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ABSTRACT Facial action detection and facial expression recognition are two closely intertwined problems
in behavior analysis. This paper presents evidence that model architectures designed for facial expression
recognition can be seamlessly adapted for the action units detection task, taking advantage of the structural
similarity between the two problems. As a sample case, we have adapted the Pyramid crOss-fuSion
TransformER (POSTER) model for action unit detection by adjusting the architecture to handle a multilabel
problem with one output per action unit. Then, we tuned the training parameters and retrained the model to
achieve state-of-the-art performance on two widely used datasets: DISFA and BP4D. The results obtained
with a standard 3-fold cross-validation setup show an average F1 score of 67.8% for DISFA and 65.5%
for BP4D. These results outperform state-of-the-art models for AU detection, support the effectiveness of
the approach, and suggest placing higher efforts on adapting existing architectures to leverage the synergies
between facial expression recognition and action unit detection.

INDEX TERMS Affective computing, action unit detection, facial expression recognition.

I. INTRODUCTION
Facial expressions are a spontaneous and powerful form
of nonverbal communication for humans. During commu-
nication, individuals can infer the emotions and mental
states of others by interpreting their facial expressions. The
intuitiveness and effectiveness of facial expressions can
greatly improve machines’ understanding of human emotions
and psychological behavior patterns in human-computer
interaction scenarios. Through automatic facial expression
recognition, machines can better understand human inten-
tions and provide more personalized, natural, and human-like
interactions, which can be especially beneficial in fields such
as customer service [12], healthcare [28], and education [37].
As a result, the capability of detecting facial expressions
has propelled it to become a crucial component of human-
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computer interaction, and it has received increasing interest
in areas such as computer vision and affective computing.

Facial action units (AUs) are specific, measurable move-
ments of the facial muscles that correspond to different
facial expressions. These movements can be mapped to
basic emotions such as happiness, sadness, anger, fear,
disgust, and surprise [9] using the Facial Action Coding
System (FACS) [10]. However, in the existing literature,
facial expression recognition and AU detection have been
treated as distinct problems, overlooking their inherent
relationship. Consequently, separate architectures have been
developed for each problem, disregarding the fact that
they essentially address the same underlying challenge, and
therefore architectures proposed for one problem can likely
be also effective for the other.

Our main contribution in this paper is to demonstrate
the significant potential of adapting architectures initially
proposed for facial expression recognition to the AU
detection problem. As a case study, we have adapted the
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architecture proposed in POSTER [42] to achieve state-
of-the-art performance on the DISFA [26] and BP4D [41]
datasets. In DISFA, we have reached an average F1 score
of 67.8% across all action units, using a widely used
standard experimental setting imported from the existing
literature [24], [32]. The F1 score achieved in BP4D was
65.5%. These results surpass the performance of recent
proposals that were specifically designed to tackle the AU
detection problem, showing the potential of seamlessly
reusing existing architectures initially designed for facial
expression recognition.

The paper is organized as follows: Section II presents
an overview of the current state of facial action unit (AU)
detection methods. Next, the process followed to adapt the
POSTER architecture is explained in Section III. Then,
section IV provides a detailed description of the datasets and
experimental setup used to evaluate the approach. The results
of the experiments are presented and discussed in Section V,
together with an ablation study to analyze the contribution
of the different components to the reported gains. Finally,
conclusions are drawn in Section VI.

II. BACKGROUND AND STATE OF THE ART
Action unit detection has attracted significant attention
from researchers over the years, and various methods have
been developed to address this issue. First approaches to
detecting AUs relied on using hand-crafted features for
classification, such as appearance features (e.g. Histogram
of Oriented Gradients (HOG) [1], Gabor filters [34], Local
Binary Patterns (LBP) [16]), and/or geometric features based
on facial landmark points [17], [23] (e.g. locations and
shapes). However, these methods failed to capture relevant
image information for classification. The emergence of deep
learning techniques has revolutionized AU detection by
enabling the computation of features directly from pixel-level
image data, allowing for dynamic modeling of the extracted
features and their correlation to the target task during training.
These methods have boosted AU detection performance,
achieving superior performance compared to traditional
methods.

