition number of the original
low-rank tensor L. This is similar to the matrix robust CUR
approach [47].
Theorem 1: Let L ∈ Rn1×n2×n3 have tubal-rank

r with compact tensor singular value decomposition

Algorithm 4 Tensor Robust CUR Algorithm

Input: X = L+ E ∈ Rn1×n2×n3 , |I |, |J |
Output: L
1: I ⊂ {1, . . . , n1}
2: J ⊂ {1, . . . , n2}
3: C̃ = X:J :
4: R̃ = XI ::
5: C = TRPCA(C̃)
6: R = TRPCA(R̃)
7: U = R:J :
8: L̂ = C ∗ U† ∗R

L = W ∗ S ∗ VT , satisfying the tensor incoherence condi-
tions (14−16). Let C = WC ∗ SC ∗ VTC be a subtensor of L
formed by uniformly and randomly selecting |J | lateral slices
of L such that rankT (C) = rankT (L), and β = ∥(VJ ::)†∥.
Then,

max
i

∥WT
C ∗

−→ei ∥ ≤

√
µ1r
n1n3

(18)

max
j

∥VTC ∗
−→ej ∥ ≤ βκ

√
µ2r
n2n3

(19)

∥WC ∗ VTC ∥∞ ≤ βκ

√
µ1µ2r

n1n2n23
(20)

Lemma 1: Let L ∈ Rn1×n2×n3 satisfy the tensor incoher-
ence conditions (14−16). Let C = L:J : be any random subset
of the lateral slices of L such that rankT (C) = rankT (L).
Then

max
i

∥WT
C ∗

−→ei ∥ ≤

√
µ1r
n1n3

Proof: Note that C = L:J : = W∗S∗(VJ ::)T . The T-SVD
of S ∗(VJ ::)T is ŴC ∗SC ∗VTC . Thus, C = W ∗ŴC ∗SC ∗VCT ,
andWC = W ∗ ŴC . Now,

max
i

∥WT
C ∗

−→ei ∥ = max
i

∥ŴT
C ∗WT

∗
−→ei ∥

= max
i

∥
ˆ̄WH
C · W̄H

·
−→
ēi ∥ = max

i
∥W̄H

·
−→
ēi ∥

= max
i

∥WT
∗

−→ei ∥

Thus,

max
i

∥WT
C ∗

−→ei ∥ ≤

√
µ1r
n1n3

□
Lemma 2: Let L ∈ Rn1×n2×n3 satisfies the tensor incoher-

ence conditions (14−16). Let C = L:J : be any random subset
of the lateral slices of L such that rankT (C) = rankT (L).
Then

max
j

∥VTC ∗
−→ej ∥ ≤ βκ

√
µ2r
n1n3
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Proof: We have C = WC ∗ SC ∗ VTC , and thus VTC =

S−1
C ∗WT

C ∗ C.

max
j

∥VTC ∗
−→ej ∥ = max

j
∥S−1

C ∗WT
C ∗ C ∗

−→ej ∥

= max
j

∥S̄−1
C · W̄H

C · C̄ ·
−→
ēj ∥

≤ ∥S̄−1
C ∥∥W̄H

C ∥∥C̄ ·
−→
ēj ∥

= ∥C̄†∥∥W̄ · S̄ · V̄H
J :: ·

−→ej ∥

= ∥V̄ †J :: · S̄−1
· W̄ †

∥∥W̄ · S̄ · V̄H
J :: ·

−→
ēj ∥

≤ ∥V̄ †J ::∥∥S̄
−1

∥∥W̄ †
∥∥W̄∥∥S̄∥∥V̄H

J :: ·
−→
ēj ∥

= β∥L̄†∥∥L̄∥∥V̄H
J :: ·

−→
ēj ∥

= βκ∥VTJ :: ∗
−→ej ∥ ≤ βκ∥VT ∗

−→ej ∥

Thus,

max
j

∥VTC ∗
−→ej ∥ ≤ βκ

√
µ2r
n1n3

□
Lemma 3: Let L = W ∗ S ∗ VT be a n1 × n2 × n3 with

tubal-rank r, satisfying the tensor incoherence conditions
(14−16). Let C = L:J : be any random subset of the lateral
slices of L such that rankT (C)=rankT (L). Then,

