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ABSTRACT The study of unmanned ground vehicles (UGVs) operating under unstructured roads is of
great significance to intelligent transportation, agricultural development and military technology. In order to
ensure reliable and stable operation of UGVs on unstructured terrain, it is necessary to identify the current
road terrain and perform vehicle stability adjustment. Road terrain identification is a prerequisite for stability
control. Most of the existing road terrain identification methods use a single vehicle sensor, which has
the problem that complex algorithms need to be applied for data processing, which reduces the real-time
performance. Moreover, the single sensor is weak in anti-interference and limited in recognizing the road.
To address these problems, a method is proposed to collect vehicle motion data using on-board gyroscope
sensors and velocity sensors. Back propagation (BP) neural network is used to identify the category of
the road. For the problem that the conventional proportional-integral differential (PID) algorithm cannot
be adapted to different road stability control, a multi-loop adaptive proportional-integral differential (PID)
control system with the velocity loop as the outer loop and the torque (current) loop as the inner loop is
proposed. In order to verify the feasibility and effectiveness of the method, experiments are conducted on a
UGYV using robot operating system (ROS), and the results verify the feasibility and superiority of the road
identification and stability control method proposed in this paper. It provides a good theoretical basis and
valuable technical guidance for the UGV operation and control on unstructured roads.

INDEX TERMS Adaptive algorithms, BP neural networks, complex terrain, multi-loop PID control systems,
road identification.

I. INTRODUCTION

Unmanned Ground Vehicles (UGVs) are mobile ground
robots that are crucial components of intelligent transporta-
tion systems and a significant research area in ground mobile
robotics. They have diverse applications in fields such as
military, agriculture, and aerospace [1], [2], [3], [4], [5],
[6]. Ensuring the stable operation of UGVs requires careful
consideration of road recognition and stability control, which
are two critical factors. Road recognition is a particularly sig-
nificant research area for UGVs and has attracted widespread
interest. Roads are commonly classified as structured or
unstructured, with the latter being more challenging to study
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due to their complex terrains, varying undulations, and the
difficulty in establishing reasonable mathematical models
(71, (8], [9].

Extensive research has been conducted by numerous schol-
ars and experts on the recognition of unstructured road terrain
for UGVs, which can be classified into three main cate-
gories. The first category, as proposed by Sun Yu-ze, involves
acquiring original remote sensing map images using soft-
ware such as BIGEMAP, decomposing the image into ground
information and elevation data, and processing them through
neural network algorithms [10]. A grid map is produced by
combining these data, completing macroscopic road terrain
recognition. It is clear that the first category is well-suited
for the creation of macroscopic maps through the extraction
of road terrain information with the aid of diverse mapping
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projection software. Nevertheless, it lacks the utilization of
sensors for real-time information extraction, finally leading
to a certain level of latency. The second category relies on
external vehicle sensors, such as LIDAR or depth cameras, for
real-time Simultaneous Localization and Mapping (SLAM).
A semantic SLAM system is presented by Zhang et al. [11],
which constructs semantic maps utilizing entities and incor-
porates them into an RGB-D SLAM framework. Imani et al.
provides a precise perceptual review of SLAM case histories
that rely on laser/ultrasonic sensors and cameras as input
data [12]. Two methods for constructing SLAM are proposed
by Lemaire et al. [13], one employing stereo vision and the
other utilizing monocular images. This kind of method is
mainly applied to the detection of rocks and trees in the
outdoors, but the external sensor is easily affected by the
environment (humidity, light intensity, water reflection), so it
is not good at identifying microscopic terrain features, such as
road topography, road surface roughness. The third category
involves recording vehicular travel data through internal sen-
sors such as Inertial Measurement Units (IMUs) or velocity
sensors. This type of method is more suitable for dealing with
microscopic information of roads, so the road identification
method studied in this paper belongs to this category.

