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ABSTRACT Learning the complex relationships between items in a sequential recommendation system
(SRS) and session-based recommendation system (SBRS) is critical for obtaining higher prediction scores.
In recent studies, to capture item-item information, items have been represented as the nodes of graph neural
networks (GNNs) and the relevance of items with self-/soft attention layers has been calculated. GNNs
have been used because standalone attention-based methods focus only on the relative significance of items
within a single session, neglecting high-order item-item relationships that change through sessions. The
relational summarization task is a natural language processing task that extracts the relationship between
two tokens from a related corpus; however, its adaptation to SRS and SBRS is unknown. To fill this lacuna,
in this study, the relationships between items from related sessions are extracted using the transformer-based
abstractive summarization model PEGASUS. To improve session embedding, the proposed model, named
‘‘gap-session transformer’’ utilizes gap-session masking to learn the relationships between items within
different sessions. In addition, a group of sessions are divided into multiple corpus sets based on the theme
of each corpus, and the autoregressive beam-search decoder is connected to a transformer decoder for the
generation of the next session while auxiliary tasks are performed to enhance the recommendation task.
Extensive experiments conducted on the MovieLens1M dataset and Yoochoose dataset verify that our model
significantly outperforms the state-of-the-art (SOTA) methods, and the results demonstrate the efficacy of
the relational summarization task in recommendation systems.

INDEX TERMS Recommender systems, Pegasus, transformer.

I. INTRODUCTION
Sequential recommendation systems (SRSs) and session-
based recommendation systems (SBRSs) are the two main
types of recommendation systems. First, sequential recom-
mendation predicts an item or group of items for a con-
sumer’s next purchase. Because such prediction requires the
sequence data of an individual user, sequential recommenda-
tion enables personalized recommendations. Sequence data
are a list of a user’s historical behavior in chronological
order without considering the start and the end of each
interaction, omitting timestamp data from the inputs [39].
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SBRSs have emerged as a way to recommend the next items
when long-term user behavior information is unavailable [9].
Instead of determining personalized user-item relationships
throughout a single sequence per user, the goal of SBRSs
is to capture the item–item or item–session relationships by
learning a series of sessions. A session refers to a transaction
with several items purchased or rated in one event by an
anonymous user.

To improve the accuracy of the recommendations, recent
studies on SRSs and SBRSs have adapted the latest machine
learning (ML) methodologies of transformers [34] and
graph neural networks (GNNs). Recent studies based on
transformers have used natural language processing (NLP)
models such as bidirectional encoder representations from
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FIGURE 1. Relational summary for the relationship between the former German chancellor Gerhard Schrõder and the
Russian leader Vladimir Putin, referred to as (w1) and (w2), respectively. The ‘‘mention set’’ includes all the statements that
contain (w1) and (w2). After creating mention set, the ‘‘candidate set’’ is generated (a) by identifying all the sentences in
the mention set that coherently represent certain relations between (w1) and (w2). Thereafter, the ‘‘abstract summary’’
construction task is performed (b) to select the top θ candidates to generate a summary. It should be noted that unlike an
original relational summary, an abstract summary is created, not an extractive summary.

transformers (BERT) [5] and generative pre-trained trans-
formers (GPT) [28]. The authors applied a transformer
encoder and decoder to a sequential recommendation because
of the resemblance between the historic behavior of users
and the text sentences; both are sequence data. To support
the recent success of transformer-based NLP models on text
translation and generation, SRSs such as those proposed
by [17] and [32] replaced tokens from sentence datasets
with items from user-item interaction sequences. In addi-
tion, [22] suggested that the estimation without time infor-
mation implicitly indicates that all the adjacent elements of
a user behavior list have the same time interval. This is
not always true in the real world. Reference [22] further
stated that if the time intervals between items differ, so do
their effects on the next item recommendation, even if the
temporal order is identical. Therefore, adding time-interval
information to sequential recommendations is necessary for
a more successful prediction.

The motivation of this paper is to develop a recommender
system that can be used for both session-based recommenda-
tion and sequential recommendation with better performance.
This dual purpose is to provide a more convenient expe-
rience for our recommendation system users, as previous
works are built for only one type of recommendation system.
This single-purpose usage refrains users from solving diverse
real-world recommendation problems. To resolve this incon-
venience, our suggested model can accept both session and
sequential datasets as input.

