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ABSTRACT The goal of privacy-preserving social graph publishing is to protect individual privacy while
preserving graph utility. Node nearest neighbor structure is a crucial social graph utility as it is the basis
for many graph analysis tasks. Most existing methods with differential privacy focus on preserving degree
distribution yet neglect the maintenance of connections between nodes’ neighbors. Moreover, they require
massive noise added to mask the change of a single edge, thereby rendering poor utility on the neighbor
structure. As a result, it is tough to preserve high utility on the neighbor structure under differential
privacy. To tackle these problems, we propose Priv-NNS, a private graph publishing algorithm to preserve
the neighbor structure while guaranteeing individual privacy. This algorithm first decomposes a graph
into subgraphs via extracting a nearest neighbor structure around each node. Then to yield node vectors
satisfying differential privacy while preserving the neighbor structure, we design a private graph encoding
approach with structure-awareness, which learns topological features of the subgraph by maximizing the
co-occurrence probability among nodes. During this process, a novel objective perturbation approach with
a random term, only requiring a scalar noise rather than a vector noise, is devised to balance the neighbor
structure retained against the noise injected. Through formal privacy analysis, we prove that the yielded
synthetic graph obeys ε-edge differential privacy. Experimental results demonstrate that Priv-NNS preserves
high utility on the neighbor structure.

INDEX TERMS Differential privacy, graph publishing, nearest neighbor structure, graph encoding, objective
perturbation.

I. INTRODUCTION
Social graphs model relevant social interactions of individ-
uals in a community and are widely used in social network
analysis. An important data utility of such graphs is rep-
resented as node nearest neighbor structure, which is the
cornerstone in many important graph analysis applications,
such as community detection [1] and influence maximiza-
tion [2]. While the potential benefits of the neighbor structure
are indisputable, direct publication of social graphs poten-
tially results in individual privacy (e.g., node identities) being
revealed from personalized degree values. Therefore, it is
an imperative issue that preserves the neighbor structure
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without leaking individual privacy in privacy-preserving
graph publishing.

Differential privacy [3] is an extensively used statistical
model of privacy as it provides a rigorous mathematical
framework for preserving privacy. Previously, a variety of
works have been proposed for graph publishing under dif-
ferential privacy. The dK-2 [4] and HRG [5] are the two
most prominent ones. Particularly, dK-2 extracts the struc-
ture of a graph into joint degree sequences, and generates
a synthetic graph using the perturbed sequence values.
An alternative solution [6] is presented to further improve
the dK-2 by considering global sensitivity rather than local
sensitivity. Compared with dK-2 based solutions, with a
statistical hierarchical random graph model [7], the HRG
method stores a cluster of nodes via privately estimating the
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connection probabilities among nodes. Despite their success,
two fundamental problems in differentially private graph
publishing remain unsolved. First, whether preserving the
degree sequences or cluster of nodes, most existing methods
essentially maintain the utility with regard to the distribution
in the statistical sense. However, the distribution ignores
the maintenance of connections between nodes’ neighbors.
Second, the existing methods require massive noise added to
mask the change of a single edge. As a consequence, how
to preserve the neighbor structure while obeying differential
privacy inevitably brings new challenges.

Towards this end, we present Priv-NNS, a differential
privacy-based graph publishing algorithm to preserve high
utility on node nearest neighbor structure without compro-
mising individual privacy. More precisely, we first decom-
pose a graph into subgraphs via extracting a nearest neighbor
structure around each node. After that, aiming to generate the
node vectors satisfying differential privacy where the neigh-
bor structure is preserved, we design a private graph encoding
approach with structure-awareness, which learns topological
features of the subgraph via maximizing the co-occurrence
probability among nodes. To reduce the damage caused by
noise in the graph encoding process, a novel objective pertur-
bation approach with a random term, which only requires a
scalar noise rather than a vector noise, is devised to balance
the neighbor structure retained against the noise injected.
Finally, a synthetic graph can be reconstructed by calculating
distances between nodes in noisy vectors. Through formal
privacy analysis, we prove that the generated synthetic graph
satisfies ε-edge differential privacy. Extensive encouraging
experimental results exhibit the superiority and effectiveness
of our proposed private graph publishing method.

The main contributions of our paper can be summarized as
follows:

• We propose Priv-NNS, a privacy-preserving graph pub-
lishing algorithm. It can preserve high data utility on
node nearest neighbor structure and maintain ε-edge
differential privacy simultaneously.

• We design a private graph encoding approach with
structure-awareness to learn topological features of the
decomposed subgraph bymaximizing the co-occurrence
probability among nodes.

• We devise a novel objective perturbation approach with
a random term to reduce the damage of noise in the graph
encoding process. This approach only requires a scalar
noise rather than a vector one and thus balances the
neighbor structure retained against the noise injected.

• Empirically, over real datasets, we demonstrate that
differentially private synthetic graphs generated by
Priv-NNS achieve a significant improvement with
respect to their counterparts, in terms of their ability to
maintain the neighbor structure of the original graphs.

The remainder of this paper is below. Section II reviews
related works. The problem statement and preliminaries are
presented in Sections III and IV, respectively. Our pro-
posed Priv-NNS is described in Section V, followed by

experimental results in Section VI. Finally, the conclusion is
drawn in Section VII.

II. RELATED WORK
When applying differential privacy to graph data [8], [9], two
variants of differential privacy are introduced [10]: in node-
differential privacy, two graphs are said to be neighbors if
one can be obtained from the other by adding or deleting a
node and its adjacent edges; in edge-differential privacy, two
graphs are said to be edge neighbors if one can be obtained
from the other by adding or removing a link connecting
two nodes. Obviously, satisfying node-differential privacy is
much harder than satisfying edge-differential privacy, since
removing one node may cause the removal of |V| − 1 edges
where V is the set of nodes. In comparison, edge-differential
privacy is easy to implement and has a good balance with util-
ity preservation. Due to this reason, most of existing methods
consider edge-differential privacy. In the following sections,
we review previous works with edge-differential privacy on
two directions, namely private graph statistics publishing and
private graph publishing, and discuss how our work differs
from existing works.

