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ABSTRACT Modern agriculture requires more accurate field management capability compared with
traditional agriculture. The development of hyperspectral remote sensing technology embodies rapid and
non-destructive features in agricultural information monitoring, providing a technical guarantee for the
scientific management of agricultural production. The mathematical model of inverse cotton leaf total
nitrogen was established by decomposing and transforming the original cotton leaf spectrum using contin-
uous wavelet analysis and traditional spectral transformation, taking the characteristic wavelet coefficients
and spectral characteristic bands as independent variables, and using univariate, stepwise regression, and
partial least squares methods. The correlation between the total nitrogen content of cotton leaves and the
spectral reflectance, through different methods of spectral treatment, was improved to different degrees. For
the conventional spectral transformation, the inverse logarithmic first-order differential lg′ (1/R) improved
the correlation of cotton leaf total nitrogen by 0.26. The continuous wavelet analysis outperformed the
conventional spectral model regarding information noise reduction and mining of feature information. The
established model with RPD>2 had good stability and predictive power for all sample data.

INDEX TERMS Hyperspectral, non destructive testing, continuous wavelet analysis, spectral transforma-
tion, total nitrogen, cotton.

I. INTRODUCTION
Agricultural production requires large amounts of mineral
nutrients such as nitrogen, phosphorus, and potassium tomeet
the needs of crop growth. Cotton, as the main cash crop
in Xinjiang, accounts for 80% of the national production
value and plays a pivotal role in the economic and social
development of Xinjiang. In cotton cultivation, nitrogen is
of great importance for cotton growth and is considered to
be an important factor in biomass production in addition
to water [1], [2], [3] with carbohydrates for synthesis of
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proteins, chlorophyll and other nitrogenous compounds. In
related studies, it was found that the increase of nitrogen,
within a certain range, has a positive effect on the growth
condition and yield quality of cotton, and once too much
nitrogen fertilizer is used, it will not only lead to a reduction
in its yield quality, but also cause damage and pollution to the
soil and groundwater resources because of the leaching effect
[4], in response to the problems of high nitrogen fertilizer
input and low fertilizer utilization over the years, the cotton
growing process how to better apply nitrogen fertilizer To
improve the yield and quality of cotton, but also to prevent
the ecological damage and pollution caused by excessive
application of nitrogen fertilizer, it is especially important to
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obtain the nitrogen content of cotton during growth in a timely
and accurate manner.

From the 1960s to 1970s, the USDA developed a simple
empirical statistical model for leaf scale using more than
40 characteristic bands of biochemical components of dried
leaves, and estimated biochemical parameters such as leaf
protein and lignin by means of satellite remote sensing in the
late 1980s, and obtained results in general agreement with
indoor tests. At present, with the development of the appli-
cation technology and processing means of spectroscopy,
the research results about hyperspectral in agriculture are
increasing, and researchers have used satellite, unmanned
aircraft and handheld hyperspectral equipment to establish
high level prediction models not only for nutrient elements
and chlorophyll of maize [5], wheat [6], [7], rice [8] and
cotton [9], [10], but also for crop identification [11], [12] and
Zhao et al. [13] used vegetation indices with near-infrared
spectral reflectance to assess the potential of nitrogen content
monitoring and identification of cotton canopies at the growth
stage, and Plant et al. [14] investigated whether normalized
difference vegetation indices (NDVI) could provide valid
information for cotton in specific regions, concluding that
relative nitrogen vegetation indices, used as indicators of
nitrogen N stress indicators when its performance is lower
than NDVI. The above studies demonstrate the feasibility
of analyzing crop nutrient composition by spectroscopic
techniques.

Because satellites and UAVs have the limitations of high
cost and high technical operation [15], this experiment
uses near-ground hyperspectral, handheld hyperspectrometer,
which not only reduces the technical operation but also avoids
clouds and reduces the influence of atmospheric environment,
obtains high spatial resolution, identifies fine-scale features,
and thus greatly improves the acquisition of crop growth
information. Since the raw spectral reflectance is subject
to background noise such as atmosphere and light as well
as interference from adjacent bands, processing and trans-
formation of hyperspectral data can uncover hidden feature
information and reduce background interference and data
redundancy. Various models using mathematical analysis to
transform hyperspectral reflectance have been developed in
studies of nitrogen and chlorophyll prediction in vegetation
crops [16], [17]. Wavelet analysis is equivalent to a mathe-
matical microscope and telescope with multi-scale analysis
with multiple resolutions and directional changes, and has
made developments in the monitoring of crop chlorophyll
content prediction, heavy metal elements and physiological
information and pests and diseases [18], [19], [20], [21], [22].

