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ABSTRACT Speech is a natural communication method used by humans. Speaker identification (SI)
technology based on human speech has been used as an entry point for many human–computer-interaction
applications. The performance of SI models can degrade when dealing with expressive speech uttered in
emotional situations because emotion databases do not have sufficient data on expressive speech to train
SI models for various emotional states. Generally, SI models are trained using relatively more samples of
‘‘neutral’’ speech than samples of other emotion classes. In this study, we propose an emotion-aware SI (em-
SI) method that uses an emotion-embedding vector generated from a pre-trained speech emotion recognition
(SER) model along with the acoustic features of speech data. We assess the performance of this method
using individual English and Korean corpora and confirm that the proposed method provides an improved
performance on multilingual corpora. The evaluation results show that the SI accuracy of em-SI on the
Korean EmotionMultimodal Database (KEMDy19) improved by 3.2%, and the average speaker verification
(SV) performance in terms of the equal error rate (EER) was improved by 1.3% compared to that of the
baseline SI model. The visualization of the embedding vector of em-SI shows that em-SI maps speech data
to an embedding space where both SI and emotional information are simultaneously represented. Through
the experiments conducted in this study, we confirmed that the em-SI model, which learns by integrating
emotion and speaker embedding information, improved the performance of SI for expressive speech.

INDEX TERMS Affective computing, emotion-aware speaker identification, Korean emotion database,
multitask learning, speech emotion recognition, speech processing.

I. INTRODUCTION
Speaker recognition (SR), which distinguishes individuals
based on speech, is a fundamental and performance-sensitive
topic in natural human–computer interactions. Each human
has a voiceprint, which is an acoustic characteristic of
their unique voice-producing organs and speaking patterns.
Regarding SR technology, it can be classified as either
speaker identification (SI), which recognizes a speaker within
a specific set of speakers, or speaker verification (SV), which
determines whether a speaker is a specific person [1], [2].

The role of SI in emotional talking environments has
garnered significant interest in human–computer interaction
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and affective computing research. Integrating emotion recog-
nition and SI for expressive speech can improve the quality
of computer responses, in terms of adaptability and reactivity
to users in human–robot interfaces and intelligent call
centers [1], [2], [3].

When a speaker utters expressive speech in an emotional
situation, there are variations in the waveform, prosody,
spectral characteristics, accent, speech rate, and syllable rate
of the speech [4], [5], [6]. These variations in acoustic
characteristics reduce the performance of SI during expres-
sive speech and pose challenges when compared to neutral
state utterances in terms of the emotional expression, speech
rate, and loudness of vocalizations [1], [2], [4], [7], [8].
The performance degradation of SI during expressive speech
is due to the difference between the emotion classes for
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enrollment data, which represent the training data, and
the test data for each speaker in the SI model [9], [10].
Using speech data belonging to the same emotional state
for both training and testing an SI model can improve the
model’s performance; however, collecting balanced speech
data corresponding to the various emotions of each speaker
is a challenging task owing to the associated high costs and
time consumption.

Previous studies have explored the mutual dependencies
between emotion and speaker recognition in the context
of expressive speech [9], [10], [11]. Motivated by these
dependencies, we investigate a multilabel learning structure
that can simultaneously perform emotion recognition and SI
based on an expressive speech dataset.

We hypothesize that, if an SI model could learn the emo-
tional information and voiceprint of a speaker’s utterance,
it would help prevent the degradation of the SI performance
for expressive utterances. Accordingly, this study proposes
an emotion-aware SI (em-SI) method that incorporates an
emotion-embedding vector into the acoustic features of
speech data without neutralizing the emotional information
expressed in a speech segment [9].

We evaluated the em-SI model, which is based on a
deep-learning structure, for various expression utterances in
three separate emotion databases in English and Korean.
The enhanced performance of the em-SI model on all three
databases was confirmed through single-corpus and multilin-
gual corpora experiments. There was a 3.2% improvement in
SI accuracy in the evaluation of 40 speakers from a Korean
emotion multimodal database, namely the Korean Emotion
Multimodal Database in 2019 (KEMDy19). Additionally, the
average equal error rate (EER) of SV was reduced by 1.3%
compared to that of the baseline SI model that did not use an
emotion embedding vector. The contributions of this study
are summarized as follows.

A. EMBEDDING SPACE FOR EMOTION AND SI
We evaluated SI performance based on the dependency
between the emotions in training and test data for an SI
model. We then proposed the em-SI method to improve
the SI model for expressive utterances using an unbalanced
emotion database. The proposed em-SI model uses the
emotion embedding vector transferred from the pre-trained
SERmodel. The deep-learning-based em-SI model learns the
emotion- and speaker-embedding spaces of expressive speech
without intentionally blurring the emotional information
expressed in each utterance [9]. In the deep-learning structure
of the em-SI model with the transferred SER model, the
final embedding vector reflects the emotional context and
voiceprint characteristics included in the utterance.

B. BIDIRECTIONAL LONG SHORT-TERM MEMORY
(Bi-LSTM)-BASED PRE-TRAINED SER AND em-SI
NETWORKS FOR MULTILABEL RECOGNITION
The Bi-LSTM-based pre-trained SER and em-SI networks
operate on the same sequence of 56-dimensional (D) input

features, which typically include the Mel-frequency cep-
stral coefficient (MFCC), Mel-spectrogram, zero-crossing
rate, spectral roll-off, and spectral centroid. The Bi-LSTM
networks of em-SI enable the simultaneous recognition of
emotion labels and the SI of speech data.