A. GRAPH STATISTICS PUBLISHING WITH DIFFERENTIAL
PRIVACY
Degree distribution and subgraph counting queries are two
kinds of statistics that are continually studied in the literature.
Hay et al. [10] consider releasing the degree distribution of a
graph under differential privacy using a constrained inference
technique. The idea is to impose an ordering constraint on the
pre-noise degree sequence, add Laplace noise to the sorted
sequence then post-process the noisy sequence to restore the
order constraint. Subgraph counting queries ask how many
‘‘edge-induced isomorphic copies’’ of a query graph Q (e.g.,
triangle), are present in a graph. Zhang et al. [11] define
the Ladder framework for producing accurate differential
privacy estimates of subgraph counting queries, including
triangles and k-stars. The Ladder framework combines the
concept of ‘‘local sensitivity at distance t’’ [12] with the
exponential mechanism [13]. Shen and Yu [14] consider
finding frequently occurring subgraphs under differential pri-
vacy. Recently, Ahmed et al. [15] present an eigenspectrum
publishing method regarding online social graphs, which
achieves both space efficiency and utility preservation by
reducing adjacency matrix sizes.

Nevertheless, differential privacy requires one to define a
privacy budget in advance, which determines the amount of
perturbation that will be applied to the outputs of algorithms.
Therefore, private graph statistics publishing needs to limit
in advance the number of queries that will be answered or
provides answers of increasingly lower quality. In contrast,
private graph publishing can devote the entire privacy budget
to the capture of the original graph properties, without further
degradation of the privacy of the sampled graphs. For this
reason, we concentrate on differentially private publication
of synthetic graphs in this paper.
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B. GRAPH PUBLISHING WITH DIFFERENTIAL PRIVACY
A few research efforts have been made towards differen-
tially private publication of social graph data. For instance,
Mir and Wright [16] focus on generating representative syn-
thetic graphs via the Kronecker graph model. Their approach
estimates the model parameter from the input graph under
differential privacy. Sala et al.’s Pygmalion model uses the
dK-series of the input graph, which records the distribution
of the pairs of degrees observed on edges [4]. Subsequent
work combined the dK-series model that constructs a syn-
thetic graph via smooth sensitivity [6]. Xiao et al. encode
the structure of a graph via private edge counting queries,
under the hierarchical random graph model, and claim better
results than the dK-series approach [5]. Chen et al. [17] use
the exponential mechanism to sample an adjacency matrix
after clustering the input graph. Proserpio et al. [18] sug-
gest non-uniformly down-weighting the edges of a graph
in order to reduce high global sensitivity due to the pos-
sibility of very high degree nodes. They demonstrate the
approach, combined with MCMC-based sampling, to gen-
erate private synthetic graphs. Although these methods deal
with differentially private publishing of social graph data,
they cannot preserve the utility on node nearest neighbor
structure. This is because the previous works reconstruct
synthetic graphs by privately extracting important statistics
(e.g., degree sequences), and thus retain the utility on the
distribution in the statistical sense. However, statistics ignore
the maintenance of connections between node neighbors.
Moreover, differential privacy prefers to maintain statisti-
cal distribution. However, the neighbor structure does not
completely belong to the statistical distribution, and it is
also characterized as a structural feature. Therefore, it is a
challenging issue to preserve the neighbor structure simulta-
neously meeting differential privacy. Very recently, Gao and
Li [19] propose a private scheme to preserve both the adja-
cency matrix and persistent homology, where the persistent
structures are in the form of holes. Yet, a high-dimensional
hole exists only if the low-dimensional surface is complete,
which potentially limits this scheme’s ability to maintain high
data utility.

In recent years, there has been widespread use of spec-
tral methods based on matrix eigenvectors for community
detection. In light of this, certain private graph publish-
ing algorithms [20], [21] have been developed to maintain
the spectrum of the original graph, thereby retaining the
community structure. In a similar vein to [20] and [21],
Elias et al. [22] devise a method to capture the commu-
nity structure by privately approximating all cuts of the
input graph. While these proposed algorithms can preserve
the neighbor structure to some extent, they only achieve
(ε, δ)-differential privacy, which is a less stringent version of
ε-differential privacy. Our work, on the other hand, differs
from these approaches by focusing specifically on preserv-
ing the node nearest neighbor structure while satisfying
ε-differential privacy.

TABLE 1. Frequently used symbols.

As a summary, how to maximize the utility on node
nearest neighbor structure while protecting individuals with
edge-differential privacy in published graphs remains open in
the literature.

III. PROBLEM STATEMENT
Throughout this work, we investigate the following setup.
A data holder wishes to publicly release an undirected graph
G = (V, E), with no additional labels on nodes and edges.
Meanwhile, the data holder, wishing to prevent the individ-
ual privacy leakage caused by personalized degree values
in the released graph as well as preserve high utility on
nearest neighbor structure, seeks a graph release mecha-
nism that obeys the definition of ε-edge differential privacy.
To tackle this problem, we first decompose a graph into
subgraphs via extracting a nearest neighbor structure around
each node, and then design a private graph encoding approach
with structure-awareness to learn topological features of the
subgraph. Along the way, a novel objective perturbation
approach is designed to achieve differential privacy. For clar-
ity, the process of privately releasing graphs is shown in
Figure 1. After deriving the processed graph, the analyst can
perform graph analysis tasks, including but not limited to the
analysis on node nearest neighbor structure.

IV. PRELIMINARIES
In this section, we briefly review the concept and some
important properties of differential privacy and Skip-gram
model for word representation learning, which are impor-
tant for understanding the proposed Priv-NNS method.
Table 1 summarizes the mathematical notations frequently
used throughout this paper.