∥WC ∗ VTC ∥∞ ≤ βκ

√
µ1µ2r

n1n2n23
Proof: According to Lemma 1 and 2, we have µC1 ≤

µ1 and µC2 ≤ β2κ2µ2. The proof follows

∥WC ∗ VTC ∥∞ = ∥W̄C · V̄H
C ∥∞ ≤ βκ

√
µ1µ2r

n1n2n23

□
Theorem 2: Let L = W ∗ S ∗ VT be a n1 × n2 × n3

tensor with tubal-rank r, satisfying the tensor incoherence
conditions (14−16). For a positive parameter γ1, select |J | =

γ1µ2r lateral slices of L uniformly and randomly without
replacement to form subtensor C = L:J : = W∗S∗VTJ ::. Then,
β = ∥V†J ::∥ satisfies eq (19) and the following condition:

β ≤

√
n2

(1 − δ)|J |
(21)

with probability of at least 1 − rn3 ·

(
e−δ

(1−δ)(1−δ)

)γ1rn3
for all

δ ∈ [0, 1).
Proof: The block diagonal matrix bdiag(V̄) = V̄ ∈

Cn2n3×rn3 has orthonormal columns. We draw a random
subset J from {1, · · · , n2} without replacement to construct
subtensor VJ :: ∈ R|J |×r×n3 . Then, V̄J :: ∈ C|J |n3×rn3 ,

∥VJ ::∥ =
∥∥V̄J ::∥∥ =

∥∥∥∥∥∥∥∥∥


V̄J :1

V̄J :2
. . .

V̄J :n3


∥∥∥∥∥∥∥∥∥

The proof follows Lemma 3.4 of [64].√
(1 − δ)|J |n3

n2n3
≤ σmin

(
V̄J ::

)
Note that

∥∥∥V†J ::∥∥∥ =

∥∥∥V̄ †J ::∥∥∥ =
(
σmin(V̄J ::)

)−1.

β =

∥∥∥V†J ::∥∥∥ ≤

√
n2

(1 − δ)|J |

□
Theorem 3: Let L ∈ Rn1×n2×n3 have tubal-rank r with

compact tensor singular value decomposition L = W ∗ S ∗

VT , satisfying the tensor incoherence conditions (14−16). Let
R=WR ∗SR ∗VTR be a subtensor of L formed by uniformly
and randomly selecting |I | horizontal slices of L such that
rankT (R)=rankT (L), and α = ∥W†

I ::∥. Then,

max
i

∥WT
R ∗

−→ei ∥ ≤ ακ

√
µ1r
n2n3

(22)

max
j

∥VTR ∗
−→ej ∥ ≤

√
µ2r
n1n3

(23)

∥WR ∗ VTR∥∞ ≤ ακ

√
µ1µ2r

n1n2n23
(24)

Lemma 4: Let L ∈ Rn1×n2×n3 satisfy the tensor incoher-
ence conditions (14−16). LetR = LI :: be any random subset
of the lateral slices of L such that rankT (R)= rankT (L).
Then,

max
i

∥WT
R ∗

−→ei ∥ ≤ ακ

√
µ1r
n2n3

Proof: We haveR = WR ∗ SR ∗ VTR, and thusWT
R =

S−T
R ∗ VTR ∗RT .

max
i

∥WT
R ∗

−→ei ∥ = max
i

∥S−T
R ∗ VTR ∗RT

∗
−→ei ∥

= max
i

∥S̄−H
R · V̄H

R · R̄H ·
−→
ēi ∥

≤ ∥S̄−H
R ∥∥V̄H

R∥∥R̄H ·
−→
ēi ∥

= ∥R̄†∥∥R̄H ·
−→
ēi ∥

= ∥V̄ † · S̄−1
· W̄ †

I ::∥∥V̄ · S̄H · W̄H
I :: ·

−→
ēi ∥

≤ ∥V̄ †∥∥S̄−1
∥∥W̄ †

I ::∥∥V̄∥∥S̄H∥∥W̄H
I :: ·

−→
ēi ∥

= α∥S̄−1
∥∥S̄H∥∥WT

I :: ∗
−→ei ∥

= α∥L̄†∥∥L̄∥∥WT
I :: ∗

−→ei ∥

= ακ∥WT
I :: ∗

−→ei ∥ ≤ ακ∥WT
∗

−→ei ∥

Thus,

max
i

∥WT
R ∗

−→ei ∥ ≤ ακ

√
µ1r
n2n3

□
Lemma 5: Let L ∈ Rn1×n2×n3 satisfy the tensor incoher-

ence conditions (14−16). LetR = LI :: be any random subset
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of the lateral slices of L such that rankT (R)= rankT (L).
Then,