As amethod for time-interval-aware sequential recommen-
dation, we introduce the concept of encoding a single-user
behavior sequence into several sessions, divided by the time
interval threshold. This also holds for the implementation of
the latest NLP model—pre-training with extracted gap sen-
tences for abstractive summarization sequence-to-sequence
(PEGASUS) [44]. The adaptation of PEGASUS requires
breaking down a sequence into multiple sessions, as the
PEGASUS decoder considers a list of sentences instead of

a single, absolute document. We chose PEGASUS because
it has demonstrated superior performance in abstractive text
summarization tasks with a substantially small number of
fine-tuning datasets than in other models, including BART
and the text-to-text transfer transformer (T5) [29].
Finally, we implemented relational summarization for

sequential and session-based recommendations to capture the
complex item–item relationships. A relational summarization
task is a novel task that aims to create a natural language
summary of the relation between two lexical tokens in a
corpus without the help of a knowledge base [14]. The moti-
vation for this task is to improve the user interface using a
concise mind map that can depict the relationship between
two entities. Although SBRS and relational summarization
seem unrelated, if we replace a tokenwith a session, creating a
mind map between multiple sessions can facilitate the under-
standing of the complex correlations between items. This is
because sessions with similar items are closer in embedding
space [23]. Conversely, the complex item–item relationship
lies in the session–session relationship. Figure 1 illustrates
how relational summarization works. The contributions of
this study are as follows:

• It proposes session encoding to capture the various time
intervals between items for SRSs.

• It implements relational summarization, enabling
attention-based SBRSs to capture complex item–item
information.

• It introduces a corpus theme to improve loss perfor-
mance.

II. RELATED WORK
Following [47] and [48], in Table 1, we compare the technical
aspects of related works with those of the proposed method.

A. SESSION-BASED RECOMMENDATION SYSTEM
Earlier studies on SBRSs used Markov chains (MCs) and
Markov decision processes (MDPs) to learn sequential
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TABLE 1. Comparison between related works and our method on technical aspects.

patterns from past interactions between the user and the
item. Item-KNN [30] is an item-based recommendation gen-
eration methodology that uses cosine similarity to compute
item–item similarities. The recurrent neural network (RNN)-
based approach GRU4REC [12] modeled the entire session
data as mini-batches that were parallel for each session using
the gated recurrent unit (GRU) layers. NARM [18] was one of
the first attention-based SBRSs, focusing on the user’s main
purpose in a given session. STAMP [19] is a short-term atten-
tion/memory priority model that captures the current user’s
interests based on their previous clicks and general interests
from long-term memory. Reference [25] was a combination
of probabilistic models and LSTM. GNN and graph convo-
lution network (GCN) [4], [16] are emerging technologies
that have gained significant attention with respect to SBRSs
in recent years. SR-GNN [35] was a significant study that
structured graph data based on session sequences. In addition
to GNN, GC-SAN [40] used a self-attention mechanism to
capture the long-term dependency between items for each
session. GCE-GNN [37] learns session- and global-level
item-embeddings by modeling pair-wise item transitions of
GNN. The latest GCN variants such as hypergraph neural
network (HGNN) [8] and hyperbolic convolution network
(HGCN) [2] are used to provide higher-order information
between items and sessions. Another GCN-based model,
HMLET [46], comprises hybrid of linear and non-linear prop-
agation steps. When processing each item node or user, its
gating module chooses either of linear or non-linear step.
Lastly, SimGCL [45] suggests the method based on con-
trastive learning, a learning mechanism which well extracts
self-supervised signals from the input data.

B. SEQUENTIAL RECOMMENDATION SYSTEM
Similar to SBRSs, early SRS started with the MC and MDP.
Item-POP was a naive frequency-based selection model.