In the design of AU detection approaches, there are two key
aspects that should be carefully considered. The first one is
the extraction of local features that are related to the activation
of each action unit. The second one is the recognition of
the inter-dependencies between different action units, as they
often appear together in a single facial expression, e.g., when
a person is smelling, both AU6 (Cheek raiser) and AU12 (Lip
corner puller) activate together.

With regard to local feature extraction, facial landmarks
are commonly used to robustly locate regions of interest
(ROIs) and key points related to action units, thus reducing
distraction from less important facial areas. Li et al. [20]
proposed the EAC-Net architecture, which used the land-
marks provided in the dataset to manually locate the
centers for the AUs and build a bounding box around
these centers. Those allowed the construction of attention

maps that were integrated into a CNN to enhance the
feature map. Shao et al. [32] further improved this idea in
JÂA-net, by also learning key regions that were shared to
learn the landmarks, and refining an attention map that
was used to predict the AUs. Niu et al. [29] introduced LP-
Net, which used landmarks to learn local features, and
also proposed a person-specific shape regularization module
that captured person-specific relationships between facial
landmarks. Ge et al. proposed LGR-Net [11], a method
for extracting robust local features from ROIs identified
by landmarks, using multiple branches to enhance feature
robustness, and then fusing and refining the features to
represent the whole face. Jointly, these works demonstrate
the effectiveness of using landmarks to refine local feature
representation.

In relation toAU inter-dependencies, traditional approaches
that use Convolutional Neural Network (CNN) architectures
usually learn them implicitly during training. However,
some approaches have yielded improved results by explicitly
modeling those relationships. SEV-Net [39] used an inter-AU
encoder that compared the semantics generated for each
AU, in order to exploit the relationship between AUs and
improve the accuracy of AU detection. FAUDT [15] created
a specific correlation module that extracted discriminative
features for each AU and modeled their connection thanks
to a transformer-based architecture. The latest developments
in Graph Neural Networks (GNNs) have also enabled more
explicit modeling of the correlations among AUs. In this
direction, Li et al. [18] used a Gated Graph Neural Network
(GGNN) integrated into a multi-scale CNN framework
called SRERL to spread information through the graph
and improve AU representation. Liu et al. [22] proposed
AU-GCN to extract latent representations of related AU
regions using an auto-encoder and subsequently fed them
into a Graph Convolutional Network (GCN) as nodes.
Luo et al. [24] explored advanced AUs relation modeling
by using multi-dimensional edge features in the CNN-
GCN-based method named ME-GraphAU. More recently,
Yang et al. [40] proposed FAN-Trans, a hybrid network
that combines convolutional and transformer blocks to
learn the relationship between AUs. An online knowledge
distillation was employed during training in this case
to further improve the model’s performance. In another
work, Wei et al. [36] proposed ABRNet, which models AU
relations in different crowds, using a relation learning
module and a self-attention fusion module. Additionally,
Chen et al. [5] developed CISNET to remove the subject
variation effect in AUs detection using a causal intervention
module.

We shall also remark on the strong influence of
transformer-based architectures [35] in action unit detection
models. They quickly became popular in NLP due to their
ability to handle long-term dependencies, and demonstrated
comparable performance to CNN on diverse visual bench-
marks for Computer Vision tasks such as Image Classi-
fication, Object Detection, and Image Segmentation [14].
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FIGURE 1. The original POSTER model, where the image backbone is IR-50 [7] and the landmark detector is MobileFaceNet [3]. They generate the
image features Xi mg and the landmark features Xl m.

In addition, transformer-based architectures have pro-
duced successful results in facial expression recogni-
tion [15], [38], [42]. The earliest transformer-based model
targeted at Computer Vision tasks is known as Vision
Transformer (ViT) [8], which uses a pure transformer to
directly classify the complete image by processing sequences
of image patches.

In AU detection, transformers were used to compare
semantic descriptions of action units [39] and learn discrim-
inative AU features [15]. In [18], it was shown that the
transformer structure and self-attention mechanism can better
learn the co-occurrence between regions of interest. More
recently, Swin Transformers have even been used to replace
the typical CNN backbone [24].