The method proposed by Zhen [14] is road recognition
based on pitch angle information. This method is charac-
terized by using a single sensor for road detection, which
can effectively reduce costs. It has a good recognition result.
However, the information provided by a single sensor is lim-
ited, and the anti-interference is weak. Some time-consuming
complex data processing method (such as KNN algorithm,
singular value decomposition, clustering algorithm et al.)
must be used to integrate the sensor extraction to form bet-
ter input features, resulting in poor real-time performance.
Similarly, Brooks et al. [15] adopted a single vibration sensor
for road identification, which has the same characteristics as
the method proposed by Zhen [14]. Xiaofei et al. [16] adopts
road classification based on the correlation between adhesion
coefficient and slip coefficient of vehicles driving on the road.
The feature of this processing method is that it makes use of
its own attributes of road terrain for recognition, which has a
wider recognition range and can effectively recognize more
road terrain. However, it is difficult to select a suitable sensor
for the detection of slip coefficient and adhesion coefficient.
Gorges et al. [17] adopts angular velocity sensor and suspen-
sion spring elasticity sensor for road recognition. This method
can be well applied to two-wheeled motorcycles with obvious
suspension spring changes, but it cannot be well applied to
vehicles with more than four wheels. At the same time, the
sensors selected by these authors are vibration and elastic
force sensors, which have a good effect on the road surface
with large fluctuation, but the recognition effect on the road
surface with small fluctuation and high slip rate (sandy land)
is poor. Moreover, the anti-interference of a single sensor is
weak, requiring a more complex algorithm to extract data and
reduces real-time capability.
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Road recognition is the premise of stability control, and the
ultimate goal is to ensure the stable control of the unmanned
vehicle under different road surfaces.

The importance of UGV stability control research is
paramount, in addition to the recognition of unstructured
roads. Currently, the research in this domain can be cat-
egorized into two groups: model-based control and non-
model-based control. According to reference [18], Model
Predictive Control (MPC) is a class of algorithms utilized
for predictive purposes. These algorithms utilize the vehi-
cle’s nonlinear dynamic model to predict the future state
of the vehicle during each control cycle. An optimization
control problem is solved over a finite time horizon to obtain
a control sequence that ultimately leads to optimal control
effects. However, on off-road roads, it is difficult to establish
a reasonable mathematical model because of the fluctuat-
ing road surface, so model control is difficult to achieve.
At this time, another type of method can be adopted, i.e., non-
model control. Proportional-Integral-Derivative (PID) con-
trol is a non-model-based control technique that is widely
applicable and robust. A comprehensive control algorithm
was designed by Wang et al. [19]to control both yaw and
roll motion simultaneously, utilizing the fuzzy PID approach.
The fuzzy control proposed in paper [19] is applicable to
the unstructured pavement which is difficult to be described.
Furthermore, the fuzzy parameter calculation method given
in literature [20] can be used as a reference for this paper.
Arof et al. [21] proposes a control technique that employs a
three-level cascaded Proportional-Integral-Derivative (PID)
controller for acceleration and deceleration control in electric
vehicles (EVs), using an up-down algorithm to control speed,
torque, and position. The speed and torque (current) loops of
the three-loop control proposed in the paper [21] can be used
as a reference for the control model in this paper, so that the
speed and torque of the unmanned vehicle are simultaneously
taken into account to ensure the off-road performance of the
unmanned vehicle.

In summary, the current study of road recognition for
unmanned vehicle is generally based on a single sensor, such
as vibration sensors or force sensors. It can reduce part of the
cost, but requires some complex methods to process the data
sampled by the sensors, which will lead to weak real-time and
anti-interference performance. For some slightly undulating
but slippery roads (such as sand road), it is difficult to identify.
With regard to the stability control of unmanned vehicles,
non-model PID control algorithms are commonly used to
control the speed and torque of the motor, but a single PID
algorithm does not meet the requirements of stable operation
of unmanned vehicles under different roads. Therefore, com-
pared with the current research, the novelty of this paper can
be summarized as:

(1) Considering the problems of poor real-time, weak
anti-interference and limited recognition of roads by a single
sensor, this paper proposes to record the shaking information
of the unmanned vehicle by sampling the roll angle and pitch
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angle under different road surfaces through the gyroscope
sensor. The speed information is sampled by the left and right
wheel motor speed sensors (motor encoders). The increase in
sampling information enhances the system’s anti-interference
and real-time performance. At the same time, the method is
able to calculate the slip state of the unmanned vehicle in real
time, allowing for the recognition of more varieties of road
terrains.

(2) A control system with a multi-loop adaptive PID
algorithm is proposed, which uses the speed loop as the outer
loop and the torque loop (current loop) as the inner loop.
A fuzzy PID algorithm is used for the speed loop and a
segmented PID algorithm is used for the torque loop, which
automatically adjusts the PID parameters of both according
to the current road properties to achieve stable driving on
different roads.

