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ABSTRACT The interaction between proteins and DNA occurs widely during the replication and tran-
scription of DNA and other life activities. Therefore, the identification of protein- and DNA-binding sites
is important for the study of protein function and drug design. Accurate prediction of binding sites has
become a challenging and significant task. Although numerous studies have been conducted, prediction is
challenging. In this study, a new protein-DNA binding site prediction method was proposed. This method is
based on neighboring residue correlations. It uses an improved feature representation method that weighted
combines several protein characteristics after a series of processing of the features and chooses a support
vector machine as the prediction engine. Experiments on benchmark datasets and independent test datasets
show that the proposed method has better predictability than other protein-DNA binding site predictors. This
method is complementary to the existing protein-DNA binding site predictors and will be useful in the field
of biotechnology.

INDEX TERMS Protein-DNA binding site prediction, neighboring residue correlations, feature processing,
multi-view features combining, support vector machine.

I. INTRODUCTION
In living organisms, many biological activities are related to
DNAmolecules, including gene transcription and replication,
DNA transcription, replication and recombination, and other
key activities that occur during cell growth. With the help of
some specific proteins, at the same time, these life activities
will be regulated by the interaction between proteins and
DNA [1], [2]. Correctly identified DNA-binding sites on pro-
teins are not only related to the understanding of the mecha-
nism of life activities but also help annotate the function of the
protein and help in the design of drugs that promote or inhibit
the expression of target genes [3]. The identification methods
for DNA-binding proteins and specific DNA-binding sites
are primarily based on traditional experimental methods [4].
Although this method has the advantage of high accuracy,
it also has the disadvantages of a long experimental period,
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cumbersome experimental process, and the large amount
of manpower and material resources required to complete
the entire process. In recent years, with the development of
bioinformatics, machine-learning prediction methods have
been used to quickly and accurately predict the positions of
potential binding sites in DNA-binding proteins.

In this field, many researchers have attempted to develop
efficient and accurate forecasting methods. In these meth-
ods, features that have been used can be divided into two
types: sequence features and structure features. For exam-
ple, Hwang et al. [47] proposed a prediction method called
DP-Bind based on three machine-learning methods and uti-
lized only sequence feature: the Position Specific Scoring
Matrix feature. Li et al. [7] proposed an improved method
that integrates a structural alignment algorithm and support
vector machine–based methods to predict DNA binding sites.
Tsuchiya et al. [49] used structure-based features, such as the
shape of the molecular surface, to build a predictor. Wang
and Brown [6] built a prediction model called BindN, which
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extracts three sequence features as input features, including
side-chain pKa value, hydrophobicity index, and molecular
mass, and utilizes Support Vector Machines(SVM) as clas-
sifiers. Zhou et al. [48] proposed a residue-encoding method
that utilizes the evolutionary relationships between residues.
Song et al. [9] proposed an adjustment algorithm that uses the
binding probability between a target residue and its neighbor-
ing residues to predict the binding sites. Much progress has
been made in binding-site prediction using machine learn-
ing. However, the efficiency and accuracy of the prediction
remain unsatisfactory, leaving room for improvement. In their
study, we found that the binding probability of the target
residue could be affected by its adjacent residues on the left
and right sides because certain amino acids are important
for the interaction between proteins and DNA molecules.
In addition, some structural and sequence features can be
used together in predictors. Research on combining struc-
tural and sequence features based on neighboring residues is
still lacking. Inspired by this, we propose a new sequence-
and structure-based protein-DNA binding prediction method.
This method uses a slide window to obtain the features of
neighboring residues. Then, the weighted combination fea-
tures after feature normalization and dimensionality reduc-
tion were extracted from multi-view protein feature sources.
These features include structural features such as Accessible
Surface Area(ASA) [7], Relative Solvent Accessibility based
on structure (RSA-s) [8], Protrusion Index(PI) [9], Depth
Index(DI) [10], sequence features such as Position Specific
Scoring Matrix(PSSM) [11], and Relative Solvent Accessi-
bility based on sequence (RSA-q) [12]. The experimental
results of our method, whether on benchmark datasets or
independent datasets, show that it can efficiently improve
the accuracy of protein–DNA binding site prediction. Below.
We explain how to approach each step individually.

II. MATERIALS AND METHODS
A. DATASETS
To fairly compare our method with other protein–DNA bind-
ing site predictors, two benchmark datasets and one inde-
pendent test dataset were utilized. The following is a brief
introduction to the three databases.

1) PDNA-62
The PDNA-62 dataset was first constructed and used by
Ahmad and Sarai [13] to distinguish the binding sites using an
ANN classifier. This dataset has been used in many studies,
including ANN, SVM, Random Forest et al. [5], [17], [18].
PDNA-62 is a non-redundant dataset extracted from the Pro-
tein Data Bank (PDB, http://www.rcsb.org/pdb/) database.
PDNA-62was obtained from the structural data of 62 protein-
DNA complexes in the PDB. Sequences with more than
25% homology in the protein-DNA complex sequences were
removed using CD-HIT [19] software. Using 3.5 Å as the
discrimination interval to distinguish whether the residues in
the obtained protein sequence were DNA-binding residues or

non-binding residues. Accordingly, get 1215 DNA-binding
residues and 6948 non-binding residues to build the PDNA-
62 dataset. As mentioned above, since this dataset has been
used in many studies and has proven to be effective in distin-
guishing binding sites, we chose this dataset to compare the
effectiveness of our method with other existing methods.

2) PDNA-224
PDNA-224 [20] is another dataset used for protein-DNA
binding sites. This dataset was first constructed and used
by Li et al. in PreDNA [7]. Compared with PDNA-62,
PDNA-224 was obtained from the structural data of
224 protein-DNA complexes in PDB. The protein-DNA com-
plex was filtered using the samemethod as that for PDNA-62,
and sequences that were homologous to the PDNA-62 dataset
were removed from the results. As a result, get 3778 DNA-
binding residues and 53570 non-binding residues to build the
PDNA-224 dataset. In PreDNA, which is based on sequence
and structure information and other studies, PDNA-224 has
a good effect on distinguishing binding sites. Therefore, this
dataset was used to compare the performance of the proposed
method with that of other existing methods.