POSTER [42] applied some of the latest advancements to
propose a novel architecture that used landmark features and
implicitly considered inter-dependencies between different
action units. This was done by using a two-stream architec-
ture that comprised a landmark stream and an image stream.
In addition, a Vision Transformer block was incorporated
to facilitate mutual guidance between the two streams and
enable global correlation across features through a self-
attention mechanism.

The POSTER model is illustrated in FIGURE 1. It is
composed of two backbones, namely IR-50 [7] and
MobileFaceNet [3], [4]. IR-50 produces image features and
MobileFaceNet focuses on the generation of 68 landmarks.
Next, these features are processed by a pyramidal structure
that creates small, medium, and large representations of the
features outputted by the image and landmark backbones,
enabling the extraction of information at various levels of
detail. The resulting features are then embedded and analyzed
jointly in a transformer represented in FIGURE 2. In the
multi-head attention block, the query matrices of the two
feature types are swapped, allowing for a refinement of both
types of information towards one another. This cross-fusion
technique combines global and local features and provides
higher stability toward identity variations because landmarks

provide higher robustness to age, skin tone, and gender. It also
allows the model to address two intrinsic problems associated
with action unit detection: inter-class similarities and intra-
class variations. The last layer is fully connected and linearly
projects the features to a space whose dimensionality is the
number of emotions. The emotion class is decided based
on the results of a softmax activation on the predicted
values.

III. MODEL ADAPTATION
The first change required to adapt an architecture designed for
facial expression recognition to deal with AU detection refers
to the output. Facial expression recognition is a multi-class
classification problem, in which only one label can be active
at a time. On the contrary, AU detection is a multi-label
classification problem, as several AUsmay be simultaneously
active. Hence, it is essential to transform the model’s
output into one neuron per action unit, where each neuron
indicates whether the corresponding action unit is activated or
not. This adjustment requires additional modifications. The
transformation of the output results in a heavily unbalanced
problem, with usually a significantly larger number of
examples from the negative class. Consequently, the loss
function needs to account for such an imbalanced scenario.
Weighted loss functions or specialized approaches, such as
the focal loss [21], are some of the most common choices
that allow for effectively addressing this challenge.

Another crucial aspect to consider is whether retraining the
entire network is necessary. Due to the inherent structural
similarity between the two tasks, it is reasonable to expect
that the essential features extracted in the context of one
problem remain valid and exhibit a similar nature in the other
task. While it may initially appear sufficient to retrain only
the last layers to leverage the precomputed weights, there
are additional benefits to be gained by retraining the entire
network.

Regarding the evaluation of the resulting model, accuracy
is commonly used for facial expression recognition. However,
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FIGURE 2. Cross-fusion multi-head self-attention block.

when it comes to AU detection, accuracy can be misleading
due to class imbalance, potentially leading to biases towards
the majority class. To address this issue, the F1 score is
a more reliable performance metric for AU detection, as it
simultaneously considers both precision and recall.

In this work, we present a practical case of this adaptation
by applying it to the POSTER architecture, which surpassed
state-of-the-art performance for emotion classification in
RAF-DB [19], FERPlus [2] and AffectNet [27]. In particular,
we have successfully tailored the POSTER model for AU
detection by adjusting the training parameters and converting
the output to a multilabel binary classification problem with
one binary label per action unit (activated/non-activated).

Same as POSTER [42], we utilized the IR50 [7] image
backbone pre-trained on the Ms-Celeb-1M dataset [13], and
MobileFaceNet [3] was chosen to produce landmark features.
The image features Ximg ∈ RP×D and the landmark features
Xlm ∈ RP×D are fused along the P dimension to obtain fused
features X ∈ R2P×D. In this context, P represents the number
of landmarks and D is the feature dimension. The fused
features X are then utilized as inputs in the pyramid structure.
In the feature pyramid structure, X was sampled into three
different sizes: a large feature vector with an embedding
dimension of 512 (DL = 512), a medium feature vector
with an embedding dimension of 256 (DM = 256), and a
small feature vector with an embedding dimension of 128
(DS = 128). Then, eight cross-fusion transformer encoders
were introduced. Each transformer encoder interoperated
on these feature vectors. Importantly, it should be noted
that, as previously mentioned, the queries of image features
and landmark features are exchanged in computation within
the self-attention mechanism, as illustrated in FIGURE 2.
The configuration of the transformer encoders involved
setting the Multilayer Perceptron (MLP) ratio to 2 and the
drop path rate to 0.01. Finally, the large feature vector was
utilized for the classification.