C. TRANSFERRED SER MODEL OF A MULTITASK
LEARNING STRUCTURE
We implemented the pre-trained SER model based on a
multitask learning (MTL) structure using a weighted loss
function to prevent overfitting to a specific emotion label.
The MTL SER model could simultaneously learn categorical
emotion labels and arousal and valence levels from speech
data.

D. OPEN KOREAN EMOTION MULTIMODAL DATABASES
The proposed em-SI method was evaluated based on a single
corpus and multilingual corpora with the English-speaking
Interactive Emotional Dyadic Motion Capture Database
(IEMOCAP) [12] and two Korean emotion multimodal
databases, namely KEMDy19 [13] and Korean EmotionMul-
timodal Database in 2020 (KEMDy20) [14]. We published
the Korean-based databases to be freely available on a data-
sharing website [13], [14].

The remainder of the study is organized as follows.
Section II describes related studies performed on expressive
speech for SR and SER. Section III presents the operational
flow of the proposed em-SI model based on Bi-LSTM.
Section IV describes the data preparation and experimental
setup procedures, and Section V thoroughly discusses the
experimental results. Finally, Section VI concludes this study
and suggests potential directions for future work.

II. RELATED STUDIES
A. SR ON EXPRESSIVE SPEECH
Many studies have reported that SR performance deterio-
rates in expressive speech uttered in emotional situations,
particularly those involving extreme arousal and valence
levels [1], [2], [4], [7], [8], [9], [10].

An x-vector is a representative method of fixed-length
speaker embeddings [15] that is generated through a pooling
layer that extracts statistical information about frame-level
feature vectors extracted from a deep neural network (DNN).
Many studies [15], [16], [17] have reported that x-vectors can
outperform traditional generative models such as Gaussian
mixture models (GMMs) [18] and i-vectors [19] in terms of
SI performance.

Previous studies have analyzed the dependencies of
emotion and speaker recognition on expressive speech
using x-vectors or i-vectors, with the aim of improving
the performance of SER or SR models specifically for
emotional speech [9], [10]. Sarma et al. [9] proposed
an approach for generating an emotion-invariant speaker
embedding method for SI in emotional speech. This method
transformed i-vectors extracted from different emotions into
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the i-vector space of neutral emotions through an encoder
and decoder network structure. Using the generated emotion-
invariant speaker embedding with an input of 39-D (13-
base+13-1+13-11) MFCC features of augmented speech
data, an SI improvement of 2.6% on the IEMOCAP was
observed.

Pappagari et al. [10] described the results of SER
performance improvements by fine-tuning the pre-trained
ResNet-based x-vector model using the 23-D MFCC of
augmented speech data as an input vector. They determined
that SV performance was sensitive to changes in emotion via
experiments involving the EERs of SV. When test and enroll
utterances of differing emotion classes were used, the ERR
was worse than that when utterances of the same emotion
class were used. This study deduced that the performance of
SV on theMost Significant Point (MSP)-Podcast [20] corpus,
which comprises longer utterances from many speakers, was
better than the performance on IEMOCAP, which includes
many short utterances within 4 s. Although CREMA-D [21]
consisted of data shorter than those in IEMOCAP, the EER
of SV for CREMA-D was better than that for IEMOCAP.
Pappagari et al. attributed this observation to the phonetic
content variability of CREMA-D being limited to only
12 sentences.

Recently, studies have been conducted based on end-
to-end deep learning models that generate fixed-size
segment embeddings from speech data by combining
convolutional neural networks (CNNs) or recurrent neu-
ral networks (RNNs), often replacing the traditional
DNN structures used in x-vectors. The results of these
studies represent the latest advancements in SI perfor-
mance [8], [10], [22], [23], [24], [25], [26]. Meftah et al. [22]
evaluated SI performance through English and Arabic
corpora based on the combined structure (CRNN) of
CNN and LSTM models that used spectrogram input
features. They demonstrated an improvement in the SI
performance on the expressive speech of the proposed CRNN
model in a single-corpus-based evaluation of English and
Arabic. They attributed the degradation of the CRNN-SI
performance on the multilingual corpora to the difference
in corpus size between the Arabic and English-based
databases.

Garain et al. [24] introduced a golden-ratio-aided neural
network (GRaNN) with an MTL structure in which emotion
recognition, gender, and SI were processed simultaneously.
They used a wrapper-filter-based feature-selection technique
to select the input features for the three tasks with minimum
redundancy and maximum relevance. They adopted the
golden ratio [27] to determine the number of units in each
layer and demonstrated the performance improvement of the
GRaNN system based on the Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS) corpus [28].
Similar to the MTL structure utilized in a previous study,
each task model shared a common network and training
dataset, making it difficult to expand or change the structure
or training dataset for a single emotion or SI task [29].

Transfer-learning-based structures utilize features gen-
erated from a pre-trained model that has already been
trained in a specific source domain for the target
domain [10], [30], [31]. In the transfer learning model,
the features generated from the pre-trained model can be
used to improve performance in learning the target domain
with limited data by reflecting the learning features of
the source domain data. Zheng et al. [30] presented a pre-
trained indeterminate speaker representation model (PRISM)
consisting of a time-delayed neural network and convolu-
tional transformer encoder layers. They suggested that the
PRISM represented a speaker utterance as an indeterminate
‘‘floating’’ vector trained using frame-contrastive loss and
that it could be transferred and used for various downtasks.
The PRISM outperformed the fixed x-vector in the speaker
diarization downtask.