3) APO29
To verify the generalizability of the proposed method,
an independent test dataset called APO29 was built. The
dataset was first constructed by Zhu et al. [21]. The con-
struction method was similar to that of the two bench-
mark datasets. After the homology screening process, the
sequences homologous to the PDNA-62 and PDNA-224
datasets in the screening results were removed to maximize
the test accuracy and independence. There were 798 DNA-
binding residues and 5979 non-binding residues in the
APO29 dataset. According to Zhu et al., APO29 can be used
to evaluate the predictive performance of a predictor. Thus,
we used this dataset to compare the generalization ability of
the proposed method with those of other methods.

B. FEATURE EXTRACTION METHOD
Amino acids in proteins do not exist in isolation. The state
and combination of each amino acid in the sequence were
affected by the surrounding amino acids, showing different
results. Therefore, when extracting relevant features, it is
not only possible to extract the currently selected amino
acid itself but also to consider the relevant features of its
surrounding adjacent amino acids. To solve this problem, the
slide-windowmethod [22] is a better choice. According to the
size of the set sliding window, the currently selected amino
acid and some other adjacent amino acids were combined
into a sample with the currently selected amino acid as the
center. The class label of the combined sample was the same
as that of the currently selected amino acid class label. If the
currently selected amino acid is not a protein-DNA binding
site, the combined sample centered on this amino acid is in the
non-binding state, that is, it is a negative sample; otherwise,
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it is a positive sample. Because the size of the sliding window
is different, it has a certain impact on the performance of the
built prediction model. Therefore, the selection of its size is
more important, and the specific selection process will be
described later.

III. PROTEIN FEATURE EXTRACTION
A. PROTEIN STRUCTURE FEATURE EXTRACTION
1) ACCESSIBLE SURFACE AREA FEATURE
The (ASA) was first proposed by Lee and Richards [23].
Further research has shown that it plays an important role in
predicting protein-DNA interactions [7]. ASA is the surface
area of residues accessible to solvent molecules when atoms
of a protein or DNA molecule are present in solution. The
operational definition is to use a solvent molecule to probe
the ball and roll along the protein surface, and all possible
trajectory points at the center of the probe can outline a sur-
face. The surface area was defined as the accessible surface
area. The calculation formula is as follows:.

D = 1Z/2 + 1′Z (1)

A =

∑
(R/

√
R2 − Z2

i ) × D× Li (2)

where R refers to the sum of the van der Waals radii of the
atoms in the measured and solvent molecules. Parameter Li
refers to the arc length through which the easy molecule rolls
in the specified area i. Parameter Zi refers to the vertical dis-
tance from the center of the ball to the i-th area, and parameter
1Z indicates the distance between the areas. Parameter 1′Z
is smaller than the R− Zi and 1Z/2 parameters. For a given
atom, the sum of all scrollable arcsmust be computed.We cal-
culated ASA features using the NACCESS program [24].

2) RELATIVE SOLVENT ACCESSIBILITY FEATURE
(BASED ON STRUCTURE)
Relative Solvent Accessibility(RSA) has been widely used in
many fields, including three-dimensional protein structures,
protein-DNA interactions, and protein-related ligand interac-
tions [25]. The calculation formula is as follows:

RSA =
ASA

MaxASA
(3)

The parameter ASA is solvent accessible. The parameter
MaxASA is the maximum possible amount of solvent acces-
sible to the residue.

Five pairs of features related to solvent accessibility
and relative solvent accessibility were constructed using an
algorithm [26]. These features include all atoms on an amino
acid, main-chain or backbone atoms, side-chain atoms, polar
side-chain atoms, and nonpolar side-chain atoms.

3) PROTRUSION INDEX AND DEPTH INDEX FEATURE
The protrusion index (PI) [27] and Depth Index(DI) [28]
are typically used to describe and distinguish internal spatial
structures of proteins. PI was first used in the study of protein-
protein interactions, antigenic determinants, and proteolytic

cleavage. With the deepening of research in recent years, its
important role in the interactions between DNA and proteins
has become apparent. The calculation formula is as follows:.

Vext = Vsphere − Vint (4)

Vint = Natom × Vatom (5)

PI = Vext/Vint (6)

A probe sphere was formed with a protein nonhydrogen
atom as the center and a fixed distance R as the radius. Natom
Here, refers to the number of non-hydrogen atoms in this
sphere, and the default radius of the probe sphere is 10 Å.
Vatom is the average volume of a heavy atom in a protein;
here, the value was 20.1Å3. PI is a six-dimensional vector
consisting of themean, standard deviation, andmaximum and
minimum protrusion values of all atoms in the residue. Mean
and standard deviation of the protrusion values of the side-
chain atoms. Each element of this vector is normalized, and
its range is–0-1.

DI has a wide range of applications such as rate analysis
of amino hydrogen/deuterium exchange in nuclear magnetic
resonance (NMR), protein nuclear assembly, and alignment
analysis. In addition, this feature is helpful in predicting the
interaction sites between proteins and DNA. DI refers to the
distance between atom i and the adjacent solvent-accessible
atom j (i.e., an atom with ASA value > 0). The calculation
formulae are as follows:

DI = min(d1, d2, d3, . . . dn, ) (7)

d1, d2, d3, . . . dn is the distance between atom i and all
solvent-accessible atoms. Therefore, for solvent-accessible
atoms, the depth index was 0. For internal atoms, the depth
index is proportional to distance.

PSAIA [29] is a cross-platform program that encapsulates
computational DI, PI, and other tools. Obtaining PI and DI
feature values using this program is required.

B. PROTEIN SEQUENCE FEATURE EXTRACTION
1) POSITION SPECIFIC SCORING MATRIX FEATURE
The position-specific scoring matrix (PSSM) [30] can reflect
the evolutionary information of protein sequences through
multiple sequence alignments. Many bioinformatics studies
have shown that PSSM plays an important role in the predic-
tion of protein structure and function [31]. Consider a protein
sequence, P, containing L amino acids as an example. PSSM
was obtained using the PSI-BLAST [32] program with an E
value of 0.001. PSI-BLAST searched the Swiss-Prot database
to perform multiple protein sequence alignments and three
iterations. The PSSM has L rows and 20 columns as follows:

Poriginalpssm =


O1,1 O1,2 . . . O1,20
O2,1 O2,2 . . . O2,20

...
...