In this study, the raw spectra were processed using continu-
ous wavelet analysis and conventional spectral transform, and
the models developed by these two methods were analyzed
and compared for their ability to estimate the total nitrogen
content of cotton leaves, and secondly, the contributions of
univariate analysis, stepwise regression analysis, and partial
least squares to model accuracy and stability were analyzed
and compared.

II. EXPERIMENTAL AREA OVERVIEW, DATA SOURCES
AND RESEARCH METHODS
A. OVERVIEW OF THE STUDY AREA
The experiment was conducted in June and October 2021 at
the Horticultural Experiment Station of Tarim University,
which is located in Alar City, Xinjiang Uygur Autonomous
Region, which has a temperate continental climate from
the southern foothills of the Tianshan Mountains in the
north to the northern edge of the Taklamakan Desert in the
south, with an annual cotton cultivation area of 155.0 thou-
sand hectares. Four nitrogen fertilizer gradient treatments
of 0 (N0), 100 (N1), 200 (N2) and 300 kg/hm2 (N3) were set
up, with three replications for each treatment, and a total of
24 plot trials were set up. The potassium fertilizer applied to
cotton cultivation is mainly potassium sulfate (K2O content
of about 50%) which is expensive and low in nutrient content,
but the long-term application of potassium sulfate to the soil
in this test area is prone to the formation of calcium sul-
fate (gypsum) precipitation in the cultivated soil layer, leading
to soil caking. Although potassium chloride is inexpensive
and has a high nutrient content (K2O content of about 60%),
it cannot meet the field crop situation. Garlic (onion, pepper,
shallot, etc.) crop with cotton is sensitive to chlorine, and high
chloride content in the soil will reduce the crop quality.

Cotton leaves were collected on June 15 (bud stage) and
October 1 (spat stage), and a relatively regular rectangular
cotton field, 40 m long from east to west and 60 m long
from north to south, was selected in the horticultural station
using a five-point sampling method. A total of five sampling
points were selected at the four corners and the center, and
five cotton plants were selected at each sampling point to col-
lect hyperspectral data and the corresponding total nitrogen
content of the leaves of different cotton at different locations
according to four directions: east, south, west, and north. The
representative cotton leaves were collected and the average
of five measurements was used as the original spectral data
of the sampled leaves. The collected cotton leaves were tem-
porarily stored in sealed bags and brought to the laboratory as
soon as possible to determine the nitrogen content, and a total
of 125 sets of hyperspectral reflectance and total nitrogen
content data were obtained for the five sampling sites.

B. TEST DATA ACQUISITION
1) SPECTRAL REFLECTANCE MEASUREMENT
Leaf spectral data were measured using an ASD portable
geophysical spectrometer with a wavelength range of
325∼1075 nm and a spectral sampling interval of 1 nm.
Calibration tests were performed on a white board before
use, and calibration was performed again after each leaf
measurement to eliminate instrument errors to the maximum
extent. The cotton leaf spectral data collection was carried out
in clear weather with no wind or breeze conditions selected at
10:00-14:00, and calibration will be performed every 10 min
due to the change of sun position. Hand-held spectrometer,
sensor vertical downward, probe angle of 25◦, uniformly
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TABLE 1. Test equipment.

select representative cotton leaves each time 10 measure-
ments, take the average of 10 spectral data as the leaf spectral
data.

2) MEASUREMENT OF LEAF NITROGEN CONTENT
The total nitrogen content of cotton leaves was determined
using a FOSS automatic Kjeldahl nitrogen tester, which is
based on the principle of converting organic nitrogen in leaves
into ammonium sulfate in a series of reactions under the
action of concentrated sulfuric acid and efficient catalysts,
and then distilled using sodium hydroxide solution to deter-
mine the total nitrogen content of leaves. Three leaves from
each test plot were selected and killed at 105◦C for 30 min
in a drying oven, then dried at 80◦C to constant weight
[23], and after cooling, the leaves were fully ground to a
uniform powder using a mortar and pestle; the samples were
accurately weighed into a decoction tube using an electronic
balance with one-ten-thousandth accuracy, then 10 mL of
concentrated sulfuric acid and a catalyst were added, and
then digested on a FOSS digestion oven The nitrogen content
was calculated automatically according to the volume of
hydrochloric acid standard solution used, and the average
value of the nitrogen content of the three leaves was taken
as the nitrogen content of the test plot.