The rest of the paper is organized as follows. Section II
gives a detailed description of the theoretical approach to
road recognition and stability control of unmanned vehicles.
In Section III, experiments on road recognition and stability
control of unmanned vehicles are designed to verify the theo-
retical approach proposed in Section II. Section I'V provides a
detailed analysis and comparison of the experimental results
and illustrates the superiority of the method adopted in this
paper. Section V discusses the conclusion and future work.
The research flow of this paper is shown in Figure 1.

Il. THEORETICAL METHODS

When a UGV operates on complex road surfaces, it is essen-
tial to take into account two critical aspects: complex road
recognition and stability control.

Road identification is a prerequisite, and suitable PID
control parameters are selected for stability control. Stability
control is the ultimate goal to ensure the stability of vehicles
on different roads.

A. ESTABLISHMENT OF THE VEHICLE MOTION
COORDINATE SYSTEM

To effectively extract road information features and establish
a reliable control system, a thorough comprehension of the
vehicle’s motion posture information is indispensable. There-
fore, it is essential to establish a rotating coordinate axis for
the vehicle.

Figure 2 demonstrates the decomposition of the oscilla-
tion information of the vehicle during driving into angular
velocities pertaining to the x-axis, y-axis, and z-axis. These
correspond to the pitch, roll, and yaw angles, respectively,
which are analyzed quantitatively.

B. EXTRACTION OF VEHICLE MOTION INFORMATION

To obtain the vehicle’s motion posture information as men-
tioned above, the gyroscope (IMU) sensor can be utilized.
Meanwhile, the vehicle’s speed information can be extracted
by means of an encoder. This enables the measurement
of the vehicle’s roll, pitch, and yaw angles, as well as its
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traveling speed. Such measurements reflect the current road
conditions.

C. BUILDING A BP NEURAL NETWORK MODEL
In this study, four common terrain surfaces on which UGVs
frequently operate have been selected for feature recognition.

These surfaces include asphalt, short-grass road, tall-grass
road, and sandy terrain. Due to the nonlinear relationship
between input features and output road results, a BP classifi-
cation neural network is utilized for feature recognition. The
BP neural network model, as depicted in Figure 3, comprises
of feature vectors composed of extracted features. The input
layer is composed of a feature matrix that contains these
feature vectors. The rows of the feature matrix correspond
to different types of features, while the columns correspond
to the number of extracted features for each type. The input
matrix is then fed into the input layer of the BP neural
network, and recognition results are generated under the com-
bined action of activation functions in the hidden and output
layers. The input feature processing method is discussed in
detail in the experimental section.

The theoretical outputs are established for each terrain
surface as follows: asphalt surface (1, 0, 0, 0), short grass
road surface (0, 1, 0, 0), tall grass road surface (0, 0, 1, 0), and
sandy surface (0, 0, 0, 1). The neural network compares the
actual output with the theoretical output, calculates the error,
and adjusts the weights and thresholds through the network’s
backpropagation error adjustment function.

D. SELECTION OF ACTIVATION FUNCTION
Sigmoid function is adopted as activation function, as demon-
strated by Equation (1). This function has been selected due
to its ease of optimization and capability of managing.
high-dimensional data, enabling superior recognition of
road attributes. In order to process the data, the input variable
parameters are mapped to the range [1, 0] using Equation (1),
and subsequently, they are introduced into the neural network.

1

fl) = m (H
E. ROAD RECOGNITION

To recognize the attributes of the road on which the vehi-
cle is traveling, it is necessary to transform the information
obtained by the aforementioned sensors into input features for
the BP neural network. The detailed procedure is presented in
Figure 4.

After analyzing the feature recognition methods presented
in the relevant literature [22], [23], [24], [25], the following
observations have been made: when handling data process-
ing, intricate data processing method are necessary to carry
out feature processing when the quantity of detected infor-
mation is meager. On the other hand, when the amount of
detected information is large, simple data processing method
can be employed for feature processing, and the inclusion of
more information can enhance the anti-interference capabil-
ity of the recognition system. Consequently, multiple pieces
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of information, such as roll angle, pitch angle, and motor
speed, have been selected for feature processing. Finally,
the processed features are fed into the neural network for
recognition.

F. ESTABLISHMENT OF MOTOR MODEL
To achieve better on-board motor control, it is necessary to
establish a motor model, as depicted in Figure 5.
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Stability control systems

In accordance with Kirchhoff’s circuit law, the voltage
balance equation for the motor can be formulated as follows:

dig
Uy=I,R;+L,— +E

2
o (2)
E=C:Pcn

3

where C; is torque constant, I, is armature current, U, is
armature voltage, E is back electromotive force, ®. refers to
unit magnetic flux, L, is armature inductance, R, represents
armature resistance.