With regard to training, all images were pre-processed by
using RetinaFace [6], to crop the face region and filter out
images that were not detected or had incomplete faces. The
remaining images were aligned by taking the coordinates
of the two eyes as a reference. They were then resized to
224×224 pixels to yield a format that was compatible with the
model. The maximum number of training epochs was set to
15, as it was observed that the models began to overfit beyond
that point.

Otherwise, our training strategy was similar to that applied
in [24]. Data augmentation included random horizontal flip-
ping and normalization with mean = [0.485, 0.456, 0.406],
and standard deviation std = [0.229, 0.224, 0.225]. We used
AdamW optimizer with β1 = 0.9, β2 = 0.999 and weight
decay of 5 · 10−4; set the batch size to 64 samples; and used
the cosine decay learning rate scheduler, with a 10−4 initial
value.

To alleviate the potential effect of class imbalance [25] in
the training samples, we imported the weighted asymmetric
loss function proposed in [24], which is defined as:

L = −
1
N

N∑
i=1

wi
[
yi log(pi) + (1 − yi)pi log(1 − pi)

]
(1)

where N is the number of samples, yi is the ground
truth label for the i-th AU (0 for non-activated and 1 for
activated), and pi is the predicted score (a value in the
interval [0, 1]). The weights wi for the i-th AU are defined
as wi = N (1/ri)/

∑N
j=1(1/rj), where ri denotes the i-th AU’s

occurrence rate computed from the training set.

IV. EXPERIMENTS
A. DATASETS
All experiments were conducted on two common datasets
widely used in the literature, namely DISFA [26] and
BP4D [41].
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TABLE 1. Number of positives and negative samples in DISFA, along with the ratio (negative/positive).

TABLE 2. Number of positives and negative samples in BP4D, along with the ratio (negative/positive).

The DISFA dataset [26] recorded the spontaneous facial
expressions of 27 adult subjects, with 12 females and
15 males, as they watched a four-minute video in a laboratory
environment.

Videos were captured by BumbleBee point grey
stereo-vision system at 20 fps under uniform illumination
using a high resolution of 1024 × 768 pixels. Each video
comprised 4,845 frames. Each frame was manually labeled
with the intensity of 8 Action Units on a 0 to 5 scale. The
resulting dataset includes approximately 130 000 frames.

The BP4D dataset [41] contains 3D and 2D dynamic spon-
taneous facial expressions of 41 subjects, with 23 females and
18 males. The dataset was acquired in a controlled laboratory
environment. Recordings were taken while subjects were
doing 8 different tasks designed to elicit specific emotions
(interview, video-clip viewing and discussion, startle probe,
improvisation, threat, cold pressor, insult, and smell). A total
of 328 videos were recorded using two grey-scale stereo
cameras and one color video camera. The resolution of
the 2D frames was 1040 × 1392 pixels. For each task,
approximately 500 frames were manually annotated to
indicate the presence or absence of 12 AUs and their
corresponding intensity levels, coded on an ordinal scale
from 0 to 5. This resulted in a dataset of around 140 000 valid
frames.

The two datasets are heavily unbalanced. TABLES 1 and 2
show the number of positive and negative samples for each
AU, along with the negatives to positives ratio, in DISFA
and BP4D, respectively. All AUs in DISFA exhibit an
imbalance in favor of the negative label. Themost unbalanced
case happens for AU9, with just one activated sample for
every 22.9 non-activated entries. The most balanced AU in
this dataset is AU25, with one activated sample for every
2.61 non-activated samples. The level of imbalance is lower
in BP4D. Still, AU1, AU2, AU4, AU15, AU23 and AU24
contain over 3.5 more negative samples than positive entries.
However, in AU7, AU10 and AU12 the class imbalance is in
favor of the activated class.