A. DIFFERENTIAL PRIVACY
Differential privacy has gradually emerged as the de-facto
principle for individual privacy protection in data release.
It provides a strong privacy guarantee to ensure that the output
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FIGURE 1. Pipeline of proposed Priv-NNS method.

of a computation is insensitive to the changes in any individ-
ual’s record in the dataset. Thus, the privacy can be protected
for the individuals contained in the database. Differential
privacy is based on the notion of neighboring datasets.
Definition 1: (edge-differential privacy [10]) A graph

analysis mechanism A maintains ε-edge differential privacy
for any input pair of neighboring graphs G and G′, where G
and G′ differ by at most one edge, and for any possible output
set, �, if A satisfies:

P[A(G) = �] ≤ exp(ε) × P[A(G′) = �],

where the parameter ε denotes the privacy level and smaller
values indicate a stronger privacy guarantee.
Laplace Mechanism: One way to satisfy differential pri-

vacy is to add noise to the output of a query. In the Laplace
mechanism [3], to publish f (G) where f : G → Rd while
satisfying ε-edge differential privacy, one publishes

A(G) = f (G) + Lap(
Sf (G)
ε

)d ,

where Sf (G) = max
G,G′

∥f (G) − f (G′)∥1 is the global sensi-

tivity of the quality function. P [Lap (β) = x] =
1
2β e

−|x|/β ,
in which β = Sf (G)/ε.

In addition, differential privacy also features the following
main properties that are utilized in implementing Priv-NNS.
Theorem 1: (Composition rule [23]) If A1 is

ε1-differentially private, and A2 is ε2-differentially private,
then (A1 ◦A2) is (ε1 + ε2)-differentially private.
Theorem 2: (Post-processing [23]) IfA is an ε-differential

privacy algorithm and B is an arbitrary data-independent
mapping, then B ◦A is also ε-differentially private.

B. LEARNING REPRESENTATIONS
Word2Vec [24] is one of the most well-known word rep-
resentation learning methods, the target of which is to
convert words into a low-dimensional continuous vector
space in which semantically similar words are mapped to
nearby points. Furthermore, word vectors can be utilized for
answering analogy questions via leveraging simple algebra
operators, e.g., the closest vector to ‘‘China’’ + ‘‘capital’’ is
found to be ‘‘Beijing’’.

Word2Vec leverages a simple and elegant model to learn
word representations, called Skip-gram. In order to learn
a word’s representation, Skip-gram first employs a sliding
window on the input text stream, in which the center word
is called the target word and its surrounding words are called
context words. Then, it utilizes the representation vector of
the target word to predict the representation vector of each
individual context word. More to the point, given a sequence
of words w1,w2, . . . ,wT , the target word wt whose represen-
tation needs to be learned, and the window sizeC , the training
objective of Skip-gram is to maximize the log probability of
predicting the context words wt−C , . . . ,wt+C which appear
nearby the target word wt :

max
T∑
t=1

logP (wt−C , . . . ,wt+C | wt) . (1)

To make the optimization problem easy to handle, it is
assumed that the context words and the target word are
independent (i.e., the likelihood of observing a context word
is independent of observing any other context words given
the target word). The probability P (wt−C , . . . ,wt+C | wt) is
calculated as:

P (wt−C , . . . ,wt+C | wt) =

∏
−C≤c≤C,c̸=0

P (wt+c | wt) .

With the above assumption, the objective in Equation (1)
can be simplified:

max
T∑
t=1

∑
−C≤c≤C,c̸=0

logP (wt+c | wt) .

In addition, P (wt+c | wt) is defined via softmax function:

P (wt+c | wt) =
exp (wt+c · wt)∑V
i=1 exp (wi · wt)

, (2)

in which wt+c and wt denote representation vectors of words
wt+c and wt , and V denotes the number of words in the
vocabulary (i.e., the vocabulary size).
Negative Sampling: Equation (2) is computationally very

expensive provided that the vocabulary contains plenty of
words. Negative sampling [24] is an efficient solution to
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handle this issue. Rather than leveraging all words in the
vocabulary, negative sampling randomly chooses a relatively
few words that are not in the context of the target word (these
words are referred to as negative samples). Then, negative
sampling attempts to distinguish the target word from the neg-
ative samples via utilizing a binary classification objective of
logistic regression. After that, negative sampling guarantees
that if a wordw appears in the context of another wordw′, then
the representation vector of w is closer to that of w′ compared
with those of negative samples.

V. THE PROPOSED PRIV-NNS SOLUTION
In this section, we elaborate the design of Priv-NNS, a graph
publishing algorithm with edge-differential privacy to retain
high utility on node nearest neighbor structure and ensure
individual privacy simultaneously.

A. OVERVIEW OF PRIV-NNS
Before presenting the details, we first give an overview of our
method. The target of our work is to release a sanitized graph
G̃ that approximates the true node nearest neighbor structure
of the original graph G as closely as possible while satisfying
ε-edge differential privacy.

The steps of Priv-NNS may be summarized as:
(1) Subgraph labeling: The first step extracts a sub-

graph around each target node as its neighborhood
and then encodes this neighborhood based on the
Weisfeiler-Lehman algorithm [25], [26]. The goal of the
encoding is to assign subgraphs of similar structure with
similar numerical vectors as representation.

(2) Private graph encoding: The second step aims to pri-
vately map nodes into vectors while preserving the
neighbor structure. Specifically, given one neighbor-
hood, we consider its node labels in each iteration as
a sequence. Then, considering all neighborhoods in
G, we include all sequences together to form a ‘‘cor-
pus’’, where each label is like a ‘‘word’’ and each
sequence is like a ‘‘sentence’’. With this analogy in
mind, we develop private Word2Vec model by perturb-
ing the objective function and then utilize this model on
the corpus to obtain node vector of each label. Finally,
neighborhood encoding can be obtained by averaging
the label vectors in the neighborhood.

(3) Synthetic graph generation: Finally, we reconstruct a
synthetic graph via calculating distances between nodes
in the generated noisy vectors.

In the rest of this section we discuss and justify each step of
Priv-NNS, the pseudocode of which is given in Algorithm 1.

B. SUBGRAPH LABELING
To learn structural role of target individual u, we first intro-
duce neighborhood of u, i.e., the subgraph that encloses u.
Definition 2: (Nearest neighborhood) For an undirected

graph G = (V, E), given a target individual u, the neighbor-
hood of u is the subgraph Ghu induced from G by the set of

Algorithm 1 Priv-NNS Algorithm
Require: graph G; number of iterations iter ; privacy budget

ε; number of epochs to train the neural network e; learn-
ing rate η; dimension d ; negative sampling number K .