In this study, we propose an em-SI structure that supports
improvements in SI performance based on expressive speech.
To the best of our knowledge, few studies have utilized pre-
trained SERmodels for SI. The LSTM-based speaker embed-
ding of em-SI learns the emotion embedding transferred from
the pre-trained SER model along with the acoustic features
of speech. The deep speaker embedding of em-SI transforms
expressive speech into the speaker representation space that
simultaneously reflects emotion and SI without neutralizing
the emotional information included in a speech segment. The
transfer learning structure of the em-SI method facilitates
an independent optimization process such as learning about
separate source domains other than the target domain or
changing the network structure for each task.

B. SPEECH EMOTION RECOGNITION
The em-SI model uses the transferred emotion-embedding
vector from the SER model along with the acoustic features
of an utterance. Because an SER model accurately learns
emotion representation using expressive speech data, the
em-SI system can more effectively learn the speech-based
emotional expression characteristics of each speaker.

Generally, SER aims to predict emotion labels defined in
discrete [32] and dimensional emotion spaces [33]. In the
discrete emotion space, emotion categories, namely ‘‘sad,’’
‘‘happy,’’ ‘‘fear,’’ ‘‘anger,’’ ‘‘disgust,’’ and ‘‘surprise,’’ are
defined. In the dimensional emotion space, valence and
arousal are tagged as numerical values that present time-
varying emotional states in a continuous emotion space [34].
Valence refers to the level of positive or negative emotional
states, and arousal refers to the degree of emotional
activation [35].

Recent state-of-the-art SER models are based on deep
learning models, such as DNN [36], [37], RNN [38], [39],
and CNN [40], as well as a combination of one or more DNN,
CNN, and RNN systems [41], [42].

Considering the ambiguity of emotion labels and data
imbalance of each emotion class in emotion databases
is challenging when constructing a deep learning-based
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FIGURE 1. Workflow of the em-SI model, which uses an emotion
embedding vector transferred from the pre-trained SER model.

SER model. This ambiguity of the emotion labels arises
from the uncertainty of true labels. Emotion labels tagged
by external observers may not be the same as those
determined by self-reports of the same speech data [43].
Furthermore, it is expensive and time-consuming to collect
large-scale balanced emotional speech data for the various
emotional situations of a speaker [44], [45]; therefore, most
emotion databases have data imbalance problems for emotion
labels.

Mallol et al. [46] proposed a semi-supervised learning
model that was trained to reduce the bias of annotators by
manually combining and automatically tagged labels using a
label classifier. This model, which used the emotion labels
predicted by the label classifier model for emotion learning,
responded to the uncertainty problem of emotion labels in a
manner that did not entirely depend on the tagged emotion
labels.

An MTL-based SER model trained to simultaneously
predict multiple emotion labels can prevent the model from
overfitting to a certain type of label or enhance the SER
performance. Parthasarathy et al. [29], [47] presented an
MTL-based model that could learn the arousal, valence, and
dominance labels of a dimensional emotion space by placing
weights on the corresponding emotion labels. Chen et al. [48]
proposed anMTL-based SERmodel using bottleneck vectors
from dimensional label learning networks to predict discrete
labels.

The SER model used in this study was implemented
based on an MTL structure to respond to the ambi-
guity of emotion labels and improve the generalization
of emotion representation [29]. The MTL SER model
can simultaneously learn emotion labels in discrete and
dimensional emotion spaces. Moreover, we adopted the
weighted cross-entropy (CE) [49] loss with weights for each
emotion category in the discrete space by considering the
imbalance problem in the training dataset for the MTL
SER model. The applied weighted CE was intended to
mitigate overfitting to emotion categories with relatively
large amounts of data when the SER model learns emotion
representations.

III. EMOTION-AWARE SI
A. SI WITH TRANSFERRED SER
In this study, we have proposed an em-SI model to improve SI
for expressive speech uttered in various emotional situations.
The operational flow in Fig. 1 reveals that the em-SI model
uses the transferred emotion-embedding vector generated
from a pre-trained SER model. The learnable em-SI model
was trained using the transferred emotion-embedding vector
from the fixed SER model and acoustic features for the
corresponding speech data. The pre-trained SER and em-
SI models used the same 56-D acoustic low-level descriptor
(LLD) sequence of speech data as the input.

The speech sample and label spaces are denoted as
X and Y , respectively; the emotional speech database is
denoted as D= {D1,D2, . . . ,Dk}, where k is the name of the
speech database. This study assumes a supervised learning
environment wherein each speech sample is labeled with SI
information as well as common emotion labels that include
both the emotion category and the arousal and valence
levels. Each emotion database consists of pairs, denoted by

Dk =

{(
Xnu , (ynsi,u, (y

n
c,u

, yna,u, y
n
v,u))

)}Nk
n = 1

, where Nk is

the number of speech samples in the k emotional database.
The n-th speech input belonging to the speaker u, Xnu , has
multiple training labels of the SI, ynsi,u; the emotion category
is ync,u (e.g., ‘‘happy’’ and ‘‘sad’’); and the arousal and valence
levels are denoted by yna,u and ynv,u, respectively.