...
...

Ok,1 Ok,2 · · · Ok,20
OL,1 OL,2 · · · OL,20


L×20

(8)
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where Ok,j represents the score of amino acid K in protein
sequence P mutated to amino acid J during the evolutionary
process. A positive score indicated that the mutation was
more likely to occur than expected and a negative score
indicated that the mutation was less likely to occur than
expected. After obtaining the PSSM of the original protein,
normalization was performed. The 20 natural amino acids are
represented by 1-20 and sorted according to the alphabeti-
cal order of their first letters. First, the mean and standard
deviation of each row of the original PSSM were calculated.
Consider the kth row as an example, where µk and σk repre-
sent the mean and standard deviation, respectively, of the kth
row. The calculation formulae are as follows:

µk =
1
20

∑20

t=1
Ok,t (9)

σk =

√
1
20

∑20

t=1
(Ok,t − µk )2 (10)

The PSSM matrix obtained after performing the normal-
ization operation is denoted as Ppssm, and the calculation
method for the element values of rows K and J is as follows:

Pk,j =
Ok,j − µk

σk
(11)

After the final normalization, the PSSM matrix represen-
tation of a protein sequence containing L-amino acids was as
follows:

Ppssm =


P1,1 P1,2 . . . P1,20
P2,1 P2,2 . . . P2,20

...
...

...
...

Pk,1 Pk,2 · · · Pk,20
PL,1 PL,2 · · · PL,20


L×20

(12)

The PSSM feature vector corresponding to each amino acid
was extracted using the PSSM matrix.

2) RELATIVE SOLVENT ACCESSIBILITY FEATURE
(BASED ON SEQUENCE)
In addition to the structure-based Relative Solvent Accessi-
bility(RSA) mentioned above, the algorithm [33] was used to
extract RSA features based on protein sequence information.
The steps of the algorithm are as follows.

Step one: Screen the protein data contained in the (Protein
Data Bank, PDB) by setting the X-ray crystal diffraction
index to 3.0 Å and the R-factor value of the crystal struc-
ture correction to 0.3. Among the screened results, proteins
with fewer than 50 amino acids, as determined by mul-
tidimensional nuclear magnetic resonance, were removed,
and the homology between proteins was guaranteed to be
less than 25%. A dataset containing 5717 protein chains
and 1242356 amino acids was obtained. Using the aforemen-
tioned structural method, the RSAwas calculated to construct
an RSA database.

Step two: Set the sliding window size to 15, and calculate
the distance D between the amino acids. The formula for

calculating the distance DAB between amino acids A and B
is as follows:

DAB =

∑
i,j
wi|PAij − PBij | (13)

PAij is an amino acid in a sliding window. wi represents
the weight value obtained based on its position in the sliding
window (position i at the center of the window was set to 8).
The weight value wi is calculated as follows:.

wi = (8 − |8 − i|)2 (14)

Step three: According to the obtained distance value, select
the K-nearest neighbor amino acids from all amino acids in
the database, and calculate the value of z.

z = (Dave − D)/σ (15)

whereDave represents the average distance between the target
amino acid and all amino acids in the database. where, σ

is the standard deviation. Based on the above, the value of
sequence-based RSA was calculated as follows:

RSA =

∑k
i=1 RSAiz

α
i∑k

i=1 z
α
i

(16)

where RSAi represents the ith nearest-neighbor amino acid in
the database. The parameter α adjusts the relative importance
of each adjacent amino acid. The optimal values of parame-
ters α and K were determined using the grid search method.
The values of K and α used in this study are 64 and 6.31,
respectively.

IV. FEATURE PROCESSING METHOD
A. FEATURE SELECTION
Many features are related to proteins and DNA and different
features have different effects. Therefore, it is very important
to select appropriate features for the prediction of binding
sites between proteins and DNA. Currently, there are many
commonly used feature selectionmethods, including breadth-
first [34], beam-first [35], and best-first [36]. In this study,
the Best First feature selection method was used to select
features. The search steps for this method were as follows:

Step one: Obtain the individual prediction performance of
each feature in the dataset using the classification algorithm.

Step two: Arrange the prediction performance of all
obtained features or feature combinations from low to high.

Step three: Select the feature or feature combination with
the best prediction effect from all the prediction results. Then,
it is combined with one of the remaining unselected features,
and its prediction performance on the dataset is obtained
through the classification algorithm.

Step four: Compare The prediction performance of the
combination features in the third step on the dataset is com-
pared with the prediction performance obtained in the second
step. If it is not as good as the prediction performance in the
second step, the experiment ends, and the feature or feature
combination obtained in the second step is the final selected
feature. Otherwise, it jumps to the second step to continue
execution.

79612 VOLUME 11, 2023



J. Yang, S. Zhang: Protein-DNA Binding Site Prediction Method

B. WEIGHTED FEATURE FUSION
Different protein features describe their relevant properties
from different perspectives, and the fusion of these features
can compensate for the lack of protein information caused by
single-view features. At present, there are two main methods
of multifeature fusion: serial feature fusion and parallel fea-
ture fusion [37].

Owing to the large difference in dimensionality between
the protein sequence and structural features extracted in
this study, the dimensionality of the PSSM feature vector
was 220, whereas the dimensionality of the DI feature vector
was 66; therefore, we chose the weighted serial feature fusion
method. The specific steps are as follows:

Assuming that the two feature vectors to be fused are
A1 and A2, these two features are different, the dimen-
sions are m1 and m2 respectively, their weight indices are
set to P1 and P2 respectively, and the calculation formulas
of P1 and P2 are as follows:

P1 =
PA1

PA1 + PA2

(17)

P2 =
PA2

PA1 + PA2

(18)

PA1 represents the prediction accuracy obtained by
the single-view feature vector A1 under the classification
algorithm. PA2 represents the prediction accuracy obtained
by the single-view feature vector A2 under the classification
algorithm. These two index values represent the importance
of the two features to the research problem. The new eigen-
vector A obtained after serial fusion is as follows:

A = [P1A1,P2A2] (19)

The new feature vector A obtained after weighted fusion
contains all the information in the feature vector to be fused.
Because the importance of different features in the research
problem is different, the weights obtained are also different.