Ensure: synthetic graph G̃ with ε-edge differential privacy.
1: // Subgraph labeling
2: for each target node u in G do
3: Extract neighborhood Gu from G for u
4: for each node v in Gu do
5: Label v with initialization, that is label(0)[v], and

form amultisetmul(0)[v] = {label(0)[w]|(w, v) ∈ E}

6: end for
7: for i iterates from 1 to iter do
8: for each node v in Gu do
9: Assign v with a new label sig(i)[v] that reflects its

previous label label(i−1)[v] and the multiset of its
neighbors mul(i−1)[v]

10: end for
11: Sort nodes in ascending order of sig(i)[v]
12: Update label(i)[v] and mul(i)[v]
13: end for
14: end for
15: // Private graph encoding
16: Initialize X = [xij]|L |×d with xij ∼ N (0, 0.01)
17: for i iterates from 1 to e do
18: for label in corpus do
19: for context in context-window do
20: // Objective perturbation
21: O(X) = − logP(v|u) + Lap( Sf (G)

ε
) // see

Algorithm 2 for details
22: Xnew

= Xold
− η

∂O(X)
∂X

23: end for
24: end for
25: end for
26: // Neighbor structure encoding
27: for each target node u in G do
28: Generate xnnsu via averaging the label vectors in the

nearest neighbor structure
29: Add xnnsu intoM
30: end for
31: // Synthetic graph generation
32: Generate a synthetic graph G̃ via calculating distances

between nodes inM // see Section V-D for details
33:

34: return G̃

nodes Vu = {v | v ∈ V, d(v, u) ≤ h} where d(v, u) is the
shortest distance from v to u, and h is a user-defined threshold.
The purpose of using different labels to mark nodes’ different
roles in an enclosing subgraph is to assign subgraphs of
similar structure with similar numerical vectors as repre-
sentation. A simple way to represent topological structure
is to leverage graph isomorphism test, that is, isomor-
phic neighborhoods should be tightly encoded together.
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Nevertheless, because graph isomorphism is proved to be NP-
hard, theWeisfeiler-Lehman algorithm is applied, whose core
is to decompose a neighborhood into its subtree patterns, and
neighborhoods with similar patterns could be assigned with
similar representations. For this, it iteratively labels a neigh-
borhood leveraging the following node coloring process.
(1) Initially, the algorithm colors target node u and other

nodes Gu according to their shortest path distances to
u, i.e., label(0)[v] = dist(v, u). Then, for each node in
Gu, it collects a multi-set mul(0)[v] that consists of its
neighbors’ labels,

mul(0)[v] =

{
label(0)[w] | (w, v) ∈ E

}
, (3)

in which the labels in mul(0)[v] are sorted in ascending
order.

(2) In the i-th iteration, the algorithm assigns every node
v with a new label, which reflects its previous label
and the multiset of its neighbors. Particularly, it defines
signature of v by concatenating v’s label label(i−1)[v]
with mul(i−1)[v], i.e.,

sig(i)[v] =

{
label(i−1)[v] | mul(i−1)[v]

}
. (4)

It utilizes set comparison to sort the nodes based on their
signatures: sig [v1] < sig [v2] if and only if label [v1] <
label [v2] or ∃l,mul [v1] [l] < mul [v2] [l],∀j <

l,mul [v1] [j] = mul [v2] [j]. After sorting, it assigns a
new label label(i)[v] to each node in which nodes with
the same signature are assigned the same label, and
updates mul(i)[v] accordingly.

(3) Provided that the node labels are stable or reach a pre-
defined number of iterations, the algorithm terminates.

As a summary, the Weisfeiler-Lehman based subgraph
labeling iterates over each node and its neighbors in the cause
of creating a multiset label. The resulting multiset is given a
new label, and then it is utilized for the next iteration. There-
fore, multiset labels that belong a given iteration iter can be
regarded as co-occurred for purpose of partially preserving a
notion of similarity.

C. PRIVATE GRAPH ENCODING
In this section, we aim to generate the node vectors that
meet edge-differential privacy while preserving high utility
on node nearest neighbor structure. In particular, we privately
encode u’s nearest neighbor structure based on its labeling
results and produce a numerical vector xu satisfying differen-
tial privacy as its representation. For clarity, in what follows,
we first leverage an example to display how we extend the
word representation learning to graph structure learning, and
then present a novel objective function perturbation.

1) REPRESENTATION LEARNING-BASED ENCODING
Given one neighborhood, we regard its node labels in each
iteration as a sequence. Then, considering all neighborhoods
in G, we include all sequences together to form a ‘‘corpus’’,
in which each label is like a ‘‘word’’ and each sequence is

FIGURE 2. Illustration of neighborhood labeling.

like a ‘‘sentence’’. With this analogy in mind, we develop the
Word2Vec model with objective perturbation and then utilize
this model on the corpus to obtain node vector of each label.
Finally, neighborhood encoding can be reaped by averaging
the label vectors in the neighborhood.
Example 1: Figure 2 shows an example of the algorithm.

It initializes node labels according to their distances to
target individual u (the blue node), and collects mul-
tisets of their neighbor labels. Labeling-based encod-
ing, two sequences ⟨1−1, 1−2, 1−2, 1−3, 1−3, 1−4⟩ and
⟨2−1, 2−2, 2−2, 2−3, 2−3, 2−4⟩ are generated, where each
label, say 2−1, represents that a node is labeled with 1 in the
second iteration. Then, it trains label representations based
on the sequences to maximize preserving the connection
probabilities between nodes.
Formally, given ui, the probability of predicting vj is defined
by a softmax function, that is:

P
(
vj | ui

)
=

exp
(
vj · ui

)∑V
k=1 exp (vk · ui)

, (5)

where vj and ui are representation vectors of the nodes vj and
ui, and the vocabulary size V is simply the number of all
unique vocabs in the corpus (i.e., V = |L |). vj and ui are
illustrated in Figure 3.