Since the direct current motor acts as the driving force
for intelligent vehicles, the direction of its electromagnetic
torque 7, corresponds to the direction of rotational speed n,
whereas the load torque T}, and friction torque 7 are in the
opposite direction. Utilizing Newton’s second law, the torque
equation on the motor shaft can be derived as follows:

Ta_(Tm+T)=Jd_$ @
! dt
2nn

§=E ©)

Subsequently, the correlation between motor torque and
current can be deduced as follows:
T

Ty=Tp+ T + 1"
a= Im T T30 a0

The relationship between motor speed and armature volt-
age can be expressed as:

U R.T,
Cede  9.55C2H2

= Cr®.d, = 9.55C: .1, (6)

)

n

The aforementioned formulas demonstrate that motor
torque can be regulated by adjusting the armature current,
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while motor speed can be controlled by adjusting the arma-
ture voltage. Additionally, motor speed is also influenced by
motor torque. Hence, in designing the control system, the
first step involves setting the desired speed and subsequently
adjusting the armature current to achieve the target speed,
thereby setting the motor torque. Finally, the output voltage
is regulated to attain the desired speed and target torque. This
approach presents a sequence of control for the multi-loop
control system, which will be discussed later.

G. ESTABLISHMENT OF THE PID CONTROL SYSTEM

In off-road environments, the primary challenge for imple-
menting vehicle motion control is the instability of control
execution caused by the intricate and diverse road scenar-
ios. To address this issue, discrete PID algorithms can be
employed for preliminary control, and parameters can be
adjusted to suit different tasks. The control equation for this
purpose is as follows:

20
uk) = kpe(k) + kiT > e(k) + kdw ®)

j=0

By adjusting the values of k,, k;, and kg, the output target
value can be adjusted accordingly. Moreover, to ensure the
stability of the control system, a cascaded control is employed
for the vehicle motor. Based on the aforementioned control
strategy, the current loop is configured as the inner loop, while
the speed loop serves as the outer loop. This ensures that
the current does not experience excessive overshooting, while
maintaining a stable motor speed.

H. ESTABLISHMENT OF ADAPTIVE PID CONTROL RULES

Due to the challenge of accurately describing road
attributes when the vehicle is operating in off-road envi-
ronments, an adaptive PID method is utilized to adjust the
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The feature is input into
BP neural network for
recognition

Complete

parameters. Specifically, the speed PID adjustment can be
obtained directly from the current speed information obtained
through the motor encoder. Given that the speed is continu-
ously changing, a fuzzy PID control method is employed.
To accomplish this, the input is set as the error (e), while the
change in error is designated as error change(ec). The fuzzy
control rules can be expressed as follows:

kp = kp/ + {ei9 eci}P
ki = ki’ + {ei, eci}i
ka = ka' + {ei, ecila 9

To achieve stable control of motor torque, it is necessary
to adapt the current PID control system to the current road
attributes. Detection of road attributes is accomplished by
means of the BP classification neural network mentioned
earlier, yielding discrete changes in results. Consequently,
a segmented PID control approach is employed for motor
torque regulation. The rules governing this segmented control
method are as follows:

kp = k) + Ak
ki = ki/ + Ak;
kg = k(/i + Akg (10)

As a consequence of the foregoing analysis, the adaptive
PID control model can be illustrated in Figure 6.

Ill. EXPERIMENTAL METHOD

A. EXPERIMENTAL DESIGN

To validate the proposed method, a ROS-based UGV is oper-
ated on various road surfaces, including asphalt, short grass
road, tall grass road, and sandy road surfaces, respectively.
The UGV parameters are listed in Table 1.

During the operation, the traveling speeds and attitude
angles were recorded to provide relevant data for subsequent
feature extraction. The experimental setup is illustrated in
Figure 7.

B. FROM SENSOR INFORMATION TO FETURES
The experiments were carried out in accordance with the
aforementioned requirements, and the results are presented
in Figure 8.