max
j

∥VTR ∗
−→ej ∥ ≤

√
µ2r
n1n3

Proof: Note thatR = LI :: = WI :: ∗S ∗VT . The T-SVD
ofWI ::∗S isWR∗SR∗V̂TC . Thus,R = ŴR∗SR∗V̂TR∗VTR,
and VR = V ∗ ˆVR. Now,

max
j

∥VTR ∗
−→ej ∥ = max

j
∥V̂TR ∗ VT ∗

−→ej ∥

= max
j

∥
ˆ̄VH
R · V̄H

·
−→
ēj ∥ = max

j
∥V̄H

·
−→
ēj ∥

= max
j

∥VT ∗
−→ej ∥

max
j

∥VTR ∗
−→ej ∥ ≤

√
µ2r
n1n3

□
Lemma 6: Let L = W ∗ S ∗ VT be a n1 × n2 × n3 with

tubal-rank r, satisfying the tensor incoherence conditions
(14−16). Let R = LI :: be any random subset of the lateral
slices of L such that rankT (R)=rankT (L). Then,

∥WR ∗ VTR∥∞ ≤ ακ

√
µ1µ2r

n1n2n23
Proof: According to Lemma 4 and 5, we have µC1 ≤

α2κ2µ1 and µC2 ≤ µ2. The proof follows

∥WR ∗ VTR∥∞ = ∥W̄R · V̄H
R∥∞ ≤ βκ

√
µ1µ2r

n1n2n23

□
Theorem 4: Let L = W ∗ S ∗ VT be a n1 × n2 × n3

with tubal-rank r, satisfying the tensor incoherence condi-
tions (14− 16). For a positive parameter γ2, select |I | =

γ1µ1r horizontal slices of L uniformly and randomly without
replacement to form subtensor R = LI :: = WI:: ∗ S ∗

VT . Then, α = ∥W†
I ::∥ satisfies eq (22) and the following

condition:

α ≤

√
n1

(1 − δ)|I |
(25)

with probability of at least 1 − rn3 ·

(
e−δ

(1−δ)(1−δ)

)γ2rn3
for all

δ ∈ [0, 1) [64].
Theorem 5: Let L = W ∗ S ∗ VT be a n1 × n2 × n3

tensor with tubal-rank r, satisfying the tensor incoherence
conditions (14−16). For positive parameters γ1, and γ2, select
|I | = γ1µ1r horizontal slices and |J | = γ1µ2r lateral slices
of L uniformly and randomly without replacement to form
subtensor U = LIJ :. The following condition:

∥U†∥ ≤
1

(1 − δ)σmin(L̄)

√
n1n2
|I ||J |

(26)

satisfies with probability of at least 1−rn3·
(

e−δ

(1−δ)(1−δ)

)γ1rn3
−

rn3 ·

(
e−δ

(1−δ)(1−δ)

)γ2rn3
.

Proof: We have U = WI :: ∗ S ∗ VTJ ::, thus U† = V†J :: ∗

S−1
∗W†

I ::.

∥U†∥ = ∥V†J :: ∗ S−1
∗W†

I ::∥

∥U†∥ = ∥V̄ †J :: · S̄−1
· W̄ †

I ::∥

∥U†∥ ≤ ∥V̄ †J ::∥∥S̄
−1

∥∥W̄ †
I ::∥

∥U†∥ ≤

√
n2

(1 − δ)|J |
1

σmin(L̄)

√
n1

(1 − δ)|I |

∥U†∥ ≤
1

(1 − δ)σmin(L̄)