Calculating Equation (5) often results in unaffordable time
and memory consumption since V is normally very large.
To solve this problem, we approximate it using negative
sampling proposed in Skip-gram (see Section IV-B). The idea
is that instead of V times for every label in the vocabulary,
we randomly select a relatively small number of vocabs in
the corpus that are not contained in the target graph whose
representation vector needs to be learned, to optimize the
following objective function:

min
u,v

L(X) = − log σ
(
vpos · u

)
−

∑
vneg∈Xneg

log σ
(
−vneg · u

)
,

(6)

where σ (x) =
1

1+e−x is a sigmoid function,Xneg = {vneg,j|j =
1, · · · ,K } is the negative sample collection, vneg is a neg-
ative sample drawn from Xneg for K times, and vj is the
vector representation of vj. We optimize Equation (6) using
stochastic gradient descent where the gradients are derived
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FIGURE 3. Neural network structure of Skip-gram. Current center label is ‘‘label 2’’.

as follows:

∂L(X)
∂vj

=
(
σ

(
vj · u

)
− tj

)
· u,

∂L(X)
∂u

=

∑
vj∈{vpos}∪Xneg

(
σ

(
vj · u

)
− tj

)
· vj, (7)

where tj = 1 for positive labels (vj = vpos) and tj = 0 for
negative labels (vj = vneg ∈ Xneg). vj is the j-th label vector
in the output matrix (vj ∈ Xout ).
After the learning process is completed, the representation

vectors of two nodes ui and uj are close to each other if they
are composed by similar subgraphs.
Remark 1: In Figure 3, a natural question is, why do we

predict context labels? It is worth noting, here, that the ulti-
mate goal of Skip-grammodel is not to predict context labels,
but to learn intelligent vector representation of labels. It just
happens that predicting context labels inevitably results in
good vector representations of labels, because of the neural
network structure of Skip-gram. Neural network at its essence
is just optimizing the weight matrix X = [Xin Xout ] to
correctly predict output. In Word2Vec Skip-gram, the weight
matrix is, in fact, the vector representations of labels. There-
fore, optimizing the weight matrix is equivalent to good
vector representations of labels.
In fact, both Xin and Xout can be used as label vectors.
However, Xin is usually used, because the function of Xout
can be replaced by other network structures when used for
some other downstream tasks, in which case, Xout does not
exist. For scalability, in this paper, we utilize Xin as label
vectors. After that, we encode u’s nearest neighbor structure
via averaging the label vectors in the neighbor structure, and
then produce a numerical vector xnnsi as its representation.
For simplicity, the generated final node vectors {xnnsi }

|V |

i=1 is

represented as M. In what follows, from a privacy perspec-
tive, we introduce in detail how to make M satisfy ε-edge
differential privacy.

2) OBJECTIVE FUNCTION PERTURBATION
In this section, we aim to ensure that the generatedM satisfies
ε-edge differential privacy. It is worth mentioning, here, that
the Theorem 2, a proof of which can be found in [23], allows
us to move the burden of differential privacy to the X; the
differential privacy of theM will follow by the theorem.
To reflect our contribution, we first introduce two first-cut

approaches to make Xin satisfy ε-differential privacy. The
main ideas are to utilize random noise vectors drawn from
Laplace distribution to perturb the gradient and the objective
function. After that, we introduce our proposed method in
details.

a: FIRST-CUT APPROACHES
To ensure that Xin satisfies differential privacy, a natural but
naive approach is to inject noise into each gradient, that is

u = u − η
[∑ (

σ
(
vj · u

)
− tj

)
vj + N

]
, (8)

where N ∼ Lap( Sf (G)
ε/iternum )

d is a vector noise. In particular,
for a fixed ε, as the number of iteration, iternum, increases,
the privacy budget at each iteration decreases, and hence, the
variation in a noisy gradient becomes larger, which makes
the gradient optimization algorithm difficult to converge.
Thus, this algorithm requires a large number of iterations to
search the output results with high utility, but may lead to
unpredictable error accumulation.

Some alternative solutions from [27], [28], and [29], which
uses the objective perturbation to make sure that the final
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Algorithm 2 Objective Perturbation
1: for context in context-window do
2: e = 0
3: for each vj ∈ {vpos, vneg,1, · · · , vneg,K } do
4: q = σ

(
vj · u

)
5: g = η

(
q− tj

)
6: // add scalar Laplace noise
7: e = e + (g+ ηN )vj
8: vj = vj − gu
9: end for

10: u = u − e
11: end for

output satisfies differential privacy, can mitigate the short-
coming of gradient perturbation to a certain extent. Along the
way, the differentially private objective function is shown as
Equation (9).

min
u,v

L̃ (X) = −
[
log σ

(
vpos · u

)
+ N · u

]
−

∑
vneg∈Xneg

log σ
(
−vneg · u

)
, (9)

where N is the Laplace noise vector corresponding to
the vector u. Then, the update rule about u is shown as
Equation (10).

u = u − η
∑ [(

σ
(
vj · u

)
− tj

)
vj + N

]
, (10)

where N ∼ Lap( Sf (G)
ε

)d . Although this method does not
require partition for ε, it still puts a vector of noise into the
learning process of vj, potentially resulting in poor utility.

b: OUR APPROACH
To cope with these issues, we change the Equation (9) to the
following one for each edge (i, j) by injecting the Laplace
noise.

L̃ (X) = −
[
log σ

(
vpos · u

)
+ N vpos · u

]
−

∑
vneg∈Xneg

log σ
(
−vneg · u

)
, (11)

where N is a scalar noise drawn from Laplace distribution,
that is N ∼ Lap(Sf (G)/ε).

The proposed objective perturbation has two benefits:
(1) regardless of the number of iterations, the overall error is
controllable, thereby avoiding the unpredictable error accu-
mulation, and (2) instead of the vector noise injection, it only
requires a scalar noise and thus can balance the related fea-
tures retained against the noise injected. The optimization
process with differential privacy is presented in Algorithm 2.
Remark 2: In the line 5 of Algorithm 2, σ

(
vj · u

)
− tj

is called a prediction error. Recall that negative sampling
attempts to maximize the probability of observing positive
pairs P(vpos|u) → 1 while minimizing the probability of
observing negative pairs p(vneg|u) → 0. If good label vec-
tors are learned, σ (vpos · u) ≈ 1 for positive pairs, and

σ (vneg · u) ≈ 0 for negative pairs. The prediction error
will gradually approach zero σ

(
vpos · u

)
− tj ≈ 0, as the

model iterates through the training samples (positive pairs)
and optimizes the weights. It is easy to observe that missing
one edge will influence the tj that is directly related to the
calculation of global sensitivity. Thus, we can derive the
following theorem.
Theorem 3: If each N ∼ Lap( Sf (G)