NCF [13] leveraged a multilayer perceptron (MLP) with
collaborative filtering (CF), and FPMC [26] devised a fac-
torized personalized MC using matrix factorization (MF).
BPRMF [27] combinedmatrix factorization and the k-nearest
neighborhood approach to optimize a personalized rank-
ing system. Transformer [34] is an encoder-decoder model
with an attention mechanism and has gained considerable
attention in a broad range of computer science subjects.
Self-attention and masked self-attention, also known as
‘‘cross attention,’’ have been actively applied to SRSs and
SBRSs. Caser [33] used a convolutional neural network
(CNN) to capture the local features and global preferences.
SLRC [36] trained the item-specific short-term effect and
lifetime effects to understand repeated consumption by users.
TiSASRec [22] modeled both the absolute positions of items
and the time intervals between them using self-attention.
Transformer4Rec [6] was an open-source library that allows
researchers to use Transformer-based NLP techniques in rec-
ommender systems. SASRec [17] generated the next items
using a transformer decoder, similar to GPT [28]. BERT [5]
is a pre-trained language model that uses a bidirectional
autoencoder. It uses the Cloze objective, masking a token
from a sentence and using the encoder layers of autoen-
coder and self-attention mechanism to reconstruct the noised
tokens. Because the BERT architecture does not include a
decoder, it is not equipped for text generation. Nevertheless,
BERT4Rec [32] proved that adjusting BERT into a sequential
recommendation can benefit the embedding of sequential
patterns. However, BERT’s weakness in generative tasks
is critical for the generation of the next item and session,
as these are also generative tasks. Moreover, recommenders
solely based on self-attention capture only within-session
item-item relationships, neglecting item-item interactions
across the sessions [24]. Hence, we propose a PEGASUS
[44]-based recommender that can be used for summarizing
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deep item-item information, with the help of a relational
summarization task. In addition, PEGASUS is a transformer
encoder-decoder model optimized for the abstractive summa-
rization task, ensuring the generation of robust and creative
sessions.

III. THE PROPOSED METHOD
In this section, we first present the definitions and notations
used in this study. We then describe how session and sequen-
tial datasets are processed and modeled as a relational sum-
marization task using PEGASUS. Subsequently, we devised
our whole-session masking for training the SBRS and SRS.
Finally, we introduce the transformer decoder and integrate
length normalization into the autoregressive beam-search
decoder to improve the relational summarization tasks.

A. NOTATIONS AND DEFINITIONS
We denote sets of item as V = { v1, v2, v3, . . . , vN }, where
N is the number of items. Let S = [s1, s2, s3, . . . , sM ]
represent the vectors of sessions, where M is the number
of sessions. Each session s is a vector of the interacting
items v of an anonymous users; it is denoted as sm =

[v1,m, v2,m, v3,m, . . . , vk,m](1 ≤ m ≤ M , 1 ≤ k ≤ N ) and
vk,m ∈ V . The number of anonymous users equals K , the
number of unique values of s. We embedded each session
s ∈ S into the same vector space and let ask ∈ Rd

k
denote

the representation of session s of dimension dk in the k-th
hidden layer of the neural network. The representation of the
entire session set is represented as Ak ∈ Rn×d

k
. The goal of

the SBRS and SRS is to generate predictions for the next item
vk+1,m for any given session s.

1) DEFINITION 1. WHOLE SESSION MASKING
Let E = W (g, c, β) denote a session masking embedding,
where g is a corpus that includes N unique tokens and L
unique sequences, c is the number of themes T in the corpus,
and β is the input masking probability. We refer to T as
a threshold token that creates a subcorpora from the main
corpus based on whether a sequence contains T or not. If the
sequences contain T , they are in the same subcorpus. The
value of c obtained from the experimental setup was larger
than 0. Each sequence of g contains two or more tokens and
is zero-padded to the maximum sequence lengthmax seq len.
E can be represented by the matrix size of max seq len× T .

2) DEFINITION 2. PEGASUS DECODER
Given the whole-session masking embedding E =

W (g, c, β), the PEGASUS decoder P(E, p) = B(D(E, p), γ )
represents the transformer-based left-to-right autoregressive
decoder, where D is the transformer decoder, B is the beam-
search decoder, p is a masking probability for attention
maps, and γ is the beam size. As suggested by [29], P only
reconstructs the masked sessions as a single output sequence.

FIGURE 2. An implementation of a relational summary on session
embedding. Green dots represent each item v1, v2, . . . , vn, purple dots
represent the c most frequent items v1, v2, . . . , vc , and red dots represent
the rest of the items vk+1, . . . , vn. Here, ‘‘session reorder’’ refers to the
generation of the mention set and ‘‘session masking’’ refers to the
generation of the candidate set. The mention set includes all the sessions
from the raw dataset that contains each of the c most frequent items.
Once a mention set is created, we sampled candidate sets identifying all
the sequences in the mention set that coherently represent the
relationship between the most popular items and the rest of the items.