B. EXPERIMENTAL SETTING
To exhaustively compare the performance of the resulting
model against the state-of-the-art, we used an extensive
selection of relevant methods reported in the state-of-the-
art, namely, EAC-Net [20], SRERL [18], LP-Net [29],
AU-GCN [22], SEV-Net [39], FAUDT [15], ME-GraphAU
[24], JÂA-Net [32] and LGR-Net [11].

We followed the same protocol adopted in previous
studies [24], [32], which consists of a 3-fold subject-
independent cross-validation that evaluates all methods on
exactly the same data partitions. In all compared methods, the
outputs of the model in DISFA and BP4D were represented
as 8-component (AU1, AU2, AU4, AU6, AU9, AU12, AU25,
and AU26) and 12-component (AU1, AU2, AU4, AU6,
AU7, AU10, AU12, AU14, AU15, AU17, AU23, and AU24)
vectors, respectively. Each component of the vector indicated
whether the corresponding AU was activated or not. The
only action units that were shared between the two datasets
were AU1, AU2, AU4, AU6, and AU12. TABLE 3 indicate
the action units considered in each dataset, along with
the facial muscles involved and a brief description of the
movement [31].

In DISFA, thresholding was used to convert intensity
values to binary form, following the procedure reported
in [24] and [32]. Samples with an original label of 2 or greater
were assigned the ‘activated’ label (1), while samples with a
label lower than 2 were assigned a ‘non-activated’ state (0).
In BP4D, the occurrence labels for each AU were used. With
regard to the output, our particular setting produced as a result
the probability of activation for each AU. These probabilities
were converted into a binary prediction by using a threshold
set to 0.5.

All our experiments were conducted on a computer
equipped with a 13-th generation i7 processor with 128 RAM
and a single NVIDIA RTX 3090 GPU with 24 GB of
memory, running Ubuntu 20.04.4. LTS. The required model
implementations used Python 3.9 with version 2.0 of the
open-source Pytorch library [30].
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TABLE 3. AU coding definition.

C. EVALUATION METRICS
The highly unbalanced nature of the datasets makes accuracy
a misleading metric, as a model could achieve high accuracy
by simply predicting the majority class in most cases.
On the contrary, the F1 score simultaneously considers true
positive, false positive, and false negative rates and it is more
appropriate in unbalanced settings. The F1 score is defined
as the harmonic mean between precision (number of correct
positive predictions divided by the total number of positive
predictions) and recall (number of correct positive predictions
divided by the number of positive samples), which can be
mathematically expressed as:

F1 score =
2 · Precision · Recall
Precision+ Recall

(2)

In this work, we used the macro-averaged F1 score, which
is computed by using the arithmetic mean of the F1 score for
the positive and negative classes, regardless of their support
values.

V. RESULTS AND DISCUSSION
A. COMPARISON TO STATE-OF-THE-ART METHODS
TABLE 4 presents the F1 scores obtained on DISFA for all
competing methods. The results on BP4D are presented in
TABLE 5. The best result for each AU is highlighted in bold,
and the second best is indicated by using squared brackets.

The proposed method behaved better than the average in
all AU for both datasets, except for AU6 in BP4D, where
the F1 score, although very close to the average, is slightly
below. In DISFA, our model achieved an average F1 score
of 67.8% for the eight AUs, outperforming all previous
studies reported in the comparison. Our approach showed the
best performance for AU1 (Inner Brow Raiser) and AU26
(Jaw Drop). For AU2 (Outer Brow Raiser) and AU12 (Lip
Corner Puller), our results were the second-best. However,
our model’s performance in AU9 (Nose Wrinkler) was quite

far from the best score of 80.5%, achieved by EAC-Net.
In general, the proposed model exhibits its best relative
performance on the AUs that are positioned close to the brows
and mouth regions, and the lowest on the areas around the
cheek and nose.

TABLE 5 shows the results obtained in BP4D. It can
be observed that our model achieved an average F1 score
of 65.5%, which equals the performance reported for ME-
GraphAU. In this case, our method demonstrated the best
results of the methods in the comparison for AU4 (Brow
Lowerer), AU17 (Chin Raiser), and AU23 (Lip Tightener),
and scored second-best for AU12 (Lip Corner Puller), AU14
(Dimpler), and AU15 (Lip Corner Depressor). Once again,
the algorithm shows its highest relative performance on the
AUs located near the regions of the brows and mouth, while
exhibiting lower performance on the nose and cheek.