ε
), then the obtained

Xin obeys ε-edge differential privacy.
Proof: Let G and G′ be two neighboring graphs which

differ in a single edge.
P [Xin = ♭ | G]
P [Xin = ♭ | G′]

=
P

[
u1 = ♭1,u2 = ♭2, . . . ,u|L | = ♭|L | | G

]
P

[
u1 = ♭1,u2 = ♭2, . . . , x|L | = ♭|L | | G′

]
=

∏|L |

i=1 P [ui = ♭i | G]∏|L |

i=1 P [ui = ♭i | G′]
=

P [ux = ♭x | G]
P [ux = ♭x | G′]

=
P

[
ux − η ·

∑ [(
σ (vj · u) − tj

)
· vj + N vj

]
= ♭x | G

]
P

[
ux − η ·

∑ [(
σ

(
vj · u

)
− t ′j

)
· vj + N vj

]
= ♭x | G′

]
=

P[
∑

(ηN vj) = ux−♭x−η
∑ [(

σ
(
vj · u

)
−tj

)
· vj

]
| G]

P[
∑

(ηN vj) = ux−♭x−η
∑ [(

σ
(
vj ·u

)
−t ′j

)
·vj

]
| G′]

(1)
=

P[N =

f (G)︷ ︸︸ ︷
(ux−♭x) η−1∑

vj
−

∑ [(
σ

(
vj · u

)
−tj

)
· vj

]∑
vj

| G]

P[N =
(ux − ♭x) η

−1∑
vj

−

∑ [(
σ

(
vj · u

)
−t ′j

)
· vj

]
∑

vj︸ ︷︷ ︸
f (G′)

| G′]

≤ e
ε|f (G)−f (G′)|

Sf (G) ≤ eε,

where step (1) holds because the noiseN is taken as the same
value for each iteration (lines 3-9 in Algorithm 2).
In what follows, we show the upper bound of Sf (G) =

max |f (G) − f (G′)|, which will be utilized for injecting noise
into the objective function.
Lemma 1: The global sensitivity of the utility function f ,

Sf (G), is max |f (G) − f (G′)| ≤ 1.
Proof: Sf (G) is the maximum change in f (·) in the output

space if one edge is missing. We have:

|f (G) − f (G′)|

=

∥∥∥∥∥∥
∑ [(

σ
(
vj · u

)
− tj

)
· vj

]∑
vj

−

∑ [(
σ

(
vj ·u

)
−t ′j

)
· vj

]
∑

vj

∥∥∥∥∥∥
2

≤ 1,

where the last inequality follows since t ′j − tj ≤ 1.

D. SYNTHETIC GRAPH GENERATION
Recall that theM = {xnnsi }

|V |

i=1 is able to preserve node nearest
neighbor structure because xnnsi is reaped by averaging the
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label vectors in the neighbor structure.Moreover, if two nodes
share many common neighbors in social graphs, they tend to
be similar. This assumption has proved to be reasonable in
many fields [30], [31]. Thus, we are able to capture the degree
of correlation between nodes based on M. In this paper,
a unified model for learning a graph in [32] is employed to
synthesize social graphs, that reads as follows:

min
W∈W

∥W ◦ Z∥1,1 − α1⊤ log(W1) +
β

2
∥W∥

2
F , (12)

where Zij =
∥∥xi − xj

∥∥2, ∥A∥1,1 is the elementwise norm-1
of A, ◦ denotes the Hadamard product. The first term of
Equation (12) is equal to tr

(
M⊤LM

)
, where L = D − W

is the graph Laplacian, D = diag(W1), 1 = [1, . . . , 1]⊤, and
M ∈ R|V |×d

= [x1, . . . , x|V |]⊤. The optimization is over the
setW of valid adjacency matrices (non-negative, symmetric,
with zero diagonal).
Remark 3: The smoothness term is a weighted ℓ-1 norm

of W, encoding weighted sparsity, that penalizes edges con-
necting distant rows of M. The interpretation is that when
the given distances come from a smooth manifold, the cor-
responding graph has a sparse set of edges, preferring only
the ones associated to small distances in Z. In fact, as stated
in [32], the separate rows of M do not have to be smooth
signals. Two non-smooth signals xi, xj can have a small
distance between them, and therefore a small entry Zij.
According to [32], the problem can be rewritten as a sum
of three functions in order to fit it to primal dual algorithms
reviewed by [33]. The general objective form is

min
w
f1(w) + f2(ξw) + f3(w), (13)

with

f1(w) = I{w ≥ 0} + 2w⊤z,

f2(v) = −α1⊤ log(v),

f3(w) = β∥w∥
2,with ζ = 2β,

in which I{condition} = 0 if condition holds, ∞ otherwise,
f2 is defined on the dual variable v = ξw where ξ is the
linear operator that satisfiesW1 = ξw, and ζ is the Lipschitz
constant of f3.

E. PRIVACY AND COMPLEXITY ANALYSIS
1) PRIVACY ANALYSIS
In this section, we formally prove that the yielded synthetic
graph obeys ε-edge differential privacy.
Theorem 4: Priv-NNS algorithm satisfies ε-edge differen-

tial privacy.
Proof:Aswe proved in Theorem 3, the node vectors rep-

resented as matrix Xin maintain bounded ε-edge differential
privacy. Recall that the postprocessing property (see Theorem
2) of differential privacy states that any operation performed
on the output of a differential privacy-based algorithm, with-
out accessing the raw data, remains differential privacy with
the same level of privacy. Therefore, Priv-NNS algorithm
obeys ε-edge differential privacy.

2) COMPLEXITY ANALYSIS
Here we analyze the computational complexity of each step
of Priv-NNS.

(1) Subgraph labeling: The time complexity of this
algorithm isO(iter|V|(mh+nh)) wheremh and nh are respec-
tively edge number and node number in a neighborhood with
parameter h and iter is the number of iterations in neighbor-
hood labeling.
(2) Private graph encoding: The time complexity of

Skip-gram with negative sampling is O(K |V|).
(3) Synthetic graph generation: In graph generation, all(

|V |

2

)
possible edges between |V| nodes are considered, that

results in a cost of at leastO(|V|
2) computations per iteration.