B. RELATIONAL SUMMARIZATION
A relational summarization task comprises three subtasks:
mention set generation, candidate set generation, and sum-
mary construction tasks. The mention set refers to the corpus
where two items co-occur, the candidate set represents a
sample extracted from the corpus, and the summary refers
to the extractive summary obtained from the candidate set.
It should be noted that we use an abstractive summary as
a final recommendation instead of an extractive summary.
In contrast to extractive summarization, which simply con-
catenates significant sentences from the document, abstrac-
tive summarization paraphrases the document using novel
sentences. Using abstractive summarization, we achieved the
recommendation of next items that are similar but not the
same as the items in the masked sessions. Figure 2 illustrates
further details of the mention set and candidate set generation
for the raw session dataset. As illustrated, to implement the
relational summarization task into a session-based recom-
mendation, we first adjusted the mention set generation task
into the session reordering and corpus generation processes.
Session reordering involves reordering items and session IDs,
matching the IDs to the size of corpus g to avoid out-of-
index errors. In corpus generation, we group g using the top
c frequent tokens T , gathering sequences with T . This allows
the raw data to be divided into corpora with the most popular
items, each corpus with a theme related to its threshold token.
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C. GAP SESSION GENERATION
After candidate set generation, we developed a whole
gap-session generation network to capture deeper item-item
relations.

1) SESSION ENCODING
To adequately implement PEGASUS, a single user behavior
sequence should be divided into several sessions based on
the time intervals between two items. Most SRSs implicitly
assume that the time intervals are equal [22]. However, this
assumption is incorrect. Therefore, similar to [22], but using
a different scaling method with threshold α, we scale the time
intervals for session sa as represented by Equation (1):

sa =

∣∣vj − vh
∣∣

α
, (1 ≤ a ≤ m) (1)

α =
(l̃en(s) + min(len(s)))

3
, (2)

where vj and vh are adjacent items at different points in time
and l̃en(s) is a median of the session length.

2) WHOLE-SESSION MASKING
The whole-session masking embedding function W is the
encoder part of the autoencoder. First, W splits the raw data
g into c corpora and maps the original corpora X to a latent
space F , as expressed by Equation (3):

W : X → F . (3)

Following whole-session masking embedding, the embed-
ding E is expressed as follows:

E = {⟨start⟩, s1, s2, [MASK ], . . . , [MASK ], . . . , sm−1},

(4)

D. TRANSFORMER DECODER
Similar to the decoder part of the autoencoder, the objective of
the transformer decoder function D is to map F to the output
X . Equation (5) represents this:

D : F → X . (5)

As illustrated in Figure 3, the transformer decoder of
the GST consists of a masked multi-head self-attention
layer, multi-head self-attention layer, and position-wise feed-
forward layer. To compute cross-attention coupling without
using an encoder, following [17], the input of the multi-
head self-attention layer is a cache memory initialized by the
Xavier uniform initializer and denoted as δ. Subsequently,
the output of the self-attention layer H aligns with the
latent representations of the masked multi-head self-attention
layer:

X̀ = D(E, p) (6)

D(E, p) = softmax(FFNN(concat(v̀1, . . . , v̀K )X )E), (7)

v̀j = ATT(H̀ZQuery, δ̀ZKey, δ̀ZVector ), (1 ≤ j ≤ N ),
(8)

FIGURE 3. Training and evaluation of summary construction task. During
the training, a transformer decoder receives embedding as an input.
During the evaluation, the output of the transformer decoder is fed to the
beam-search decoder to select the top 5 and 10 candidates for the
generation of the summary. It should be noted that PEGASUS discovered
that masked language modeling (MLM) does not improve downstream
tasks for a large number of pre-training steps and, therefore, it was
chosen not to include MLM in the final model. MLM was also excluded
from GST.

ATT(Query,Key,Vector)

= softmax
(
QueryKey⊤

√
d/K

)
, (9)

where X̀ , v̀, H̀ respectively denote the reconstructed versions
of X , v, and H . K denotes the number of dimensions and
Z ∈ F .