However, if the protein features from different perspectives
are simply combined without other processing, it may lead to
the inability to fully utilize themulti-view feature information
of the protein. To avoid this problem, we set the weights for
the different perspective features to ensure that the features
of each perspective can fully play their role in the prediction
model. The step of setting weights is further discussed in the
‘‘Results and Discussion’’ section.

C. FEATURE NORMALIZATION
Because the value ranges of the eigenvalues obtained by dif-
ferent feature extraction algorithmsmay be different, thismay
lead to imbalance problems. For example, the role of a feature
vector that is much larger than those of other feature vectors
in classification prediction may be exaggerated, whereas the
role of a feature vector with a small value may be ignored.
Thus, we used the linear function transformation method to
normalize the data as follows:

y = (x −Min)/(Max −Min) (20)

D. FEATURE DIMENSIONALITY REDUCTION
Higher feature dimensions complicate the prediction of
protein-DNA binding sites. Therefore, it is necessary to use a
data dimensionality reduction method to process the obtained
features. Current traditional data dimensionality reduction
methods include Linear Discriminant Analysis(LDA) [39]
and Principal Component Analysis(PCA) [40]. Although
PCA has many advantages, it has a major disadvantage:
it may not perform well for high-dimensional data. There-
fore, in this study, we chose a method of generalization
based on PCA: Generalized Principal Component Analy-
sis(GPCA) [37]. Steps are as follows.

If it is considered that eigenvector A is in a single space,
the total number of pattern classes is denoted by M, and the
prior probability corresponding to pattern class i is expressed
as P(ωi). The corresponding average eigenvector calculation
formula is as follows:

Ai = E {(A|ωi)} (21)

The formula for calculating the mean vector of all eigen-
vectors is as follows.

Ai = E {A} =

∑M

i=1
P(ωi) · Ai (22)

According to the data obtained from the above calculation,
the total scattering matrix St can be expressed as follows:

St = E
{(

A − A
) (

A − A
)H}

(23)

St is Hermite matrix. According to Ding and Cai [50]
and Liu and Wechsler [37], the GPCA can be explained as
follows:

C1,C2, . . .Cm is the orthogonal eigenvectors correspond-
ing to St . λ1, λ2, . . . λm are the corresponding eigenvalues,
and λ1≥ λ 2 ≥ . . . ≥ λm. The first feature with a maximum
value of n is filtered out and used as the projection axis. Then,
for each eigenvector A, an n-dimensional projection vector
can be obtained; let it be B. The calculation formula is as
follows:

8 = (C1,C2, . . .Cn) (24)

B = 8HA (25)

The B vector is called a dimensionality reduction vector,
through which the original feature vector A is replaced.

The size of the dimension m after dimension reduction is
different, which also affects the prediction performance. The
procedure for selecting the optimal value of m is described in
the ‘‘Results and Discussion’’ section.

V. CLASSIFIER SELECTION
The classification and prediction performance of the predic-
tion model are not only related to the classification ability of
the feature but also to the classifier selected by the model.
In this study, three classifiers are selected and used, which
are Support Vector Machine(SVM) [41], Radial Basis Func-
tion(RBF) [42], and Random Forest(RF) [43].
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SVM: SVM is a classification method based on statistical
theory in data mining, and is established based on the two
principles of VC dimension and structural risk minimization
of statistical learning theory. The SVM classifier can obtain
better generalization ability under limited sample conditions
and is suitable for many linear and nonlinear problems, such
as pattern recognition and regression. This solves the problem
that classifiers require large-capacity samples and can prevent
problems such as the curse of dimensionality. It has been
widely used in the identification and prediction of protein
spots and protein-DNA binding sites [44], [45], etc.

SVMs have two forms: support vector classification (SVC)
and support vector regression (SVR). In this study, because
the research problem was to identify the binding site, SVC
was selected as the classifier of the model.

Gaussian kernel function is one of themost commonly used
SVM kernel functions. The calculation formula is as follows:

K (xi, xj) = e−∥xi− xj∥
2
/2σ 2

(26)

The construction of the predictive model needs to determine
the optimal values of the regulation parameter γ and the
kernel parameter σ . In; to obtain the best value of these
two parameters, we used the grid search strategy provided in
LIBSVM software through ten-fold cross-validation.

RBF: Lowe [46] and others were the first to combine
radial basis functions with neural network applications. The
RBF network has a wide range of applications and can be
used not only for classification recognition and prediction but
also for function approximation. RBF has the characteristics
of a simple structure and excellent classification prediction
performance.

RBF is a three-layer network that is currently used fre-
quently. The first layer is the input layer, which is mainly
composed of signal-source nodes, and the input is the feature
value of the predicted sample. The second layer was the
hidden layer. This layer transforms the input samples and uses
the kernel function to convert the input data that are insepa-
rable in the low-dimensional space into a high-dimensional
space, and converts it into separable data for classification
and recognition. The third layer is the output layer, which
outputs the category of the predicted samples often using a
linear activation function. The Gaussian function is defined
as follows:

g (x) = exp

(
∥X − C∥

2

2σ 2

)
(27)

where x denotes the input training sample point. c is the
center of the radial basis function. σ is the variance, which
represents the width of the kernel function and controls the
radial range of the basis function. The RBF network has three
adjustable parameters: the center of the radial basis function,
variance of the radial basis function, and weight from the
hidden layer to the output layer of the radial basis function
network. The optimal values of these three parameters were
obtained as follows.

Supervised learning with error-correction algorithms from
training samples. First, the three parameters of the basis
function center, variance, and weight are randomly initial-
ized. Then, they were gradually adjusted and corrected using
the gradient descent method until the optimal solution was
obtained. Based on these parameters, we built an RBF net-
work to identify and predict protein-DNA binding sites.