B. Bi-LSTM-BASED NETWORKS
In reference to our previous study [38] on SER, which
resulted in an improved SER performance compared to the
results of other SER models based on IEMOCAP, we utilized
an LSTM-based network structure and 56-D input features in
this study.We adopted a Bi-LSTM-based network comprising
128 cells in each direction for the SI and SER models,
as illustrated in Fig. 2. We implemented the same Bi-LSTM-
based network for both the SER and SI models, aiming
to focus on and learn from the temporal features of the
speech data using a frame-level RNN. The same network
structure was used for bothmodels to prevent themodels from
obtaining additional information extracted from network
differences that could interfere with the results of the em-SI
experiments.
The transferred SER and em-SI models, denoted as TSER

and ESI , respectively, used the same 56-D LLD feature
sequence frame-by-frame as the input for speech data. The
56-D LLD per frame of each speech comprised the 13-D
MFCC and the 40-D Mel-spectrogram, along with 3-D time-
and frequency-domain LLDs, such as the zero-crossing rate,
spectral roll-off, and spectral centroid. The 56-D LLD per
frame was extracted by applying sliding windows of 200 ms
with a 50% shift for obtaining frequency decomposition
results in the speech data. An LSTM structure that could
learn inter-frame changes of utterances was applied, and delta
features were not used as additional inputs to represent the
inter-frame changes, as in the study by Pappagari et al. [10].
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FIGURE 2. Architecture of the bidirectional long short-term memory
(Bi-LSTM)-based network for the pre-trained SER and em-SI
models.

We padded with zero values to obtain a fixed number of
96 frames and an input sequence of 96×56 per speech sample.
The padded sequence was input into the TSER and learnable
em-SI model ESI .
The attention mechanism [50] implemented in the Bi-

LSTM network focuses on the more discriminative parts
of the Bi-LSTM output sequence before the activation of
emotion recognition or speaker detection. This attention
layer focuses on the relevant parts of the Bi-LSTM output
sequence by assigning weight scores and generating high-
level contextual vectors.

The generated context vector was transmitted into three
fully connected (FC) layers with hidden node sizes of
128, 64, and 16. The last FC layer was followed by an
activation function for TSER and ESI . The 16-D embedding
vectors in the last FC of TSER and ESI were R16

SER and R16
SI ,

respectively.
The SER model, TSER, was trained to predict the arousal

and valence levels and the emotion categories of the
corresponding speech data by inputting the 56-D LLD vector.
The TSER produced the 16-D emotion embedding vector on
the embedding space denoted as TSER:X→R16

SER. The em-SI
model ESI performed SI based on the 32-D combined vector
with the SI embedding vector R16

SI and emotion-embedding
vector R16

SER for the n-th speech data. Regarding SI using
the em-SI system based on the combined feature space,
ESI :R16

SER⊕R16
SI→ynsi,u.

This study assumes an SI model that uses only the SI
embedding vector of R16

SI without the emotion embedding
as the baseline model, BaselineSI :R16

SI→ynsi,u, for the experi-
ments evaluating the em-SI performance.

C. MULTITASK LEARNING SER
We implemented an MTL SER model to prevent the
overfitting of specific emotion labels by considering the
uncertainty of emotion labels. The SER model was trained to
predict the emotion category and arousal and valence levels
for speech data using the shared and task-dependent layers.
The MTL SER was trained based on the total loss LSER,
which is the sum of the losses of each task multiplied by
the weight of the task loss. Lc,La, and Lv are the losses of
the recognition tasks for the emotion category, arousal level,
and valence level, respectively, and Wc,Wa, and Wv are the
weights for these losses, respectively.

In this study, the mean square error (MSE) loss for the
arousal and valence recognition task losses were La and
Lv,respectively, and Wc,Wa, andWv were set as 0.5, 0.3,
and 0.3, respectively, for LSER. The default values for these
weights were arbitrarily determined to balance the categorical
emotion loss with the dimensional loss for the arousal and
valence levels, and these weights were not optimized for the
employed dataset.

LSER = (Wc · Lc) +(Wa · La) +(Wv · Lv) (1)

We implemented the transferred SER using the weighted CE
for the emotion recognition lossLc. It compensated for model
overfitting to the data in the ‘‘neutral’’ class by lowering the
weight on the CE loss for this class. The weighted CE Lc is
the sum of the loss CE (c) multiplied by the weights γ (c) of
each emotion category c.
In our experiment, to compensate for model overfitting

when the ‘‘neutral’’ class accounted for the majority of
the training data, the weight value γ

(
‘‘neutral′′

)
for the

‘‘neutral’’ class was set to 0.5, and the weights for the other
three emotion classes (‘‘angry,’’ ‘‘sad,’’ and ‘‘happy’’) were
set to 1.0 for Lc.

Lc =

∑C

c=1
CE(c) · γ (c) (2)

IV. EXPERIMENTAL SETUP
A. EMOTION DATABASES
We experimentally verified the performance of the proposed
em-SI method on three separate emotion databases, namely
IEMOCAP [12], which is a widely used English-based
benchmark database for emotional speech research, and
the Korean emotion multimodal databases, KEMDy19 and
KEMDy20. We collected KEMDy19 and KEMDy20 using
procedures approved by the Institutional Review Board of
the Korea National Institute for Bioethics Policy (KoNIBP)
in 2019 and 2020, respectively.

Table 1 lists the language, number of speakers, utter-
ance type, data modality, distribution of speech data,
and distribution of the arousal and valence levels for
the four emotion categories in the three databases.
We employed the entire voiced and unvoiced parts of
the speech data [51] of the IEMOCAP and KEMD
databases as inputs to the pre-trained SER and em-SI
models.
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TABLE 1. Emotion multimodal databases.

The IEMOCAP database had a higher distribution than
the KEMDy19 and KEMDy20 databases for short speech
data less than 5 s. Compared with the data in KEMDy20,
the multimodal data collected in IEMOCAP and KEMDy19
during the induced emotional vocal performance of an actor
were more uniformly distributed for each emotion class. The
data in KEMDy20 included the free talking of adults not
engaged in acting; here, the speech data for the ‘‘neutral’’
emotion class accounted for 86.5% of the total speech
data.