After T iterations, the time complexity of synthesizing graphs
is O(T |V|

2).
Thus the total complexity isO(iter|V|(mh + nh)+K |V| +

T |V|
2).

VI. EXPERIMENTS
Because node nearest neighbor structure is the cornerstone
in many graph analysis applications, such as community
detection [1] and influence maximization [2]. Hence, in this
section we investigate the neighbor structure preservation
of synthetic graphs by two application utility metrics: com-
munity detection and influence maximization. Moreover, six
basic characteristics in social graphs, namely average degree,
power law exponent, triangle count, characteristic path length
and clustering coefficient, are employed to further confirm
Priv-NNS’s performance.

A. EXPERIMENTAL SETUP
1) DATASETS
To comprehensively evaluate our proposed method, we con-
duct extensive experiments on the following six real graph
datasets from different application domains:

• Arenas Email [34]: This dataset is a communication
network with 1,133 nodes and 5,451 edges.

• Cora [35]: It is a typical paper citation network with
2,211 nodes and 5,001 edges.

• PPI [36]: It is a protein-protein interaction network with
3,890 nodes and 38,739 edges.

• Powergrid1: This dataset is an electrical grid of western
US with 4,941 nodes and 6,594 edges.

• p2p-Gnutella2: This dataset is an internet peer-to-peer
network with 6,301 nodes and 20,777 edges.

• DBLP [37]: This dataset is a collaboration network with
12,591 nodes and 49,743 edges.

2) COMPARED METHODS
We compare ours with the Original (non-private Priv-
NNS), and five differentially private graph publishing
algorithms, namely two well-known algorithms dK-2 [6],
HRG [5], and three recently proposed algorithm PHDP [19],

1http://konect.uni-koblenz.de/
2http://snap.stanford.edu/data/index.html
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DPGGAN [38] and DPGVAE [38]. It is worth mentioning,
here, that the dK-2 proposed in [4] is based on local sensi-
tivity, and thus does not provide differential privacy. Hence,
we compare with an improved scheme [6] under a more
relaxed privacy notion, that is, (ε, δ)-differential privacy. Such
scheme further improves the work of Sala et al. [4] by consid-
ering global sensitivity instead of local sensitivity.

3) PARAMETER SETTINGS
For all datasets, we vary the privacy budget ε ∈

{0.1, 0.2, 0.4, 0.8, 1.6, 3.2} for all the private methods.
Regarding dK-2, it uses the smooth sensitivity [12] to reduce
large noise injection. Adding noise based on smooth sensi-
tivity requires two necessary parameters ϕ and ψ related to ε
and δ in which ϕ =

ε
2 and ψ =

ε
4(d+ln(2/δ)) . Following [6],

we keep δ = 0.01 for dK-2. With regard to HRG, it consumes
privacy budgets in sampling the dendrogram and computing
noisy connection probabilities. With a fixed privacy budget ε,
we assign ε1 = 0.5ε for sampling the dendrogram and ε2 =

0.5ε for computing noisy connection probabilities, because
this allocation has been experimentally demonstrated in [5],
which can achieve high utility across different utility metrics.
As for Priv-NNS, the value of parameter h is set as 2, the
number of epochs to train the neural network e is set as 1.5×

103, and the negative sampling K is set as 5, which has been
proved experimentally in [24] that this value is applicable to
both small datasets and large datasets. Also, the dimension
d of representations is set as 128 for all the datasets and the
learning rate is η = 1×10−3. For graph reconstruction, we set
the threshold α = β = 1 where the settings theoretically find
to work well in [32], and set maximum number of iterations
T = 4×103 for optimizing the objective function in Eq. (13).
For DPGGAN and DPGVAE, their parameter settings follow
those in the original models.

4) GRAPH STATISTICS
To demonstrate the connection between preserving nearest
neighbor structure and graph utility, the performance of pub-
lished graph under utility metrics is compared. As shown
in Table 2, the evaluation includes two application utility
metrics, the community detection and the influence maxi-
mization, and six graph utility metrics.

Here C is the community partition of G. ℓC is the number
of edges between the nodes in C and dC is the sum of degrees
of the nodes in C . Given a diffusion modelM and a positive
integer k , influence maximization selects a set S∗ of k users
from V as the seed set to maximize the influence spread
σG,M (S∗), i.e., σG,M (S∗) = argmaxS⊆V∧|S|≤k σG,M(S).
d(v) indicates the degree of node v and dmin denotes the
minimum degree in a graph. d̂ is the sorted list of degrees
in the graph. n△ is the number of triangles in G and nW is the
number of wedges (i.e., length two paths) in G.

5) EVALUATION METRIC
We compare the performance of Priv-NNS to four baselines
on eight utility metrics over all datasets. We measure the

TABLE 2. Graph statistics used to measure graph properties.

accuracy of each method by the mean relative error
(MRE) [39], which is given as follows:

MRE =
1

|A|

∑
Ai∈A

∣∣∣Âi(G) −Ai(G)
∣∣∣ /|Ai(G)|,

where Ai(G) is the true aggregation result for one query, and
Âi(G) is the differentially private aggregation result. A low
MRE indicates a low error and, thus, a better data utility. For
each result reported, we repeat each experiment 50 times to
get the average values.

B. UTILITY ANALYSIS
1) COMMUNITY DETECTION
Community detection technology, which aims to identify
subgraphs with dense internal connections compared to exter-
nal connections, has received significant attention. In our
experiments, we utilize the state-of-the-art community detec-
tion algorithm Louvain [40] to obtain the optimal partition.
We then evaluate the similarity of the community structures
found by Louvain in the original graph G and the perturbed
graph G′ using the modularity score. From the analysis of
Figure 4, the key observation is that the graphs sampled from
our Priv-NNS consistently exhibit the most similar commu-
nity structure to their corresponding original graphs. This can
be attributed to the fact that Priv-NNS preserves the neighbor
structure by optimizing the utility-privacy tradeoff. In con-
trast, the synthetic graphs generated by all the compared
methods for the six datasets suffer from a more pronounced
degradation as the amount of added noise increases with the
number of nodes.