RF: Breiman [43] and others proposed a new machine
learning method in 2001, which has a better generalization
effect and classification ability than traditional decision trees,
and named it Random Forest. RF integrates multiple trees
through ensemble learning, and its basic unit is a decision
tree. RF can construct different numbers of decision subtrees
according to different problems. It uses multiple decision
trees to train, classify, and predict the samples. The random
forest method has been widely used in various bioinformatic
fields. Because of its good performance in the prediction
of many protein-DNA-related interactions, we chose it as a
classifier for the prediction of protein-DNA-binding sites. For
the sample set S, the specific training steps of random forest
are as follows:

Step one: Random forest uses a self-service sampling
method to obtain the training sample set of each tree. Ran-
domly generate K subsample sets from the original sample
set S. Each self-service sample set has N samples, and then,
the K sample sets are trained as a single classification tree.

Step two: During the training process, if the internal nodes
of the tree must be split, m (mM) is randomly selected as
candidate attributes according to the M attributes of each
sample. Then, the principle of minimum node impurity is
adopted to select an attribute from m candidate attributes for
splitting.

Step three: During the growth of the classification tree,
each node must be split according to step two until it is
completely split. The entire process does not require pruning.

Step four: Each trained tree classifier is formed into a
random forest. Each classification tree in the random forest
predicts new data, and voting is then used to obtain the final
classification prediction result.

There are two main types of random forests: classification
and regression. This study used a random forest classification
algorithm. We need to predetermine the number of sam-
ples (mTry) randomly selected at each split before using the
RF. According to Breiman’s suggestion, if the total number
of features is M, the number of samples selected can be
sqrt (M) , sqrt (M) /2, 2 ∗ sqrt (M). In this study, according
to the experimental results, the number of samples (mTry)
that select sqrt (M) can obtain the best prediction result.
Another important parameter was the number of trees (nTree).
According to the experimental results, when nTree is set toM,
the prediction effect is the best.

VI. EVALUATION INDICES AND VALIDATION STRATEGIES
A. EVALUATION INDICES
In this study, we discuss a binary classification problem.
The classification results were Positive or Negative. In a
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binary classification problem, the prediction results can be
represented by a 2 × 2 confusion matrix. The confusion
matrix was divided into the following four cases: (1) cor-
rectly predicted protein-DNA binding sites (True Positive,
TP); (2) correctly predicted protein-DNA non-binding sites
(True Negative, TN); (3) mispredicted protein-DNA binding
sites (False Negative, FN); and mispredicted protein-DNA
non-binding sites (False Positive, FP). The four situations are
listed in Table 1.

TABLE 1. Confusion matrix contingency table.

Using the four parameters TP, TN, FP, and FN intro-
duced in Table 1, the values of the four evaluation indicators
can be calculated: sensitivity (Sen), specificity (Spe), accu-
racy (ACC), Matthew’s Correlation Coefficient (MCC) [51],
[52], [53], and Youden’s index. The specific calculation
method is as follows:

Sen =
TP

TP+ FN
(28)

Spe =
TN

TN + FP
(29)

ACC =
TP+ TN

TP+ TN + FP+ FN
(30)

MCC=
TP×TN+FP×FN

√
(TP+FP)×(TP+FN )×(TN+FP)×(TN+FN )

(31)

YoudensIndex

= Sen+ Spe− 1 (32)

The two indices of ACC and MCC take into account the
comprehensive predictive ability of positive and negative
samples, and both can evaluate the predictive ability of the
prediction model well. However, for the sample imbalance
problem, the MCC evaluation index is more representa-
tive than ACC. For example, when 95% of the sample set
was negative, if the ACC was 95%, it seemed very high.
In fact, the model only defines all samples as negative sam-
ples, and is not predictive of positive samples. However,
MCC is an index that can normally reflect the prediction
performance of the prediction model when the number of
samples of the two types is unbalanced. Therefore, the pre-
diction ability of the model in this study mainly refers to
the MCC value of the prediction result followed by the
ACC value.

B. CROSS-VALIDATION
A ten-fold cross-validations method was used to test the
method proposed in this study and compare it with the current
mainstream prediction methods. In this way, both over- and
under-learning can be avoided, making the final result more
convincing.

VII. RESULTS AND DISCUSSION
A. SLIDING WINDOW SIZE SELECTION
As mentioned above, the sizes of the sliding windows are
different, which has a significant impact on the predictive
performance of the built model. To select the optimal sliding
window size, we used the SVM classification algorithm on
the PDNA-224 dataset based on PSSM features to perform
ten-fold cross-validations. The sliding window was set to a
range from 3 to 21. Because the sliding window needs to
select the adjacent amino acid information on both sides of
the amino acid simultaneously, the test was performed with a
step size of 2. The test results are presented in Table 2.

TABLE 2. The results of ten-fold cross-validations under different sliding
windows using the SVM classifier on the PDNA-224 dataset based on
PSSM features.

As shown in Table 2, when the step size was 2 and the slid-
ing window ranged from 3 to 21, Sen, Spe, ACC, MCC, and
Youden’s index showed a trend of rising and decreasing fluc-
tuations after reaching the peak. Sen increased from 65.7%
to 67.8% and then decreased to 67.2%. After Spe increased
from 74.8% to 76.9%, it continued to decrease to 76.3%.
The ACC fluctuated from 74.1% to 76.3%, then decreased,
and finally reached 75.7%. Youden’s index fluctuated from
74.1% to 76.3%, decreased, and finally reached 75.7%. MCC
fluctuates from 0.23 to 0.26, and then fluctuated to 0.25,
as shown in Figure 1.
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FIGURE 1. Based on PSSM features and SVM classification algorithm,
on the PDNA-224 dataset, ten-fold cross-validations are performed, the
step size is 2, the sliding window size is from 3 to 21, and the change
curve of the evaluation index MCC.

FIGURE 2. Based on PSSM features and SVM classification algorithm,
ten-fold cross-validations are performed on the PDNA-224 dataset, the
step size is 0.05, the threshold size is from 0.3 to 0.7, and the change
curve of the evaluation index MCC.

Figure 1 and Table 2 show that the sizes of the sliding
windows were different, which had a greater impact on the
classification results. ACC andMCC achievedmaximum val-
ues of 76.3% and 0.26, respectively, when the sliding window
size was 11. From the above analysis, it can be concluded
that when extracting features, it is most appropriate to use a
sliding window with a size of 11 to extract the features of the
target protein residue and its surrounding adjacent residues,
and to maximize the performance of the prediction model.