√
n1n2
|I ||J |

□

V. RESULTS
The high dimensionality and size of hyperspectral data
present computational challenges, particularly in terms of
storage and processing power. Random access memory
(RAM) is often a limited resource in computing systems.
Increasing RAM can be costly and is subject to limitations
imposed by the computer’s architecture. When the input
data exceeds the available memory, processing times can be
substantially slowed down. Methods such as TRPCA [40],
randomized TRPCA [49], RPCA [48] and PCA require the
entire dataset to be stored in memory, thereby lacking the
ability to reduce the memory footprint during computations.
As a result, these methods possess a compression ratio of 1.
In contrast, our tensor robust CUR method significantly
reduces the memory footprint by heavily downsampling the
input data tensor, forming small subtensors, and performing
TRPCA on these subtensors. Thus, our method achieves high
compression, which is essential for efficiently handling large-
scale datasets.

To illustrate the effectiveness and substantial speed-up,
we present the performance of our algorithm using three
hyperspectral data sets namely ‘Salinas,’ ‘Pavia University,’
and ‘Kennedy Space Center (KSC)’.1 We also compared
our method’s performance with existing low-rank recovery
methods namely TRPCA [40], randomized TRPCA [49],
RPCA [48] and iterated robust CUR (IRCUR) [46] on vec-
torized data. For IRCUR [46], we used the default settings.
After applying the aforementioned methods to the hyper-
spectral images, each data set is randomly divided into a
10/90 training and testing; and, support vector machine
(SVM) is utilized for classification. We also applied the
SVM classification to the original data sets to use them as
a benchmark. All experiments are run on MATLAB 2022a
using a laptop with Intel i7-11800H 2.30 GHz and 32 GB
RAM.

A. SALINAS
The Salinas dataset was acquired over the Salinas Valley,
California, using the NASA AVIRIS sensor, which captures

1https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes
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TABLE 1. Performance comparison of classification accuracy (%) for different methods on Salinas data set.

FIGURE 1. (a) displays a noisy spectral band (band 1) alongside the corresponding denoised signals for the Salinas dataset. Our method was
performed using random sampling of 10%, 15%, and 20% of the horizontal and lateral slices of the input hypercube which are labeled as ‘Ours10’,
‘Ours15’, and ‘Ours20’, respectively. The figure also shows the corresponding denoised signals obtained by TRPCA [40], R-TRPCA [49], RPCA [48],
IRCUR [46], and PCA. (b) depicts the classification maps for different methods.

data in the visible and near-infrared spectrum. The dataset
consists of a hyperspectral image with a spatial resolution of
3.7 meters. It contains 16 land cover classes, including veg-
etable cultures, vineyards, and bare soils. The dataset consists
of 512 × 217 pixels and 204 spectral bands. To construct
the subtensors, we randomly selected 10% of the horizon-
tal and 10% of the lateral slices of the input hyperspectral
data, resulting in R̃ ∈ R52×204×217 and C̃ ∈ R512×21×217,
achieving a compression ratio of 4.65.We applied ourmethod
(Algorithm 4) to these subtensors, recovering the low-
rank hyperspectral image. Our method achieved an overall

classification accuracy of 99.01% on the test set. In compari-
son, TRPCA [40] and randomized TRPCA [49] applied to the
input hypercube achieved overall classification accuracies of
99.19% and 99.32%, respectively. Notably, our tensor robust
CUR method demonstrated significant speed improvements,
being 14.45 times faster than TRPCA [40] and 4 times faster
than randomized TRPCA [49].
To investigate the effect of the size of the subtensors on

performance, two additional experiments were conducted
using subtensors constructed by randomly sampling 15%
and 20% of the horizontal and lateral slices of the original
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TABLE 2. Performance comparison of classification accuracy (%) for different methods on Pavia University data set.

data tensor. These experiments resulted in slightly improved
classification accuracies of 99.26% and 99.44%, respectively.
However, the larger subtensor size resulted in longer process-
ing time. Table 1 presents the classification accuracy for each
method.

Matrix-based methods, such as RPCA [48] and
IRCUR [46], were found to be ineffective in improving the
classification accuracy. To apply IRCUR [46], we constructed
submatrices R̃ ∈ R20090×204 and C̃ ∈ R111104×40 by ran-
domly sampling rows and columns from the input data matrix
X ∈ R111104×204.