Upon analysis of the changes in both angle and velocity
while traversing diverse types of road surfaces by the UGV,
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FIGURE 7. Experimental road surface.
TABLE 1. Experimental UGV parameter list.
Attribute Parameters
Self-respect 19.54kg
Maximum 1.65m/s
speed
Size 774*570%227mm
Motor 100W DC brushless motor
Wheel material Rubber

Asphalt road, short grass road, tall grass
road, sandy road
main controller: raspberry pie
secondary controller: stm32

Road category

Controller type

it is manifest that the divergences are notably substantial.
Table 2 presents the subsequent features that can be selected
and implemented as inputs for the neural network.

Feature X represents the mean change in pitch angle
throughout vehicular operation, wherein @y, signifies the
pitch angle value at the K -th sampling, and ¢y 1) indicates
the pitch angle value at the K + 1-th sampling. K represents
the quantity of samplings. Feature X, signifies the mean
change in roll angle during vehicular operation, wherein ¢y )
represents the roll angle value at the K-th sampling, and
@x(k+1) indicates the roll angle value at the K +1-th sampling.
K constitutes the quantity of samplings. Features X; and X»
serve to document the aggregate oscillation information of
the vehicle while traversing the road segment.

Feature X3 represents the count of abrupt pitch angle
changes during vehicular operation, wherein a single pitch
angle sudden change is defined as: |@yk+1) — @y | > 5°.
Feature X4 signifies the count of roll angle sudden changes
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(d) sandy road

(c) tall grass road

during vehicular operation, wherein a single roll angle sudden
change is defined as: |@xk+1) — @xk)| > 5°. Features X3 and
X4 serve to document the severity of the vehicle’s oscillations
while traversing the road segment.

Feature X5 represents the maximal pitch angle difference
during vehicular operation, wherein @y, signifies the max-
imal sampled pitch angle value when the vehicle traverses the
road, and @y, indicates the minimal sampled pitch angle
value. Feature X represents the maximal roll angle differ-
ence during vehicular operation, wherein ¢y, signifies the
maximal sampled roll angle value when the vehicle traverses
the road segment, and @y, indicates the minimal sampled
roll angle value. Features X5 and X¢ serve to document the
maximal oscillation angles on the road segment.

Feature X7 and Feature X3 represent the counts of sudden
changes in the left wheel motor speed k,;,, and the right wheel
motor speed k, , respectively, with a single sudden change
in motor speed defined as |n (k + 1) —n (k)| > 100r /min.
Feature Xog signifies the mean speed disparity between the left
and right wheels, wherein ny, (k) represents the K -th sampled
speed of the left wheel motor, and n,, (k) indicates the K-
th sampled speed of the right wheel motor. K constitutes the
quantity of samplings. Feature X7-Xo is used to record the
motor characteristics of the vehicle.

C. DEFINITION OF INPUT-OUT ADAPTIVE PID DATA SETS

The speed deviation e and the rate of change of speed
deviation ec are categorized into nine fuzzy set linguis-
tic variables: ““ Negative Big (NB)”, * Negative Medium
(NM)”, “Negative Small (NS)”, “Negative Less (NL)”,
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TABLE 2. Feature-information data processing method table.

Serial umber

Feature name

Feature expression

k
AEIH Pyiesny ~ Py |

1 Average pitch angle change:
X r
n
2 Average roll angle change: §| Prtiesty = Pry |
X, = k
3 Pitch angle sudden change times: X. =k
3 oy
4 Change times of roll angle: X =k
4 [
5 Maximum pitch angle difference -
P 8 X 57 {Dymax - @ymjn
6 Maximum roll angle difference -
£ X 6 q)xmax - gpxmin
7 The number of sudden changes in the rotation X7 = kn,,
speed of the left wheel motor:
8 The number of sudden changes in the speed of Xg = kn,,,

the right wheel motor:

9 Average speed difference between left wheel and
right wheel

— Z;clzllnlv(k) - nru(k)l

“Zero (ZO), “Positive Less (PL)”, “Positive Small (PS)”’,
“Positive Medium (PM)”’, and ‘“‘Positive Big (PB)”, with
domains being {—12, -9, —6, —1.8,0, 1.8, 6,9, 12}, respec-
tively. These variables are applied to the speed loop.

The road attributes are categorized into four categories:
“Asphalt Road Surface - Zero (ZO)”’, “Sandy Road Surface -
Negative Small (NS)”’, “Short Grass Road Surface - Negative
Medium (NM)”’, and “Tall Grass Road Surface - Negative
Big (NB)”, with increments of {0, —10, —15, —20} applied
to the current loop.