B. THRESHOLD SIZE SELECTION
When the prediction model predicts whether a protein residue
is a protein-DNA binding site, it first calculates the probabil-
ity value of the residue being a binding site and the probability
value of not being a binding site. However, it cannot be
considered that the residue is the binding site if the probability
value is greater than 0.5. Different classification thresholds
had a significant impact on the prediction performance of

TABLE 3. The results of ten-fold cross-validations at different thresholds
using the SVM classifier on the PDNA-224 dataset based on PSSM
features.

the constructed prediction model. On the PDNA-224 dataset,
based on the PSSM feature, the SVM classifier was used to
perform ten-fold cross-validation to determine the optimal
threshold size and illustrate the impact of different threshold
sizes on the performance of the prediction model constructed
in this study.

It can be seen from Table 3 that when 0.05 is the step size
and the threshold value ranges from 0.3 to 0.7 for the experi-
ments, the results obtained using different thresholds are quite
different. Overall, Sen exhibited a downward trend from 90%
to 46.5%. Overall, Spe increased from 46.5% to 89.6%. ACC,
MCC, and Youden’s index showed a trend of rising first and
then falling after reaching the peak. The ACC increased from
49.6% to 75.7% and then dropped to 71.4%. MCC increased
from 0.188 to 0.260 before falling to 0.249, as shown in
Figure 2. Youden’s index rose from 0.365 to 0.447 and then
dropped to 0.361.

After analyzing Table 3 and Figure 2, it can be seen that the
classification was performed according to different threshold
values, and the results were significantly affected by the
threshold value. At the same time, observing the change in
the MCC value, it can be seen that its change is small in the
interval 0.55 to 0.6, and the maximum value is obtained in
this interval. Based on the optimization principle, we further
divided the area and refined the threshold area with a step
size of 0.01. Table 4 presents the results. It can be seen that
when the threshold is 0.56, the maximum MCC value can be
obtained, which is 0.261.

From the above analysis of the results, it can be seen that
when using the proposed method to predict protein-DNA
binding sites on the PDNA-224 dataset, the optimal threshold
used was 0.56, and the best threshold was obtained under this
threshold. predictive performance.
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TABLE 4. The results of ten-fold cross-validations using the SVM classifier
on the PDNA-224 dataset based on PSSM features at different thresholds.

TABLE 5. The results of ten-fold cross-validations using three classifiers
on the PDNA-224 dataset based on each single-view feature. RSA-sa

means RSA features based on structure, RSA-qb means RSA features
based on sequence, D_Pc means DI and PI features.

C. FEATURE SELECTION
1) COMPARISON OF SINGLE-VIEW FEATURE RESULTS
First, we extracted the single-view features introduced above
and used the three classification algorithms described above
as classifiers on the PDNA-224 standard dataset to perform
ten-fold cross-validations. The experimental results are pre-
sented in Table 5.

Analyzing Table 5, it can be concluded:
1. All of these sequence and structural features have a cer-

tain effect on the prediction of protein and DNA binding
sites, and the overall prediction accuracy exceeds 60%.

FIGURE 3. The value of MCC in the results of ten-fold cross-validations
using three classifiers on the PDNA-224 dataset based on each
single-view feature.

Overall, the predictive effects of the structural features
were relatively close, and the best predictive effect was
the RSA feature.

2. Combining Table 5 and Figure 3, it can be seen that the
prediction results of the three classifiers introduced above
(SVM, RBF, and RF) show little difference. However,
it can be observed that in terms of single-view feature pre-
diction, the prediction performance of the SVM classifier
is better.

3. Overall, the PSSM feature had the best effect; its predic-
tion accuracy exceeded 75%, and the MCC value of its
prediction result was also the highest. It can be seen that
the relative evolution information of sequences has a great
influence on the prediction of protein-DNA binding sites.

2) COMPARISON OF MULTI-VIEW FEATURE
COMBINATION RESULTS
After obtaining the prediction results for the single-view
features introduced above, we combined the obtained single-
view features according to the Best First method. For the
PDNA-224 standard dataset, the three classification algo-
rithms introduced above were used as classifiers to perform
ten-fold cross-validations to obtain the best combination of
features. The experimental results are presented in Table 6.

From Table 6, we can see:

1. According to the above experimental results, the features
extracted in this study have a certain effect on the pre-
diction of protein-DNA binding sites. Thus, we attempted
to combine the features obtained from a single perspec-
tive to observe the prediction effect using the first-best
algorithm. After combining PSSM features with D_P fea-
tures, it was found that the predictive performance of
this combination was better than that of a single-view
feature. Compared to using PSSM features alone, Sen,
Spe, ACC, MCC, and Youden’s index increased by 3.6%,
1.1%, 1.4%, 3%, and 4.7%, respectively. Based on this,
we attempted to combine different single-view features
to observe this effect. After combining the ASA features
with the previous PSSM and D_P features, it was found
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TABLE 6. The results of ten-fold cross-validations using three classifiers
on the PDNA-224 dataset based on multi-view feature. D_Pa means DI
and PI features, RSA-sb means RSA features based on structure, RSA-qc

means RSA features based on sequence.

that the feature combination performed better than the
previous PSSM and D_P feature combinations, and the
prediction performance was further improved. Sen, Spe,
ACC,MCC, andYouden’s index increased by 6.6%, 2.2%,
3.9%,6%, and 8.8%, respectively. Continue to combine the
features. After combining RSA features based on structure
with PSSM, D_P, and ASA features, the prediction per-
formance of this feature combination is improved. Sen,
Spe, ACC, and MCC increased by 1.2%, 2.5%, 2.3%,
4%, and 3.7%, respectively, compared to the previous
feature combination. After combining the last feature RSA
features based on the sequence with the PSSM, D_P,
ASA, and RSA features, the MCC and ACC of the feature
combination were 2% and 2.5% higher, respectively, than
before. Through these, it can be seen that the prediction
effect of the multi-view feature combination is higher than
that of the single-view feature. The main reason for this is
that there is a certain degree of complementary and inter-
related relationship between different protein features.