E. IMPROVING SRS/SBRS WITH AUTOREGRESSIVE
BEAM-SEARCH DECODER
In the context of NLP text generation and summarization,
recent studies [1], [44] used beam search instead of greedy
decoding for sequence generation at the evaluation stage.
Greedy decoding selects the tokens with the best probability
at the current timestamp rather than selection based on the
global probability. However, greedy decoding does not allow
a revision of the past selections even if the predicted sentence
is wrong. To mitigate this problem, the beam search selects
the tokens with the κ highest probabilities at each time step,
where κ denotes the beam size.

1) CONTROLLABLE ABSTRACTIVE SUMMARIZATION
Following PEGASUS, GST adopts length normalization and
constraints from [7]. This differs from pure beam search and
yields much better results. In addition, we used 2×κ to grow
‘‘alive sequences’’ to differentiate between our prediction
of κ = 1 and greedy decoding. Alive sequences are the
sequences that have not generated an end-of-sequence token
yet. If the number of alive sequences is 1, the decoding
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TABLE 2. Dataset statistics.

process is equal to greedy decoding, and Equation (10)
explains the beam-search score, which is the product of all
the probabilities:

score(y1, . . . ., yt ) =

t∑
i=1

logP(yi|X , y1, . . . , yi−1), (10)

where yi denotes the output sequence at time step i (1 ≤ i ≤ t)
and t is the total number of tokens in the predicted sentence.

2) MODEL OPTIMIZATION AND RECOMMENDATION
GENERATION
Our pre-training objective is the negative log-likelihood of the
masked labels:

L =
1

|X |

∑
vs∈X

−logP(vs = v∗s |X́ ). (11)

We produce the most likely recommendation X̀ by maximiz-
ing the likelihood L through beam search:

X̀t = argmaxXiL(Xi). (12)

Similar to [31], at each time step, we expanded each partial
hypothesis in the beam with every possible session in the
vocabulary.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
We used two popular datasets for the evaluation. 1) Movie-
Lens1M (ML-1M)1: Created by Movie-Lens, this sequential
dataset is for movie recommenders. We leave out users
with less than five interactions and mask sessions with less
than three item interactions as [NO USE] tokens. The pre-
processed ML-1M contains 6040 valid users for 3416 items.
2) Yoochoose 1/64 2: Created by RecSys Challenge 2015,
this session dataset contains a user clicks on e-commerce
data within 6 months. The pre-processed Yoochoose 1/64 has
37483 items.

2) BASELINE METHODS
We compare GST with the following representative methods:

• Item-KNN [30] is an item-based algorithm with item-
item similarities computation.

• GRU4REC [12] is a GRU and mini-batch.

1https://grouplens.org/datasets/movielens/1m/
2https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015

• NARM [18] employs a bi-linear matching scheme to
learn joint item-session representations.

• STAMP [19] is a short-term memory network that cap-
tures the user’s current interests.

• NISER [10] applies normalized item and session graph.
• GC-SAN [40] uses self-attention with GNN.
• SR-GNN [35] formulates a session graph from session
data by GNN to learn complex transitions of items.

• SGNN-HN [24] captures complex item transition rela-
tionships with highway networks.

• GCE-GNN [37] uses a global graph and session graph
to capture item representation.

• TAGNN [43] recommends items with target-aware
attention.

• CORE [15] is an representation-consistent encoder-
decoder model.

• SimGCL [45] is a recommendation model based on
contrastive learning.

• HMLET [46] is a hybrid model of non-linear and linear
collaborative filtering model.

• FPMC [26] uses MC and MF for user transitions.
• BPRMF [27] optimizes personalized ranking loss based
on implicit feedback.

• SASRec [17] employs transformer decoder.
• Caser [33] embeds a sequence of items as an image.
• SLRC+ [36] uses Hawkes Process into CF.
• NextItnet [42] stacks holed CNN layers.
• BERT4Rec [32] uses the Cloze objective to capture bi-
directionality.

• TiSASRec [22] uses time-awareness.

3) EVALUATION METRICS
Hit Ratio is the evaluation method we use for the sequential
dataset (ML-1M). We put the results of Hit Ratio@5 and
Hit Ratio@10. Precision is used as an evaluation metric
for the session dataset (Yoochoose 1/64). This is because
a session-based recommendation system is categorized as a
query suggestion and query suggestion uses Precision for an
evaluation metric. We put the results of the Precision@5 and
Precision@10.