D. DEFINITION OF FUZZY CONTROL INPUT-OUTPUT
MEMBERSHIP FUNCTIONS

To facilitate computation in the speed loop, membership
functions are required based on the established domains. Tri-
angular membership functions are employed for fuzzification
in this paper. The fuzzy membership functions for e and ec are
depicted in Figure 9.

E. ESTABLISHMENT OF ADAPTIVE RULES

According to the mechanical characteristics of the motor
and practical experience with the PID algorithm, it has been
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observed that adjusting the k, and k; parameters can accel-
erate the tuning speed, but such adjustments are likely to
cause overshoot effects. Conversely, the k; parameter can
effectively suppress overshoot, but it may slow down the
tuning speed. In light of these observations, the recommended
approach is to moderately increase the tuning speed on rela-
tively flat surfaces, where the impact on motor output speed
and torque is minimal. On uneven surfaces, however, where
the impact on motor output speed and torque is substan-
tial, the primary focus should be on suppressing overshoot
to enhance system stability. In accordance with the above
guidelines, the design of the speed fuzzy control truth table
is presented in Table 3, while the current segmented control
truth table is presented in Table 4.

Premised on the incremental models outlined in Tables 3
and 4, the tuning of adaptive PID parameters has been com-
pleted, effectively achieving the desired control effect.

IV. RESULTS AND DISCUSSION

A. UNSTRUCTURED ROAD RECOGNITION RESULTS

The aforementioned feature information is incorporated into
MATLAB?’s BP classification neural network for recognition
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TABLE 3. The truth table of speed in fuzzy PID control.
kp/kilka e.
NB NM NS NL Z0 PL PS PM PB
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ee NL PM/NM/PL PM/NM/NL PS/NS/NS PL/NS/NS PL/NL/NS Z0/Z0/Z0 NL/PL/ZO NL/PL/NL NS/PS/NL
y4e] PM/NM/ZO PS/NM/NL PS/NS/NL PL/NL/NL ZO/ZO/NL ZO/PL/PL NL/PL/NS NS/PS/Z0 NS/PS/Z0O
PL PS/NS/ZO PS/NS/ZO PL/NL/ZO Z0/Z0/Z0 NL/PL/ZO NL/PS/ZO NS/PS/ZO NS/PM/ZO NM/PM/ZO
PS PS/NS/PM PL/NL/NS Z0/Z0/PL NL/PL/PL NL/PL/PL NS/PS/PL NS/PS/PS NM/PM/PS NM/PM/PM
PM PL/ZO/PM Z0/Z0/PS NL/PL/PS NS/PS/PS NM/PM/PS NM/PM/PS NM/PM/PM NB/PB/PM NB/PB/PB

PB Z0O/Z0/PB Z0O/Z0/PB NS/PL/PM NM/PS/PM NM/PM/PM  NM/PM/PM NB/PM/PM NB/PB/PB NB/PB/PB

TABLE 4. Road information segmented PID truth table.

ky/kitka Increments
Z0 PS PM PB
Z0/Z0/Z0 NS/NS/ZO NM/NS/ZO NB/NM/ZO

purposes. The relevant parameters of the BP neural network information, along with their classification results, are pre-
are presented in Table 5. The final training and test set sented in Table 6, Figure 10 and Figure 11.
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TABLE 5. BP neural network parameter table.

Number of Hidden layer neurons Output layer The maximum number of  Learning
features class iterations rate
9 6 4 10000 0.01
TABLE 6. The number of samples in training set and test set.
Road attributes Asphalt road short grass road Tall grass road Sandy road
The number of
samples in the 26 16 19 19
training set
Test set sample 19 16 75 20
size
10 \ error is within the allowable range of error, and the overall
NB NM NS NL Z0 PL b PM PB

0.5+

FIGURE 9. Membership function diagram.

The results are shown in Figure 10 and Figure 11. Figure 11
shows the results of multiple runs under the same neural net-
work, where the results of the first run are depicted in detail,
as shown in Figure 10. Each dot in the figurell indicates
the recognition result for a run of the program (the vertical
coordinate indicates the number of runs and the horizontal
coordinate indicates the road category), and the number after
the dot indicates the recognition accuracy. The symbol “+4”
means that other categories were incorrectly classified as this
category, and the symbol “—”" means that this category was
incorrectly classified as results of other categories.