2. The feature combination of RSA based on structure,
PSSM, D_P, ASA, and RSA based on sequence features
had the best predictive performance, and its predictive
ability was greatly improved compared to the features
extracted from a single perspective.

3. From Table 6 and Figure 4, it can be seen intuitively
that the SVM classifier performed well in single-view
feature prediction, and its prediction performance was still
ahead of the other two predictors in multi-view feature
combinations.

According to the single-view feature prediction results and
related multi-view feature combination prediction results, the

FIGURE 4. The value of MCC in the results of ten-fold cross-validations
using three classifiers on the PDNA-224 dataset based on each multi-view
feature P stands for PSSM, D stands for D_P, A stands for ASA, R stands
for RSA based on structure, R’ stands for RSA based on sequence.

best feature combination can be selected using the Best First
algorithm, and the results are shown in Table 7.

TABLE 7. The best feature combination after the Best First algorithm
selection. D_Pa means DI and PI features, RSA-sb means RSA features
based on structure, RSA-qc means RSA features based on sequence.

D. FEATURE FUSION
There are differences between the features obtained from
different perspectives and the functions they perform are also
different. By simply combining them, we cannot show the
different roles played by the features from different perspec-
tives. After the best feature combination is selected by the
Best First algorithm, it must be processed by the weighted
feature fusion method to improve the prediction accuracy of
the constructed model.

As mentioned above, owing to the large dimensional dif-
ference between the extracted protein sequence and the struc-
tural features, the obtained feature vectors were processed
using the weighted serial feature fusion method. As the
value ranges of the feature values obtained from different
perspectives may differ, it is necessary to normalize them
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before fusing the features from different perspectives. The
normalization method chosen in this study is the linear func-
tion conversion method, and its calculation formula has been
previously introduced.

After several experiments, it was found that when the
feature weight was set to 0.8, the effect was optimal. On the
PDNA-224 dataset, weighted serial fusion was performed
on the feature combinations obtained through feature selec-
tion, and the fused results were used to perform ten-fold
cross-validations using the SVM, RBF, and RF classification
algorithms.

The result is shown in Table 8.

TABLE 8. Prediction results after ten-fold cross-validations using three
classifiers on the PDNA-224 dataset before and after feature fusion. D_Pa
means DI and PI features, RSA-sb means RSA features based on structure,
RSA-qc means RSA features based on sequence.

Table 8 shows that after using the weighted serial fusion
algorithm to perform feature fusion processing on the best
feature combination, the fused feature set performed better
in protein-DNA binding site prediction than the simple lin-
ear combination feature set. After normalization and fusion,
the feature groups improved by approximately 1.2%, 0.03%,
0.05%, 0.7%, and 1.3% for Sen, Spe, ACC, MCC, and
Youden index, respectively. Therefore, it can be said that the
weighted serial fusion process for the best feature combina-
tion is effective.

From Table 8 and Figure 5, it can be seen intuitively that,
when predicting the best feature combination before and after
fusion, the classifier with the best effect was still the SVM
classifier.

E. FEATURE DIMENSIONALITY REDUCTION
1) M VALUE SIZE
After serial fusion, the total dimension of the features is the
sum of all feature dimensions to be fused, which may lead
to excessively large feature group dimensions. This not only
greatly increases the training time of the model, but may
also cause redundancy, leading to a decrease in prediction
accuracy. Therefore, as previously mentioned, we used the
GPCA method to reduce the dimensionality of the fused
features.

In the GPCA algorithm, the choice of parameter m, that
is, the total dimension after dimension reduction, is crit-
ical. Thus, we experimented with the PDNA-224 dataset

FIGURE 5. On the PDNA-224 dataset before and after feature fusion, the
value of MCC in the prediction results after ten-fold cross-validations
using three classifiers.

to reduce the dimensionality of fused features. According
to the previous experiments, it can be seen that the SVM
classifier performs better on the research questions in this
study; therefore, the SVM classifier was used to perform ten-
fold cross-validation to determine the size of the optimal m
value. Based on previous experimental experience and the
total dimensions of the features after fusion in this study,
the experiment was carried out in the range of 360-400 with
a step size of 5 to determine the optimal value of m. The
experimental results are presented in Table 9.

TABLE 9. The results obtained under different m values after performing
ten-fold cross-validations on the PDNA-224 dataset based on the fused
feature set and the SVM classifier.

From Table 9, in the interval–360-400, as the value of
m continues to increase, the accuracy of the prediction and
the value of MCC both show a trend of increasing first and
then decreasing after reaching the peak. ACC increased from
84.92% to 87.62%, dropped to 85.16%, MCC increased from
0.395 to 0.426, and then dropped to 0.396, as shown in
Figure 6.
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FIGURE 6. Based on the feature group after feature fusion and the SVM
classification algorithm, on the PDNA-224 data set, the step size is 5, and
the m value ranges from 360 to 400. The change curve of MCC in the
prediction results.

It can be observed that the size of the feature group
dimension m after dimensionality reduction has a significant
impact on the prediction performance of the model, and an
inappropriate value of m may lead to loss or redundancy
of feature group information after dimensionality reduction.
By analyzing Table 8 and Figure 6, it can be seen that when
the value of m is less than 385, as the value of m increases, the
prediction effect of the model increases with the increase of
the value of m. When the value of m was 385, the dimension-
ality was reduced, and the processed features were predicted
the best. When m was greater than 385, the prediction effect
of the model decreased as m increased. Therefore, this study
selected 385 as the m value and performed dimensionality
reduction processing on the fused feature group to obtain the
best prediction effect.

2) DIMENSIONALITY REDUCTION EFFECT
After obtaining the optimal m-value size for the PDNA-224
dataset, the obtained weighted and fused feature groups were
subjected to a dimensionality reduction. The SVM, RBF, and
RF classifiers were used to perform ten-fold cross-validations
to select the classifier with the best effect for the construction
of the prediction system in this study.