2) INFLUENCE MAXIMIZATION
Influence maximization is a crucial algorithmic problem in
social influence analysis, where a set of k users (known
as seed set) is selected from a social network to maximize
the expected number of influenced users (called influence
spread). In our evaluation, we employ a cost-effective lazy
forward algorithm [41] based on the independent cascade
model [42] to select ten seed nodes with the highest infor-
mation broadcasting ability. We then compare the percentage
of influenced users across different anonymized graphs, all
having the same propagation probability of 0.1. Figure 5
illustrates the Mean Relative Error (MRE) of the expected
spread by seed set size. This experiment demonstrates that
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FIGURE 4. Comparison of differential privacy-based methods in terms of MRE of community detection.

FIGURE 5. Comparison of differential privacy-based methods in terms of MRE of influence maximization.

compared to dK-2, PHDP, and HRG, the synthetic graphs
generated by Priv-NNS, DPGGAN, and DPGVAE can more
effectively simulate the information broadcasting capability
of the original social graphs. Additionally, when compared
to DPGGAN and DPGVAE, our proposed algorithm yields
superior results as expected. Since the problem of influ-
ence maximization is closely related to recommendation and

advertising applications, the synthetic graphs produced by
Priv-NNS hold high practical value.

3) AVERAGE DEGREE
The degree of a node in the network refers to the number of
edges incident to the node, which is one of the most funda-
mental characteristics of a graph. TheMRE of average degree
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FIGURE 6. Comparison of differential privacy-based methods in terms of MRE of average degree.

FIGURE 7. Comparison of differential privacy-based methods in terms of MRE of power law exponent.

of all the methods on all the datasets are depicted in Figure 6
while the privacy budget ε varies from 0.1 to 3.2. In summary,
Priv-NNS achieves good accuracy on average degree over all
datasets. When privacy budget is relatively large, e.g., ε =

3.2, its MRE always stays below 0.17. With the decrease of ε,
the accuracy drops but it is still smaller than 0.8 on Arenas
Email, Cora, PPI and p2p-Gnutella even when ε = 0.1.

Compared with the other private methods, Priv-NNS clearly
outperforms them in all cases, simply because it preserves the
neighbor structure from an optimization perspective that pro-
vides more regulation space for the utility-privacy tradeoff.
Also, the quality of results from dK-2, PHDP and HRG tends
to be rather poor due to the large noise injection required to
obey edge-differential privacy.
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FIGURE 8. Comparison of differential privacy-based methods in terms of MRE of triangle count.

FIGURE 9. Comparison of differential privacy-based methods in terms of MRE of characteristic path length.

4) POWER LAW EXPONENT
Next we evaluate different methods for power law exponent
in Figure 7. Priv-NNS keeps returning extremely accurate
results for large ε, and reasonably good results for small ε.
Meanwhile, it is still the best solution with an ε-differential
privacy guarantee in all settings. The general trend in the
results of power law exponent is the same as that of average
degree across datasets and differentially private approaches.

Empirically, we can conclude that preserving the neighbor
structure between nodes is the basis of retaining statistical
data utilities.

5) TRIANGLE COUNT
Figure 8 presents the results of triangle count. Our proposed
approach Priv-NNS once again achieves good accuracy over
all datasets, and consistently outperforms dK-2, PHDP and
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FIGURE 10. Comparison of differential privacy-based methods in terms of MRE of clustering coefficient.

HRG. In particular, from the analysis of Figure 8(c), it can
be observed that Priv-NNS is rather close to Original (non-
private Priv-NNS) even when ε ≤ 0.2 on PPI. Furthermore,
Figure 8(d) shows that the gap between Priv-NNS and Origi-
nal begins to reduce when ε increases. It is worth mentioning
here that when ε = 3.2, our proposed Priv-NNS outperforms
Original and the reason is because of the use of private
Skip-gram.

6) CHARACTERISTIC PATH LENGTH
The characteristic path length is defined as the average num-
ber of edges in the shortest paths between all node pairs.
Figure 9 illustrates the characteristic path length in all the
datasets. The superiority of Priv-NNS is two-fold. First, it is
more accurate than dK-2, PHDP, HRG, DPGGAN and DPG-
VAE when ε varies from 0.1 to 3.2 in most cases. Second,
it maintains the neighbor structure from an optimization
perspective that providesmore regulation space for the utility-
privacy tradeoff. In summary, Priv-NNS is a more preferable
solution for private characteristic path length queries.

7) CLUSTERING COEFFICIENT
The global clustering coefficient of a graph measures the
proportion of wedges, that is, paths of length 2, that are
embedded in triangles. As Figure 10 shows, differentially
private synthetic graphs generated by our Priv-NNS suffer a
reasonably low degradation with respect to their counterparts,
in terms of their ability to preserve clustering coefficient
of the original graphs. The main reason is because within
Priv-NNS, the objective perturbation based graph encoding
procedure can generate noisy node vectors while preserving
high utility on the neighbor structure. Moreover, since the

objective function in Equation (13) is proper, convex, and
lower semi-continuous, it guarantees that the graph recon-
structing algorithm converges to the minimum.

VII. CONCLUSION
In this paper, we have investigated how to publish graphs
with edge-differential privacy while preserving node nearest
neighbor structure. The underlying highlights are summa-
rized as follows. To yield node vectors that meet differential
privacy simultaneously preserving the neighbor structure,
we set up a private graph encoding approach with structure-
awareness, which learns topological features of the decom-
posed subgraph by maximizing the co-occurrence probability
among nodes. During this process, a novel objective pertur-
bation approach with a random term, which only requires
a scalar noise rather than a vector noise, is devised to bal-
ance the neighbor structure retained against the noise added.
Finally, a synthetic graph can be reconstructed by calculating
distances between nodes in the noisy vectors. Formal privacy
analysis and simulation results verify that the released graph
by Priv-NNS preserves high utility on node nearest neighbor
structure while satisfying ε-edge differential privacy.

Despite its success, Priv-NNS only achieves the weak
edge-differential privacy. As further work, we are going
to develop a strict node-differentially private graph release
algorithm to match the structural properties of the original
graph as closely as possible while maintaining a higher level
of privacy.
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