When we analyze the F1 scores in absolute terms,
we notice a significant difference in performance achieved
for different AUs, which is consistent across all datasets.
In DISFA, the activation of AU25 seems the easiest to
predict, while AU2 seems far harder. Similarly, results
reported for AU10 and AU12 in BP4D are consistently
better than those obtained for AU2, for example. A careful
study of these differences suggests that the performance of
the models increases with the number of available positive
samples. The boxplots in FIGURES 3 and 4 show how
the F1 score varies with this ratio. In these Figures, a box
has been built from each AU, using the results obtained
from each method in the comparison. The lower and upper
quartile F1 scores are marked by the edges of the box,
and the vertical line that splits the box in two represents
the median. The whiskers extend outward from the box,
but no further than 1.5 times the interquartile range, to the
smallest and largest data points. It can be observed that
higher performance is generally associated with lower ratios
of negatives to positives. In addition, boxes are considerably
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TABLE 4. F1 score (in %) for 8 AUs on DISFA.

TABLE 5. F1 score (in %) for 12 AUs on BP4D.

FIGURE 3. Boxplot showing the F1 score as a function of the negatives to positives ratio in the DISFA dataset.

smaller in BP4D, showing a higher consistency in the
performance obtained by all different methods considered
in the evaluation. These observations suggest that the heavy
class imbalance has a negative impact on the results and there
is significant potential for improvement in AUs with fewer
activated samples.

For completeness of this study, FIGURES 5 and 6 show
the confusion matrices for each AU in DISFA and BP4D,
respectively. The numbers refer to the sample counts, and the
intensity of the grey shade increases proportionally with the

number of samples. It can be observed that they are consistent
with the class imbalance reported in TABLES 1 and 2, and
the ratio between the predicted labels is generally close to the
ratio in the training samples. Overall, the model achieves a
high accuracy in predicting negative samples, with an error
rate that is relatively higher in BP4D. For positive samples,
the accuracy rate is far lower and below 50% for some AUs
(AU2 in DISFA and AU24 in BP4D), showing that the model
has higher difficulty are classifying positive samples due to
the lower number of samples in the training sets.
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FIGURE 4. Boxplot showing the F1 score as a function of the negatives to positives ratio in the BP4D dataset.

FIGURE 5. Confusion matrix of results on DISFA.

Although accuracy values are less relevant due to the
existing class imbalance already reported in Section IV-A,
we also observe superior results to those reported in the
state-of-the-art. Among the competing methods, accuracy
values are only reported for EAC-Net [20] and JÂA-Net [32].
TABLES 6 and 7 compare the accuracy values for all AUs in
DISFA and BP4D, respectively. The best results for each AU
are marked in bold, and the second bests are by using square
brackets. Our results are considerably better than the ones
reported for EAC-Net, both on average (80.6% and 75.2% in
DISFA and BP4D, respectively) and for each individual AU.
Moreover, results are also better, although somewhat closer,
to the ones reported for JÂA-Net [32] (94.0% and 78.6%
in DISFA and BP4D, respectively). The higher accuracy
values in the DISFA dataset are consistent across all different
methods, mainly due to the higher class imbalance already
reported in Section IV-A.

B. ABLATION STUDY
To investigate the contribution and impact of the two different
feature extraction components used in the architecture,

FIGURE 6. Confusion matrix of results on BP4D.

TABLE 6. Accuracy (in %) for 8 AUs on DISFA.

we conducted an ablation study on the DISFA and BP4D
datasets. In particular, we compared the results obtainedwhen
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TABLE 7. Accuracy (in %) for 12 AUs on BP4D.

TABLE 8. Ablation study on DISFA and BP4D using F1 score.

extracting features by using only the IR50 backbone, when
using only landmark features that were extracted by using
MobileFaceNet, and when using the full model.

The results are shown in TABLE 8. As can be observed,
they are consistent across the two datasets. The features
extracted by using the IR50 backbone are more effective
than landmarks features extracted by using MobileFaceNet.
Adding landmark features only yielded marginal improve-
ments to the results. This suggests that the landmarks
extractors could be suppressed in scenarios with constrained
inference times, e.g. IoT, without considerably compromising
the general performance of the POSTER model.