After reducing the feature dimension and performing clas-
sification prediction, the Spe, ACC, MCC, and Youden’s
index increased by 1.4%, 1.8%,0.9%, and 1%, respectively.
Although Sen is slightly lower than before, MCC has
improved because Spe is higher than before. Although the
dimension reduction process does not significantly improve
the prediction accuracy and MCC, the total dimensions of the
features are significantly reduced after the dimension reduc-
tion. On the one hand, this reduces the redundancy between
features; on the other hand, it also greatly reduces the training

TABLE 10. Prediction results after ten-fold cross-validations using three
classifiers on the PDNA-224 dataset before and after feature
dimensionality reduction.

FIGURE 7. On the PDNA-224 dataset before and after dimensionality
reduction, the value of MCC in the prediction results after ten-fold
cross-validations using three classifiers.

FIGURE 8. ROC curve graph after Feature combination, Weighted Feature
Fusion, and Feature dimensionality reduction.

speed of the model and the time required for prediction, and
improves the execution efficiency of the model.

It can be observed from Table 10 and Figure 7 that this
sequence of operations is valid. The area under each curve
comprehensively reflected the effectiveness of the proposed
method. Therefore, it can be said that the feature dimen-
sionality reduction method used in this study is effective.
A protein-DNA binding site predictionmodel based onmulti-
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view feature fusion and a support vector machine designed in
this study was constructed. Next, we compared the predic-
tion performance of existing popular prediction systems on
the PDNA-224 dataset to illustrate the effectiveness of the
prediction model constructed in this study.

F. PERFORMANCE COMPARISON WITH OTHER
RELATED PREDICTION SYSTEMS
As mentioned above, many achievements have been made
in the field of protein-DNA binding site prediction. To test
the effectiveness of the proposed method, we compared the
performance of our method with four other state-of-the-art
methods using a benchmark dataset. These methods include
PreDNA [7], DP-Bind [47], EL_PSSM-RT [48], and
Novel_Predict [9]. The comparative results for PDNA-224
and PDNA-62 are presented in Tables 11 and 12, respectively.

TABLE 11. On the PDNA-224 dataset, the proposed method compares
with other predictors.

1) ON PDNA-224 DATASET
It can be seen from the table that the proposed method has
better prediction performance than other popular protein-
DNA binding site predictors. Compared with the second-best
method, Novel_Predict, in the prediction results, the pro-
posed method was 24.3%, 6%, 6.72%, and 20.4% higher in
Sen, MCC, and Youden’s index, respectively. Although the
Spe and ACC of Novel_Predict are 3.9% and 1.3% higher
than those of the proposed method, respectively, the value
of Sen is 24.3% lower than that of the proposed method.
Considering the PDNA-224 database (containing 3778 DNA-
binding residues and 53570 non-DNA-binding residues), the
number of DNA-binding residues was much smaller than
that of the non-binding residues. It shows that this method
has the problem of wrongly predicting the binding site as a
non-binding site when predicting the binding site, and this
result does not reflect the effectiveness of the prediction
method very well. Therefore, the method proposed in this
study is superior to the Novel_Predict method for the overall
prediction.

TABLE 12. On the PDNA-62 dataset, the proposed method compares with
other predictors.

TABLE 13. On the APO29 dataset, the proposed method compares with
other predictors.

2) ON PDNA-62 DATASET
Table 12 lists the experimental results on PDNA-62 dataset.
The results clearly show that the method in this study is
also effective on the PNDA-62 dataset, and its prediction
accuracy is higher than that of other existing protein-DNA
binding site prediction algorithms. Compared with the novel
prediction method, the proposed prediction method improves
Sen, ACC,MCC, and Youden’s index by 11%, 0.6%, 4%, and
8.2%, respectively. Although the value of Spe was slightly
lower than that of Novel_Predict, Sen was higher than the
Novel_Predict method to a greater extent. Therefore, overall,
the prediction accuracy of the proposed method was better
than that of the Novel_Predict method.

3) ON APO29 DATASET
To further compare the predictive performance of the pro-
posed method with that of other existing methods, we eval-
uated the proposed method on the independent test dataset
APO29. In addition, to further verify the generalization abil-
ity of the prediction system and to avoid the model overfitting
phenomenon that may occur when only standard datasets are
used for training. Table 13 shows the difference in prediction
performance between the proposed method and the other

VOLUME 11, 2023 79621



J. Yang, S. Zhang: Protein-DNA Binding Site Prediction Method

three state-of-the-art methods: PreDNA [7], DP-Bind [47],
and Novel_Predict [9].

The proposed method achieved the highest ACC, MCC,
and Youden index values of 86.9%, 0.43, and 0.502, respec-
tively. Prediction results on the APO29 independent test
dataset demonstrated that our method generalizes well to
protein-DNA binding residues.

VIII. CONCLUSION
The identification and analysis of binding sites between pro-
teins and DNA are of great significance for studying the
mechanism of protein function. With the continuous devel-
opment of bioinformatics, the use of bioinformatics methods
to predict protein-DNA binding sites will be one of the work
centers in related fields in the future. We have completed
some related research work on the prediction of protein-DNA
binding sites and proposed a new prediction method, and
through a series of works, the prediction accuracy of protein-
DNA binding sites has been improved to a certain extent.
The prediction results on the two benchmark datasets over
ten-fold cross-validations demonstrated that the proposed
method was effective in achieving better performance than
other prediction methods. At the same time, the results on the
independent test dataset also show that the method proposed
in this paper has the best prediction performance. All exper-
imental results demonstrate that our proposed method is
highly competitive for predicting protein-DNA binding sites.
Our study is complementary to existing protein-DNA binding
site predictors.

Although the proposed method achieved certain results,
there are still some deficiencies that need to be improved and
will be further studied in the future.

We used a single classification algorithm to build a pre-
dictor, which may have overfitting in some cases and has
certain limitations. Therefore, we consider different classifi-
cation algorithms for fusion to further improve the prediction
performance and avoid overfitting.

We selected some features of proteins and achieved certain
results, but the selection of features was still weak. How-
ever, many factors affect the binding process of proteins
and DNA, such as binding free energy and entropy. These
are related to the biological mechanisms of protein-DNA
interactions. Therefore, in future research, this special infor-
mation should be explored further to improve the effect of
prediction.

Although our proposed method achieved promising results
on two benchmark datasets and an independent test set, real-
world applications are still lacking. Next, we will further
explore the effect of the method proposed in this study when
facing real-world cases.
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