4) HYPER-PARAMETERS SETTINGS
The dimension size of all proposed models is 64, the size of
the intermediate layer is 256, the number of attention heads
is 2, and the number of decoder layers is 2. We used the best
hyper-parameters for SRS and SBRS baselines.

B. EXPERIMENT RESULTS
Our GST has variations of GSTseq and GSTsess. GSTseq is for
sequential recommendation, and GSTsess is for session-based
recommendation. GSTseq has a session encoding process
because its inputs are sequence datasets. For GSTsess, session
encoding is not necessary as the inputs are session datasets.
Instead, GSTsess has corpus themes to group raw session data
for relational summarization tasks. They both contain whole-
session masking.
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TABLE 3. Performances of all comparison methods on the ML-1M dataset with 21 baselines.

TABLE 4. Performances of all comparison methods on the Yoochoose 1/64 dataset with 21 baselines.

FIGURE 4. Attention heat maps (ML-1M: (a) , (b). Yoochoose 1/64:
(c), (d)). (a) is GSTseq, (b) is GST with token encoding, (c) is GSTsess, and
(d) is GST without relational summarization (i.e. no corpus generation).

1) OVERALL COMPARISON
The overall performance result of the experiments is reported
in Table 3 and Table 4. We highlight the best results of
the ML-1M and Yoochoose 1/64 dataset in boldface. Here,
GSTseq and GSTsess are evaluated, compared to other SRSs
and SBRSs. We believe 21 baselines support the credibility
of our experimental results. The improvements are computed
by the difference between the result of the best baseline and

GSTseq and GSTsess divided by the former. From the analysis
of Table 3 and Table 4, we can figure out the following
conclusions.

• Unsurprisingly, in Table 3, the recently suggested works
of sequential recommendation systems outperform
session-based recommendation systems in personalized
recommendations. This is understandable as SBRSs are
trained to recommend for each session, rather than
each user. Still, even traditional SRSs (i.e. BPRMF and
FPMC) have better results than the recent SBRS models
(i.e. SGNN-HN, GCE-GNN, TAGNN, and CORE). This
analysis leads to the necessity of methods that encom-
pass both recommendation systems without perfor-
mance degradation. Also, standalone transformer-based
SRSs (i.e. SASRec, BERT4Rec, and GST) show incred-
ible performance compared to others. This result con-
firms that transformer blocks significantly benefit per-
sonalized recommendation models. Furthermore, the
robustness of time awareness in TiSASRec and GST
proves that converting a user sequence into time-aware
sessions improves recommendation results.

• In Table 3, for the baseline models with GNN (i.e.
NISER, GC-SAN, SR-GNN, SGNN-HN, GCE-GNN,
and TAGNN), it is obvious that session-graph structures
are generally not good at capturing user-item relation-
ships. This is probably because the focus of thesemodels
is the relationships between items rather than those
between users and items. However, because each session
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FIGURE 5. Loss landscape of GSTsess by corpus’s theme size on Yoochoose 1/64. (a) is theme size 1 and (b) is theme size 7.

is a representation of each anonymous user, capturing
global user interests can be beneficial. For example, SR-
GNN considers global transitions accompanied by local
interests and gets higher scores compared to the other
SBRSs.

• In Table 4, GSTsess performs better than all SBRSs and
SRSs baselines. Also, without surprise, most SBRSs
achieve better scores than SRSs as SBRSs are optimized
for session datasets. However, SASRec, which is an
SRS, has the best result except for the proposed model.
Interestingly, we find other self-attention methods such
as BERT4Rec and TiSASRec do not show good perfor-
mance. Even traditional models like FPMC have better
precision scores than them. This demonstrates using
self-attention is trivial to the success of GSTsess.

• Contrary to the results of Table 3, in Table 4, the
GNN-based baseline models including NISER, GC-
SAN, SR-GNN, and GCE-GNN show that graph struc-
ture is good for understanding the relationship between
items in the session dataset. This is because, in each
model, learning graph structures focuses on how the
session is structured, which comprises items. Also, there
could be advantages to learning hypergraphs as graphs
usually have more information than one-dimensional
sequential data. Nevertheless, without these advantages
of GNN, our proposed model showed an impressive
improvement in precision score.