In the process of verification, the high grass road has large
fluctuation characteristics, resulting in large vehicle bump
characteristics, which can greatly affect the change of attitude
angle and motor speed. The method proposed in this paper
can amplify the difference with the other three types of roads,
which is easy to identify. The short grass road has small
fluctuation characteristics, which has little impact on vehicle
turbulence characteristics, but it also has certain turbulence
characteristics, which can be well distinguished from other
three types of roads by the method in Table 2. However,
there is some confusion between sand road and asphalt road.
The main reason is that the fluctuation of sand road and
asphalt road is very small. The expression X9 in Table 2 is
mainly used to determine the difference between the two.
As the material of sand road is soft, it is easy to cause big
difference in the adhesion of tires at different positions. This
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recognition rate reaches more than 98%, which will not affect
the stability control of the later text greatly.

The method in this paper is compared with the road recog-
nition methods given in literatures [14], [15], [16], [17], as is
shown in Figure 12. This paper sampled the roll angle, pitch
angle and rotation speed of the left and right wheel motor
of the unmanned vehicle, and converted this information into
9 characteristic values input by the neural network. Compared
with the methods given in other literatures, the increase of
sampling information can enhance the anti-interference per-
formance of the system. Using more sampling information
and more features at the same time can effectively reduce
the complexity of the algorithm [26] and ensure the real-time
performance of the system. In recognition results, the recog-
nition rate reaches 98%, higher than the other methods.
In terms of the number of terrain categories, although [17] has
identified 6 kinds of roads, these roads have large differences
in the degree of undulation, and the sandy pavement with
slight undulation and high slip rate have not been identified.
Literature [16] can recognize 9 kinds of roads, including
sandy pavement, but the method is to use the road’s own
attributes for recognition, and the recognition rate is only
80%. Meanwhile, it is difficult to select a reasonable on-board
sensor for information extraction.

B. ADAPTED PID CONTROL RESULTS

Adapted PID control experiments are carried out on diverse
road surfaces, utilizing the experimental vehicle presented
in Table 1. The original PID parameters are obtained using
the Ziegler-Nichols [27] tuning method, producing the speed
loop parameters of k, = 120, k; = 20, and k; = 300, and
the current loop parameters of k, = 80, k; = 28, and kg =
100. Subsequently, the adaptive parameters from Table 3 and
Table 4 are added on the original PID to obtain the adaptive
PID algorithm, which are employed in the four categories of
roads in Figure 7.
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FIGURE 10. Results of neural network recognition (First run results).
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FIGURE 11. Results of neural network recognition (Results of four runs).

The adaptive PID algorithm used in this paper is compared
with the original PID algorithm. The obtained speed and
current curves are then illustrated in Figure 12. Figure a-d
show the speed waveforms of the motor for the unmanned
vehicle operating on the four road surfaces. Figure e-h show
the current waveforms operating on the four road surfaces.

The experimental results are shown in Figure 13. As can
be seen from the comparison in the figure a and e, if the
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FIGURE 12. Comparison of relevant literature methods.

algorithm in reference [27] is used only, there is not much
difference between them and they can both have good set-
ting effect under structured asphalt pavement. However,
under unstructured pavement, the Ziegler-Nichols algorithm
is weak in processing unstructured complex terrain due to the
fixed PID parameters, so it cannot achieve a better setting
effect. The adaptive PID algorithm in this paper can adjust
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FIGURE 13. Real-time curves of vehicle motor current and rotational speed.

the PID parameters in real time according to the current road
terrain characteristics.

Then, the curve generated by the adaptive PID parameters
is further analyzed. When the value of k, and k; is large,
the adjustment time can be effectively reduced, but it is easy
to overshoot. At this time, k; can be used to increase the
system damping for vibration suppression. This paper com-
pares the adaptive PID parameters studied with the original

VOLUME 11, 2023

PID parameters. As can be seen from the figure, on the
asphalt pavement, because the road is relatively flat, there is
little difference between the original PID and adaptive PID
algorithm of both current ring and speed ring on vehicle speed
and motor torque. On short grass off-road road and high grass
off-road road, due to the large ups and downs of the road,
adaptive PID algorithm through the k, and k; value of the
corresponding reduction, by sacrificing the adjustment time,
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the motor output speed and torque vibration inhibition, can
effectively enhance the stability of speed and torque, so that
it will not overshooting.