The IEMOCAP database was organized into five sessions,
and the multimodal audio, visual, and textual data were
collected during dyadic interactions involving ten voice
actors. A pair of actors performed dialogue interactions based
on scripted scenarios and improvised emotionally in multiple
situational plays in the IEMOCAP sessions. The six human
annotators evaluated the categorical emotion labels and the

FIGURE 3. Emotion labels for the speech data are tagged while a
recorded video of a speaker is being watched using the KEMD annotation
application.

labels for the arousal and valence levels on a five-point Likert-
like scale [34] for the speech data.

The KEMDy19 database is a Korean multimodal database
created using a collection procedure similar to that of IEMO-
CAP. The KEMDy19 database consists of 20 sessions, each
containing ten emotional situational plays lasting between
4 to 10 min. The six plays were based on scenarios written
to elicit specific emotions, whereas the remaining four acting
plays were improvised emotional situation plays. Twenty
male and twenty female voice actors performed situational
acting in Korean based on scripted and improvised situations.
We collected speech data and physiological signals, such
as the electrocardiogram (ECG) signals from the Refit
patch U9 [52] and electrodermal activity (EDA) from the
Empatica E4 [53] wristband device worn by the voice actor.
The situations played by the voice actors were recorded
as videos for emotion-label tagging. Ten external human
annotators performed emotion label tagging for the data in
KEMDy19whilewatching the recorded video using a tagging
application, as shown in Fig. 3. For each piece of speech data,
the tagger assigned one of seven categorical emotion labels
(‘‘angry,’’ ‘‘happy,’’ ‘‘neutral,’’ ‘‘sad,’’ ‘‘surprised,’’ ‘‘fear,’’
and ‘‘disgust’’) and arousal and valence category labels based
on the 5-point scale.

The KEMDy20 database is a Korean multimodal database
comprising data from 80 adults who were not trained actors
collected over 40 sessions. In each session, two participants
watched a video on a specific topic for approximately 5 min
and shared a conversation regarding the video topic, and
then, they had a free conversation with their counterparts for
approximately 5 min. Each pair of participants in a session
repeated the process of watching and talking about six videos.
The speech data and biosignals of the photoplethysmogram
(PPG) generated from Empatica E4 were collected from all
the participants during their free conversations. The emotion
label of KEMDy20 was assigned to the emotion category and
arousal and valence levels by ten external evaluators based on
the video that had been recorded in the same manner as the
videos in the KEMDy19 database.

Fig. 4 shows the mean and standard variation of the
arousal and valence levels on the five-point scale for the
four emotion categories ‘‘happy,’’ ‘‘angry,’’ ‘‘neutral,’’ and
‘‘sad’’ of IEMOCAP, KEMDy19, and KEMDy20 (Table 1).
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FIGURE 4. Mean and standard variations of the arousal and valence levels on the five-point Likert-like scale for the four emotion classes of the
IEMOCAP, KEMDy19, and KEMDy20 databases.

We could assert that the emotion categories had regular
relationships with arousal and valence in all three databases.
The arousal was highest in the emotion class ‘‘anger’’ and
decreased in the order of ‘‘happy,’’ ‘‘neutral,’’ and ‘‘sad.’’
Similarly, the valence was the highest in the emotion class
‘‘happy’’ and decreased in the order of ‘‘neutral,’’ ‘‘sad,’’ and
‘‘angry.’’

B. PREPARATION AND EVALUATION PROCEDURE
We used the speech data with a length of 2 to 30 s
corresponding to the four emotion categories (i.e., ‘‘happy,’’
‘‘angry,’’ ‘‘neutral,’’ and ‘‘sad’’). We assigned a unique SI to
each speaker included in the three databases. To train the SER
model, we categorized the emotions based on majority voting
by the external taggers in all three databases. The average
values of arousal and valence given by the external taggers
based on the five-point scale were used as the training labels
for arousal and valence.

Following the distribution of emotion categories of each
database presented in Table 1, the data of KEMDy20
are severely imbalanced with most of the data residing
in the ‘‘neutral’’ class. We downsampled the speech data
corresponding to 70% of the ‘‘neutral’’ class of KEMDy20
for this experiment.

We did not adopt any data augmentation method for
the speech data from any of the databases for the
experiments focusing on the effectiveness of em-SI using
an emotion-embedding vector in environments with data
imbalances.

Table 2 lists the number of test and total speech sam-
ples used in the four emotion categories of IEMOCAP,
KEMDy19, and KEMDy20.We applied z-normalization [54]

TABLE 2. Number of speech samples used in the experiments.

TABLE 3. Evaluation procedure on a single database or multilingual
corpora.

to the speech data using the mean and standard deviation
values of the databases to reduce the fluctuations of the
speaker and speech signals. We implemented Bi-LSTM-
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TABLE 4. Evaluation of the pre-trained SER model of the MTL structure.

based SER and SI models using the TensorFlow toolkit [55]
and trained the models using the Adam optimizer for
30 epochs.