Figure 1a provides an example of a noisy spectral band
and the corresponding denoised signals obtained using dif-
ferent methods. Our method was performed using random
sampling of 10%, 15%, and 20% of the horizontal and lat-
eral slices of the input hypercube, which were labeled as
‘Ours10’, ‘Ours15’, and ‘Ours20’, respectively. The figure
also shows the corresponding denoised signal obtained by
applying TRPCA to the entire input data tensor, serving as
the reference for comparison. It is evident that our method,
particularly when utilizing 20% of the horizontal and lat-
eral slices of the input hypercube, achieves denoising result
comparable to the result obtained by TRPCA directly to the
original hypercube. The lower panels (Figure 1b) display the
classification maps for different methods.

B. PAVIA UNIVERSITY
The Pavia University hyperspectral dataset was captured
using the ROSIS sensor during a flight campaign over Pavia,
northern Italy. This dataset comprises an image with dimen-
sions of 610×340 pixels and includes 103 spectral bands that
cover thewavelength range from 0.43 to 2.51µm.The ground
truth of the image provides classifications for nine distinct
land cover classes, encompassing various urban materials
such as asphalt, metal sheets, bricks, as well as trees.

To construct subtensors C̃ ∈ R610×11×340 and R̃ ∈

R61×103×340, we randomly selected 10% of the lateral

slices and 10% of the horizontal slices from the input
hypercube X ∈ R610×103×340. Subsequently, we applied
TRPCA [40] to the subtensors C̃ and R̃, followed by tensor
CUR reconstruction to recover the low-rank hyperspectral
image. Our method achieved an overall classification accu-
racy of 95.34%. In comparison, TRPCA [40] and randomized
TRPCA [49] achieved higher overall classification accu-
racies of 97.66% and 97.73%, respectively. Additionally,
our method demonstrated a compression ratio of 4.6 and
exhibited a speed improvement of 3.7 times compared to
TRPCA [40], making it 2.2 times faster than randomized
TRPCA [49].

It is worth noting that increasing the sampling size to
15% and 20% of the horizontal and lateral slices of the
input hyperspectral image led to improvements in classi-
fication accuracy, reaching 96.87% and 97.53%, respec-
tively. Table 2 presents the classification accuracy for each
method.

Matrix-basedmethods such as RPCA [48] and IRCUR [46]
were found to be ineffective in improving the classification
accuracy. To apply IRCUR [46], we constructed submatri-
ces R̃ ∈ R10121×103 and C̃ ∈ R207400×18 by randomly
sampling rows and columns from the input data matrix
X ∈ R207400×103.

Figure 2a shows a noisy spectral band and the corre-
sponding denoised signals obtained by different methods.
We conducted our method by randomly selecting subsets
of the horizontal and lateral slices of the input hypercube,
specifically at rates of 10%, 15%, and 20%, which were
labeled as ‘Ours10’, ‘Ours15’, and ‘Ours20’, respectively.
The figure also displays the denoised signal obtained by
applying TRPCA to the entire input data tensor, which serves
as the reference for comparison. The results indicate that
our method, when utilizing 15% and 20% of the horizontal
and lateral slices of the input hypercube, achieves denoising
outcomes that are comparable to the result obtained by apply-
ing TRPCA directly to the original hypercube. Figure 2b
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FIGURE 2. (a) displays a noisy spectral band alongside the corresponding denoised signals for the Pavia University
dataset. Our method was performed using random sampling of 10%, 15%, and 20% of the horizontal and lateral slices
of the input hypercube which are labeled as ‘Ours10’, ‘Ours15’, and ‘Ours20’, respectively. The figure also shows the
corresponding denoised signals obtained by TRPCA [40], R-TRPCA [49], RPCA [48], IRCUR [46], and PCA. (b) depicts the
classification maps for different methods.

illustrates the classification maps obtained by each of the
different methods.