Figures b and f show the velocity and current (torque)
waveforms of the unmanned vehicle on a short grass off-
road surface, with the velocity waveform producing a total
of eight oscillations. When the original PID parameters
were used for control, the average oscillation amplitude was
between 1410-1563 (r/min) and the largest oscillation was the
sixth oscillation, which was between 1274-1772 (r/min). The
adaptive PID algorithm could limit the fluctuation range of
the average oscillation amplitude to 1418-1528 (r/min) and
the maximum oscillation amplitude to 1397-2588 (r/min).
The current produced a total of 8 oscillations with an average
oscillation amplitude between 291-312mA. After control by
the adaptive algorithm, the average oscillation interval was
limited to between 293-308mA and the maximum oscillation
amplitude 287-318mA was limited to between 291-310mA.

Figure ¢ and g show the speed and current (torque)
waveforms of the unmanned vehicle on a high grass off-
road surface. The speed waveform produces a total of
eight oscillations, with the average oscillation amplitude of
1296-1828 (r/min) and the maximum oscillation being the
fourth oscillation with an amplitude of 1186-1904 (t/min).
Using the adaptive PID algorithm, the average speed oscil-
lation can be limited to 1294-1537 (r/min) and the maximum
speed oscillation amplitude is limited to 1276-1537 (r/min).
As the road undulates when the unmanned vehicle is on a high
grass off-road surface, which has a large impact on the motor
current (torque), it is difficult to record the number of torque
oscillations, so only the maximum motor current (torque)
amplitude is analyzed and the maximum current oscilla-
tion amplitude is reduced from the original 260-361mA to
279-309 mA by the adaptive PID algorithm.

Figure d and h are waveforms of the unmanned vehicle
driving on a sandy road surface. Since the sandy road surface
material is soft and the terrain is extremely changeable, it is
difficult to record the number of sudden changes in motor
speed and current (torque) in the experiment, so only the
maximum oscillation value amplitude of both is described.
In the original PID algorithm, the maximum oscillation
of speed was 1365-1597 (r/min), which was deducted to
1374-1556 (r/min) by the adaptive algorithm. In the orig-
inal PID algorithm, the oscillation of the current (torque)
is 285-321mA, while with the adaptive algorithm, the oscil-
lation is suppressed to 291-306 mA.

According to the above analysis, the method proposed
in this paper can enhance the stability of the vehicle under
different road surfaces.

V. CONCLUSION

There are two main problems addressed in this paper, that
is, how to identify the road attributes of the current driving
of the unmanned vehicle and how to establish a reasonable
control method according to the road attributes currently
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identified. Therefore, the main contributions of this paper can
be summarized as follows:

(1) Considering the poor real-time and weak anti-
interference performances and limited road recognition abil-
ity of a single sensor, this paper proposes to sample the
roll angle and pitch angle of the unmanned vehicle driv-
ing on different roads by gyroscope sensors (IMU), record-
ing the shaking information. The speed information of the
left and right wheels is sampled through the motor speed
sensor (motor encoder), recording the driving status of
the unmanned vehicle. In this way, not only the off-road
pavement with large fluctuation can be identified, but also
the sandy pavement with small fluctuation and high slip
rate can be well identified, with the overall recognition rate
reaching 98%.

(2) A multi-loop adaptive PID control system is proposed.
The system uses the speed loop as the outer loop and the
torque loop (current loop) as the inner loop. The fuzzy PID
algorithm is used for the speed loop and for the torque loop,
the segmented PID algorithm is utilized to achieve the effect
of stable driving on different road surfaces.

The feasibility and effectiveness of the stability control
method for vehicles operating on unstructured roads, as pro-
posed in this study, have been demonstrated. Furthermore,
the increasing focus on unstructured surfaces in future smart
agriculture and military technology highlights the importance
of developing effective motion control methods for UGVs.
Therefore, this research provides a foundation for further
studies on UGV motion control on unstructured roads. How-
ever, some limitations should be noted, primarily in two
aspects:

(1) Currently, the road recognition results are solely
employed in the current loop for motor torque control, which
has produced particularly noticeable effect. In future studies,
the road attributes can be applied to speed control, enabling
the implementation of diverse speed limits for different road
surfaces to ensure secure and stable traversal of off-road
terrains by the vehicles.

(2) To enhance the clarity of the experimental results, the
test vehicle used in this study did not utilize a suspension
system for mechanical damping. In real-world engineering
projects, independent suspension systems are extensively
adopted. Therefore, in future research, mechanical damping
can be combined with the aforementioned motor control
damping to conduct an integrated analysis and determine the
optimal control method.
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