Finally, we have studied the total number of parameters
(Params) and floating-point operations (FLOPs) of each
model to evaluate their computational and memory complex-
ity. We only compare our proposed model with the methods
in TABLES 4 and 5 that have made their implementation
available, namely FAUDT [15], ME-GraphAU [24], and
JÂA-Net [32]. As ME-GraphAU allows using different
backbone models to extract image features, we considered
the one that uses a Swin Transformer base. To determine the
FLOPs, we used the PyTorch library ptflops [33].

TABLE 9 shows the number of parameters, FLOPs and
F1-scores achieved in DISFA and BP4D, for the four models
mentioned above. We do not provide the FLOPs value for
FAUDT, as its implementation is based on TensorFlow and
the calculation of FLOPs is unreliable. Overall, POSTER-AU
exhibits the lowest value of FLOPs. Moreover, it demon-
strates a reduction of over 20 million parameters compared
toME-GraphAU. Despite this, POSTER-AU achieves similar
performance on BP4D and surpasses performance on the

TABLE 9. Comparison on Parameters and FLOPs.

DISFA dataset. JÂA-Net has the lowest number of parame-
ters, but it has 1.8 GigaFLOPs more than POSTER-AU.

VI. CONCLUSION
The research reported in this paper demonstrates the promis-
ing potential of utilizing architectures originally proposed
for facial expression recognition in the context of action
detection. In particular, when the proposed method is used to
adapt the POSTER architecture to the action unit detection
problem, our results outperform state-of-the-art techniques
across a wide range of representative methods on the DISFA
and BP4D datasets. These successful results suggest that fur-
ther effort should be placed into studying possible adaptations
of existing models for emotion detection, as both problems
are closely related and base features performing well in one
task are expected to perform well in the other. In addition, the
reported results suggest that transformer-based architectures
and positional attention mechanisms are highly appropriate
for tackling the action unit detection problem. The nature
of the transformer allows it to explore relationships between
regions that are spatially distant [29]. At the same time,
the implementation of guided attention directs the network
to focus on crucial face regions related to the activation of
action units, such as the eyebrows andmouth. These elements
also benefit from crop and alignment operations that attempt
to ensure that patches correspond to specific facial areas.
These pre-processing operations facilitate the transformer’s
acquisition of positional knowledge regarding patches and
enable the network to gather contextual information about
each patch.

Globally, the proposed model performed better than the
recent competing approaches described in the literature, both
in terms of F1 score and accuracy. The proposed model
performed particularly well on the AUs located around the
eyebrows and the mouth while performing worse than other
approaches in the region surrounding the cheeks and the
nose. The ablation study has also revealed that the landmark
features contribute only marginally to the F1 score. These
results expand the potential applicability of the model to
scenarios that demand lightweight components, reducing
inference times at a minimal performance cost.

It has been observed that, as a general rule, all methods
exhibit better behavior when classifying samples belonging to
the class with the higher number of samples. This strengthens
the argument that more comprehensive and balanced datasets
could enhance classification outcomes, and more work is
required in this direction. It has also been noticed that
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certain architectures behave particularly well for specific
AUs, producing significantly better results than the average
outcomes of all methods. Examples of this are EAC-Net [20]
in AU9 or LGR-Net [11] in AU2/AU26, in the DISFA dataset;
and also, AU1 and AU2 in SEV-Net [39] on BP4D. These
differences are more prominent in datasets with a high level
of class imbalance, indicating the potential benefits of hybrid
models that are able to leverage the unique strengths of each
architecture for detecting individual AUs.

Future work will be oriented towards automating the adap-
tation process, including decision-making about retraining.
We also plan to explore more effective ways of improving
the resulting models. This includes investigating improved
methods for capturing spacial-temporal dependencies and
integrating landmarks features in a more productive manner.
Another aspect that is worth considering relates to the
relatively large performance differences of different models
across all AUs. They suggest that classification results could
be significantly improved by combining various existing
models and leveraging their strengths in relation to specific
AUs.
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