C. KENNEDY SPACE CENTER
This data set was captured by the NASA AVIRIS sensor
over the Kennedy Space Center (KSC). The data consists
of 13 classes including various types of wild vegetation and
wetlands [65]. The data is 512 × 614 pixels and 176 spectral

bands. We randomly selected 10% of the lateral slices and
10% of the horizontal slices of the input hypercube X ∈

R512×176×614 to construct subtensors C̃ ∈ R512×18×614 and
R̃ ∈ R52×176×614. We performed our method and recovered
the low-rank hyperspectral image. Our method achieved an
overall classification accuracy of 99.81%which is better than
the overall accuracies achieved by TRPCA [40] and ran-
domized TRPCA [49]. The compression ratio of our method
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TABLE 3. Performance comparison of classification accuracy (%) for different methods on KSC data set.

FIGURE 3. (a) displays a spectral band alongside the corresponding recovered low-rank signals for the KSC dataset. Our method was
performed using random sampling of 10%, 15%, and 20% of the horizontal and lateral slices of the input hypercube which are labeled as
‘Ours10’, ‘Ours15’, and ‘Ours20’, respectively. The figure also shows the corresponding recovered signals obtained by TRPCA [40],
R-TRPCA [49], RPCA [48], IRCUR [46], and PCA. (b) depicts the classification maps for different methods.

is 4.67. Our tensor robust CUR algorithm is 12.7 times
faster than TRPCA [40], and 3.8 times faster than random-
ized TRPCA [49]. We should also note the classification
accuracy did not improve any further when the sampling size
was increased to 15% and 20% of the horizontal and lateral

slices of the input hyperspectral image. Table 3 shows the
classification accuracy for each method.

Matrix-based methods, including RPCA [48] and
IRCUR [46], were found to be ineffective in improving the
classification accuracy. To apply IRCUR [46], we constructed
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TABLE 4. Comparisons of average overall accuracy (%), compression ratio, and elapsed time (sec) for different methods.

submatrices R̃ ∈ R6225×176 and C̃ ∈ R314368×16 by randomly
sampling rows and columns from the input data matrix
X ∈ R314368×176.

Figure 3a shows a spectral band and the correspond-
ing recovered low-rank signals for different methods. Our
method was performed using random sampling of 10%, 15%,
and 20% of the horizontal and lateral slices of the input
hypercube, which were labeled as ‘Ours10’, ‘Ours15’, and
‘Ours20’, respectively. The results indicate that our method
achieves denoising outcomes that are comparable to the result
obtained by applying TRPCA directly to the original hyper-
cube. Figure 3b illustrates the classificationmaps for different
methods.

Table 4 displays the average overall accuracy and elapsed
time for each method. The application of tensor-based meth-
ods resulted in notable improvements in classification accu-
racy. Our tensor robust CUR method not only achieved a
significant reduction in memory usage but also accomplished
the task much faster compared to other tensor-based meth-
ods [40], [49]. On average, our method, which involved ran-
dom sampling of 10% of the lateral and 10% of the horizontal
slices of the input hypercube, outperformed TRPCA [40] by a
factor of 10.7 in terms of speed, and randomized TRPCA [49]
by a factor of 3.4.

The average overall accuracy achieved by the different
methods ranged from 85.37% to 98.79%. Our method exhib-
ited a high average overall accuracy of 98.05%, which further
improved to 98.38% and 98.79% when the sampling size
was increased to 15% and 20%, respectively. In terms of
compression ratio, our method achieved an average compres-
sion ratio of 4.64, indicating a significant reduction in the
memory footprint. Comparatively, TRPCA and R-TRPCA
achieved a compression ratio of 1, indicating no reduction
in memory usage. In terms of elapsed time, our method
exhibited remarkable efficiency, completing the analysis in
just 99 seconds. This is significantly faster compared to
TRPCA, which took 1059 seconds, and randomized TRPCA,
which took 337 seconds. Furthermore, it is worth noting that
matrix-based methods achieved lower overall accuracy when
compared to tensor-based approaches. This emphasizes the
advantage of utilizing tensor-basedmethods for hyperspectral
image analysis.

VI. CONCLUSION
In this paper, we developed a tensor robust CUR method
for compression and denoising of hyperspectral data.

We proposed a multi-dimensional divide-and-conquer frame-
work to drastically reduce the computational complexity of
TRPCA. Numerical experiments on numerous hyperspectral
data sets indicate that classification accuracy following the
application of our method is as good as when performing
TRPCA on the original hypercube. Results show that our
algorithm is up to 14 times faster than conventional TRPCA.
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