Table 3 lists the evaluation procedure for SER and SI on
each emotion database. The speech samples of the database
were split into training and test datasets using stratified
partitioning methods [56] by speaker-dependent emotion
classes. We randomly selected 20% of the speech data
corresponding to the emotion class of the speaker for the test
data; the remaining 80% of the speech data were used for
training. We configured a new training and test dataset for
target single corpora or multilingual corpus combination until
the counting reached the iteration number of the database,
num_iter. Then, the evaluation of SER or SI was repeated
five times with the same configured training and test dataset
for each iteration to determine the average performance. The
performance metric of the SER or SI for an emotion database
was calculated using an average of 25 iterative tests through
the evaluation procedure.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. PRE-TRAINED SER
The pre-trained SER model of the MTL structure simultane-
ously predicted the emotion category and arousal and valence
levels for speech data. We presented four SER performance
metrics: the weighted accuracy (WA), unweighted accuracy
(UA), macro F1 score [57], and concordance correlation
coefficient (CCC) [58]. The metric WA is the overall
accuracy, which is the ratio of correctly predicted samples to
the total number of samples; UA is the recall average, which
is an important performance indicator in evaluations based on
imbalanced databases; and the F1 score is the harmonic mean
of precision and recall. In this study, we usedmacro F1, which
is the average of the F1 score for each label. We evaluated
the CCC, which is a measure representing the degree of
concordance between the predicted value and training label
of the test dataset, for the SER performancemetrics of arousal
and valence.

Table 4 summarizes the average SER performance results
of the transferred MTL-based SER and TSER according to
the weighted CE (w-) and non-weighted CE (nw-) for the
categorical emotion classification Lc. The results achieved
by applying the weighted CE, w-, showed improvements

in the UA of each class and decreases in the WA value
compared to that achieved when applying the unweighted
CE, nw-, in all three emotion databases. We adopted a
weighted CE to train the transferred SER model in the SI
experiments.

The transferred MTL-based SER model proposed in this
study achieved an accuracy of 66.3% on IEMOCAP, which
is comparable to the accuracy of 65.95% achieved by the
fine-tuned ResNet-based SER model developed in a previous
study [10].
The SER performances of the four emotion category

classifications on the IEMOCAP and KEMDy19 databases
compared to that on KEMDy20 were lower and higher
in terms of WA and UA, respectively. It was inferred
that IEMOCAP and KEMDy19 included relatively balanced
speech data for each emotion class and well-expressed
acoustic features in the data compared with the data of
KEMDy20. The CCC performance for arousal and valence
was also higher in IEMOCAP and KEMDy19 than that in
KEMDy20.

Fig. 5 presents the confusion matrices of the results (values
are rounded up to two decimals) for the four emotion category
classifications and the line plots for the arousal and valence-
level label recognition of the transferred MTL-based SER on
IEMOCAP, KEMDy19, and KEMDy20.

The confusion matrices in Figs. 5(a), 5(b), and 5(c)
clearly reveal that the ‘‘neutral’’ class, which has the most
training data, shows the highest recognition accuracy. The
‘‘happy,’’ ‘‘angry,’’ and ‘‘sad’’ classes with relatively few
training speech samples showed a high probability of being
incorrectly predicted as the ‘‘neutral’’ class. Thus, it was
inferred that the SER model had been potentially biased and
trained in the prediction of a ‘‘neutral’’ class with a large
amount of training data.

Figs. 5(c), 5(d), and 5(e) show the line plots for the arousal
and valence levels, which are the training labels and predicted
values of the pre-trained SER for 200 consecutive test speech
samples. This indicated that the recognition performance of
the valence level was lower than that of the arousal level in
all three databases.

B. DEPENDENCY BETWEEN EMOTION AND SI
Weperformed dependency experiments between emotion and
SI on expressive speech by distinguishing the emotion classes
for the training data, which were used for enrollment, and
the test data on the baseline SI model. Ablation experiments
were conducted based on the baseline SI model, which did
not use emotion embedding in the three emotion databases of
IEMOCAP, KEMDy19, and KEMDy20.

As per the evaluation procedure described in Table 3,
80% and 20% of the speech data from the emotion category
of each speaker were used for enrolling and testing the
baseline SI model, respectively. The pre-trained SER model
generated emotion embeddings for the configured test dataset
at each iteration of the emotion database. The baseline
SI model was trained using speech data of emotion class
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TABLE 5. Accuracy (%) of multitarget si according to emotion classes used for enrollment and testing for the baseline SI model.

FIGURE 5. Visualization of the pre-trained SER results for categorical emotion classification and arousal and valence level recognitions on the
IEMOCAP, KEMDy19, and KEMDy20 databases. Confusion matrices for the recognition of four emotion classes on the (a) IEMOCAP, (b)
KEMDy19, and (c) KEMDy20 databases. Line plots for the training label and recognition values of arousal and valence levels on the (d)
IEMOCAP, (e) KEMDy19, and (f) KEMDy20 databases.

combinations, where the emotion class is added in the order
of ‘‘neutral’’ (N), ‘‘angry’’ (A), ‘‘happy’’ (H), and ‘‘sad’’ (S).
The SI performance was evaluated with 20% of the test data
belonging to each of the four emotion classes based on the
trained baseline SI model by each combination of emotion
classes.

Table 5 lists the experimental SI accuracy (in units of
%) based on the emotion categories used for enrollment
and testing. When a specific emotion class is added, the

change in SI performance compared to that for the previous
emotion class combination without using that emotion class
is indicated in a separate column (1). As summarized in
the evaluation procedure in Table 3, for each emotion class
combination used for enrollment, we randomly selected the
training and test datasets for the four emotion classes data per
speaker.

In the table, for cases where speech data from each
emotion class are additionally used for enrollment, the SI
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TABLE 6. Evaluation results of baseline SI and EM-SI.

improvement with the highest enhancement in performance
is highlighted in bold. These results confirmed that, when the
data of the emotion class to which the test data belonged were
used for enrollment, there was a rapid improvement in the SI
performance of the corresponding emotion class in most test
cases. Our evaluation showed the highest SI accuracy when
speech data corresponding to all four emotion categories were
used for enrollment, which was common to all the emotion
categories in the three databases.