• The improvement of performance in Table 3 and Table 4
differs largely. This is perhaps because of the slight
difference in data preprocessing of GSTseq and GSTsess.
In GSTseq, we sliced a sequence of user-item interac-
tions into sessions for a better understanding of the time
interval. On the other hand, in GSTsess, we followed
the data preprocessing of [15]. For the training dataset,

we combined sessions into sequences and renumbered
items. For the test dataset, we converted sessions into
sequences and skipped the items not in the training set.
Instead of suggesting a method to predict the ability of
the proposed method, our 21 baselines provide a good
reason to believe that both proposed methods (GSTseq
and GSTsess) are capable of achieving high-performance
results as shown in Table 3 and Table 4.

• In Table 3 and Table 4, our proposed GST models show
significant superiority over all the baselines. Compared
to SASRec and BERT4Rec, GST has three advan-
tages: (1) It captures different time intervals between
two adjacent items. This allows our model to under-
stand a user behavior sequence as a set of sessions
and makes better recommendations. (2) Also, our model
reconstructs sessions instead of tokens and then sum-
marizes sequential or session patterns of an individ-
ual user. The resulting summary includes both global
and local user interests, while others only consider
the closest user-item/item-item interactions for predic-
tion. (3) Finally, our model has a beam-search decoder
that generates recommendations with higher prediction
scores.

C. ABLATION STUDY
1) IMPACT OF SESSION ENCODING AND RELATIONAL
SUMMARIZATION
Figure 4 shows the attention score of GSTseq and GSTsess.
To study the impacts of session encoding and corpus gener-
ation, we extract attention weights from training. The x-axis
of the graphs represents the 20 items GST recommended, and
the y-axis is the 20 real target items. The attention scores
are log probabilities after softmax. Note that (a) and (c) have
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higher Hit Ratio@5 andHit Ratio@10 scores than (b) and (d),
though we only include attention maps here because of the
space limitations. For (a), the weights tend to position on
the left side of the recommendation, while they are broadly
distributed in (b). Likewise, (c) has a more dense attention
map compared to the attention weights of (d). As (a) and (c)
perform better than (b) and (d), we conclude that having
a denser attention map represents a better understanding
of complex user-item and item-item transitions. Therefore,
session encoding and relational summarization tasks signif-
icantly benefit SRS and SBRS.

2) IMPACT OF CORPUS THEME
Figure 5 illustrates the loss landscape by the size of the corpus
theme. As defined in Definition 1, a theme is a key item
for dividing raw datasets into multiple corpora. For example,
if the theme size is 1, there is a single corpus. A loss landscape
visualizes loss changes by parameters. We followed [20] to
visualize the loss landscape of our models in 3D. For a fair
comparison, all hyper-parameters except for the theme size
are identical for (a) and (b). In the graphs, the ups and downs
of the z-axis represent how loss increases and decreases, and
the x- and y-axis represent contouring resolution. When the
theme size is 7, the loss landscape is very complicated and
sharp, implying that initialization can have a huge influence
on training [20]. On the contrary, when the theme size is 1,
the loss landscape is more flat and simple, meaning the model
would be easier to train. Based on these observations, we con-
clude that corpus theme significantly affects the performance
of GST and a smaller theme size is more beneficial than a
larger theme size.

V. CONCLUSION
For a sequential dataset, existing standalone attention-based
SBRSs lack the understanding of high-order item-item
information that changes through sessions. Also, in SRSs,
attention-based models neglect time intervals between each
interaction. For a session dataset, most attention-based SRSs
experience more challenges than their SBRS counterparts
in learning item-item interactions. This result validates the
triviality of the attention mechanism in the session-based rec-
ommendation.Moreover, GNN-basedmodels show relatively
higher performances than models based on attention. This
is because of the advantages of learning more information
on item-item interactions through many graphs. To mitigate
these challenges, we designed a gap session generator with
session encoding, corpus generation, and session masking.
As a result, our proposed model achieved SOTA scores
on all 21 baselines for both the session dataset and the
sequential dataset. Extensive experiments also demonstrate
session encoding and relational summarization have signifi-
cant effectiveness.
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