The SI performance of each emotion class in this study was
higher according to the order ‘‘neutral,’’ ‘‘happy,’’ ‘‘sad,’’ and
‘‘angry’’ when using 80% training data of the ‘‘neutral’’ class
in IEMOCAP. This was the same result as that achieved in
previous studies [9], [10].

Unexpected experimental results were also obtained, such
as in the case of IEMOCAP when the data of ‘‘N+A+H’’
were trained; the SI performance of ‘‘angry’’ was slightly
lower than that when the enrollment data of ‘‘N+A’’ were
trained. The results presented in [9] indicated that the SI
performance for the ‘‘sad’’ class of IEMOCAP was the
maximum when the training emotion was neutral. Regarding
the experimental results obtained in previous research [9]
and this study, they can be attributed to the training and test
datasets relying on a combination of the variability of the
sampled data, including the number of samples of each class,
data length, and acoustic features of the expressive speech
data that constitute the database.

The IEMOCAP database, which comprised data from
10 speakers, had a relatively high proportion of short
utterances within 5 s, while KEMDy20, which comprised
longer speech data uttered from 80 speakers, had a high
proportion of the ‘‘neutral’’ class and low proportions of the
‘‘angry’’ and ‘‘sad’’ classes.

The performance in terms of SI accuracy of the ‘‘neutral’’
test data of IEMOCAP was similar to that of the ‘‘neutral’’
class data of KEMDy20. KEMDy19 comprised speech data
with higher deviations in the arousal and valence levels across
various emotion classes, as shown in Table 1 and Fig. 4.

Although KEMDy19 showed the lowest SI performance
among the three databases, when each emotion class was
used for enrollment, it displayed the most noticeable
SI improvement for the test data of the corresponding
class.

The SI experimental results in Table 5 reveal the improve-
ment in the SI performance for expressive data, which have
a high acoustic variation from ‘‘neutral’’ class data, when
utterances expressing similar emotional levels are used for
enrollment on the SI model.

Fig. 6 shows a bar graph of the SI accuracy according to the
emotion class of speech data used for enrollment and testing
on the IEMOCAP, KEMDy19, and KEMDy20 databases,
as described in Table 5. The results shown in Table 5 and
Fig. 6 confirm that the performance of the deep-learning-
based SI model is greatly affected by the distribution and
scale of speech data in the different emotion categories for
each speaker in the training dataset.

C. EMOTION-AWARE SI
To evaluate the improvements in SI performance achieved
by em-SI, we constructed training and test datasets using
the speaker-dependent stratified partitioning methods for all
four emotion classes based on three single emotional corpora
and multilingual corpora according to the procedure listed in
Table 3. The SI performances of the LSTM-based baseline
SI method without the emotion embedding vectors and the
em-SI method that used the emotion embedding vectors
transferred from the pre-trained SER were evaluated. The
training and test datasets that were randomly selected in each
repetition for the target corpus were commonly used for the
SI evaluation of the baseline SI and em-SI models and pre-
training of SER.

Table 6 presents the evaluation results of the baseline
SI and em-SI models in terms of the SI accuracy (%) and
EER (%) of SV for the multitarget speakers included in
the three single corpora and multilingual corpora. The SI
accuracy is the average speaker classification accuracy across
all the speakers enrolled in the SI model. The presented
EER was also calculated using the average EER of the test
data belonging to all the speakers enrolled in the SI model.
The baseline SI model in this study showed an average
accuracy of 86.9% on IEMOCAP, surpassing the maximum
average accuracy of 81.7% achieved by the baseline model
using the i-vector demonstrated in a prior study by Sarma
et al. [9]. The proposed em-SI model outperformed the
baseline SImodel on the three single corpora andmultilingual
corpora.

A previous study [22] attributed the decreased SI per-
formance of the proposed deep learning-based SI model in
the multilingual corpora experiment compared to that in the
single corpus scenario to the difference in the size of the
two corpora. The amount of data in KEMDy20 used for
the evaluation in this study was more than twice that of
IEMOCAP; however, most data in KEMDy20 were speech
data belonging to the ‘‘neutral’’ class. In the SI evaluation of
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FIGURE 6. Average SI accuracy (%) based on the emotion classes used for enrollment and testing on the IEMOCAP, KEMDy19,
and KEMDy20 databases by baseline SI.

the multilingual corpora using IEMOCAP and KEMDy20,
em-SI showed a higher SI performance than that of the
baseline SI. The SI performance in the cross corpus-based
SI was slightly lower than that of the single corpus-based
SI, as also shown by the results obtained in a previous
study [22].

The average accuracies of the multitarget SI of the
baseline SI and em-SI models for the ten speakers of
the IEMOCAP were 86.9% and 87.5%, respectively. The
performance of em-SI on KEMDy19 comprising 40 speakers
was 3.2% higher in terms of accuracy, and the em-SI
model achieved a performance improvement in terms of a
decrease in the EER of approximately 1.3% compared to
that of the baseline. In the SI evaluation of the data of the
80 speakers from KEMDy20, the average accuracy of em-
SI was approximately 2.4% higher than that of the baseline
model.

Fig. 7 shows the SI accuracy (%) and EER (%) of
the baseline SI and em-SI models in the three single and
multilingual corpora. In the experiments on English and
Korean corpora, the proposed em-SI model showed a better
performance than that of the baseline SI model, similar
to that of a single corpus-based model. The em-SI model
showed accuracy improvements of 2.4% and 1.7% in the
multilingual corpora test for IEMOCAP and KEMDy19 and
for IEMOCAP and KEMDy20, respectively, compared to the
corresponding values of the baseline model.

Fig. 8 shows the average receiver operating characteristic
(ROC) curves of the baseline SI and em-SI models for
multitarget SI on IEMOCAP, KEMDy19, and KEMDy20.

FIGURE 7. SI performance of the baseline SI and em-SI models in terms
of (a) SI accuracy (%) and (b) EER (%).

Each ROC curve was plotted for a test dataset for each
speaker, and the average ROC curve and EER for all
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FIGURE 8. Average ROC curves of the baseline SI model for multitarget SI on the (a) IEMOCAP, (b) KEMDy19, and (c) KEMDy20 databases. Average
ROC curves of em-SI on the (d) IEMOCAP, (e) KEMDy19, and (f) KEMDy20 databases.

FIGURE 9. Embedding space of SI of the baseline SI and em-SI using the t-SNE: (a) and (b) SI embedding space of all ten speakers of IEMOCAP; (c) and
(d) SI embedding space of ten speakers on KEMDy19.

speakers were calculated. The average EER for the em-
SI model evaluation on all the three databases, as shown

in Figs. 8(d), 8(e) and 8(f), was lower than that of the
baseline EER, as shown in Figs. 8(a), 8(b), and 8(c). The
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ROC curve for several speakers below the average ROC
curve of the baseline SI model was improved, and the
average EER of the em-SI models was lower than that of the
baseline.

Fig. 9 shows the 2-D reduction of the SI embedding vectors
of the test dataset for the baseline SI and em-SI models
using t-distributed stochastic neighbor embedding (t-SNE).
Figs. 9(a) and 9(b) show the SI embedding of the baseline
SI and em-SI models for the test dataset for all ten speakers
included in IEMOCAP, and Figs. 9(c) and 9(d) show the
embeddings of the ten speakers in KEMDy19. The evaluation
results for the baseline SI and em-SI models shown in Fig. 9
were obtained with the same training and test data in the
corresponding database.

We ensured that the em-SI model learned the SI embedding
space that included both the SI and emotion class information
of the corresponding speech data, as shown through the
visualization in Fig. 9.
In both Figs. 9(a) and 9(b), the cluster boundary for the

SI embedding of speaker ‘‘9’’ is unclear. The SI embedding
vectors of the same emotion category in the SI embedding of
the em-SI model in Fig. 9(b) are closer to each other within
the corresponding speaker cluster than they are in the baseline
model shown in Fig. 9(a). The cluster of emotion classes in
the SI embedding space of em-SI was also observed in the
KEMDy19-based dataset shown in Fig. 9(d) and compared
with that for the baseline model in Fig. 9(c).
The evaluation results on KEMDy19 presented in Table 5

indicate that em-SI with the transferred emotion embedding
achieved an average accuracy improvement of 3.2% com-
pared to that of the baseline SI model. The SI embedding
space visualization of em-SI in Fig. 9(d) showed that the
speaker cluster for the test dataset was evident, and that the
test data of the same emotion category were located closer
to each other in the speaker cluster than in the case of the
baseline model in Fig. 9(c). Although the SI performance on
KEMDy19 was the lowest among the three databases, the
improvement in SI performance for this database through em-
SI was the highest.

Fig. 9 confirmed that the em-SI model learned the embed-
ding space that reflected the SI and emotional information
of the speech data. The speaker embedding of em-SI,
which simultaneously reflected the speaker and emotion
embeddings in Figs. 9(b) and 9(d), showed a better SI
performance for expressive speech than that of the baseline
SI that did not use the emotion embeddings, as shown in
Figs. 9(a) and 9(c).

VI. CONCLUSION
We presented an em-SI model that learns the speaker-
embedding space and simultaneously embeds SI and
emotional information from speech data. The experiments
evaluating the em-SI system based on the multilingual
emotion database IEMOCAP and the freely available Korean
emotion multimodal databases KEMDy19 and KEMDy20

confirmed that the proposed em-SI method improves the SI
performance in expressive speech.

To improve the SI performance of a deep-learning-based
SI model for expressive speech uttered in various emotional
situations, training data for various emotions for each speaker
are required. However, such emotion databases incur a
high cost for collecting sufficient data for training deep-
learning-based SI models in individual emotional situations
for individual speakers.

The proposed em-SI model could learn the emotion-
embedding vector transferred from the pre-trained SER
model along with the acoustic features. The separate SI and
SER models of the em-SI model were independent for each
task and easy to cross-reference. Each of the SER and SI
models could be expanded using other speech databases and
optimization methods; they could be changed to a different
task-dependent network structure or combined with existing
models.

We implemented the MTL SER model using a weighted
loss to handle the problem of emotional data imbalance
and label uncertainty for emotion transfer learning within
the em-SI system. The em-SI model combined with the
transferred SER model exhibited an improved SI perfor-
mance for expressive speech in disproportionate emotion
databases.

In this study, we implemented the SI and SERmodels in the
em-SI system based on the same emotion database using the
same Bi-LSTM-based network structure. This was performed
to minimize the gain from the network and database of
the transferred SER for SI operations. We also confirmed
the effect of emotion-embedding learning on the SI model.
In the future, we will attempt to evaluate various network
structures of em-SI for enhancing SI in expressive speech
using multiple-language databases.
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