3) CONTINUOUS WAVELET ANALYSIS
In the process of cotton vegetation growth, various bio-
chemical parameters within cotton have different effects on
the reflectance spectra of different wavelengths, which are
reflected in the spectra as continuous ‘‘peaks’’ and ‘‘valleys’’
at different locations. ‘‘The concept of wavelet variation was
pioneered by a French researcher. The concept of wavelet
variation was first introduced by French engineer Morlet in
oil exploration, using continuous wavelet variation to find the
characteristic absorption of various biochemical parameters
hidden in the spectral reflectance. As one of themost effective

TABLE 2. Test reagents.

methods in the field of signal processing, the continuous
wavelet transform method has been applied extensively to
extract biochemical parameters and leaf area indices, includ-
ing leaf hyperspectra and ground hyperspectra [24], [25],
[26], [27]. Compared with the traditional vegetation indices
based on several wavebands, the continuous wavelet analysis
method can obtain the absorption characteristics of biochem-
ical parameters and the effect of amplitude of leaf area index
on reflectance from hyperspectral remote sensing data by
using the multi-scale decomposition property.

The continuous wavelet transform of the reflectance spec-
trum is to obtain wavelet coefficients by convolving the
reflectance spectrum with the mother wavelet function of
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translation and scaling.
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where ϕ(λ ) is the mother wavelet function, ϕa,b(λ ) is the
mother wavelet function after translation and scaling, a is
the scaling factor, which can also be called the scale, and
b is the translation factor, and the band position. wf (a, b) is
the wavelet coefficient (characteristic wavelet), which can be
seen as the similarity of the wavelet mother function to the
reflectance data at the scale a and b bands.

In this paper, we will use Mexican Hat wavelet as the
mother function of continuous wavelet transform, which is
essentially the second-order derivative function of Gaussian
function with the following equation:
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The Gaussian second-order derivative function is similar
to the shape of the reflection peak and reflection valley of
the reflection spectrum, so it can be well optimized locally
and can effectively remove part of the interference of envi-
ronmental noise and play a better smoothing role.

4) TRADITIONAL SPECTRAL TRANSFORMATION
The differential technique, inverse logarithmic transforma-
tion is one of the common hyperspectral data processing
methods, which can reduce the interference caused by back-
ground noise and instrumental factors such as atmosphere
and illumination, and also improve the clarity of the original
spectral reflectance curve, and some obscure characteristic
peaks will be resolved to show the information that can be
monitored compared with the original spectrum [28]. Among
them, first-order differential spectroscopy and first-order
inverse logarithmic differencing can extract different sensi-
tive spectral parameters to better reflect the characteristics
of the plant itself. The inverse logarithm can amplify the
spectral differences in the visible region and transform part
of the spectral data from a nonlinear to a linear relationship.
In this study, the smoothed spectral values are transformed
by inverse logarithmic, first-order differencing and first-order
inverse logarithmic differentiation, which are calculated as
follows.

R′
λ =

Rλ+1 − Rλ−1

21λ
(5)

lg′ (
1
Rλ

) =

lg( 1
Rλ+1

) − lg( 1
Rλ−1

)

21λ
(6)

where R′
λ is the first-order differential value at wavelength

λ , Rλ+1 and Rλ−1 are the spectral reflectance values at
wavelengths λ + 1 and λ − 1, respectively; is the first-order

differential value of the inverse logarithm at wavelength
λ , and and is the inverse logarithm value at wavelengths
λ + 1 and λ − 1, respectively.

5) MODELING METHODS
a: SINGLE INDEPENDENT VARIABLE REGRESSION ANALYSIS
MODEL
The univariate regression analysis is to establish a func-
tional relationship between y and x by directly finding the
correlation between y and x. In addition to the linear func-
tion, another second-order polynomial function is selected
for fitting in this paper. Second-order polynomial fitting is
done by fitting a quadratic function to the data to obtain a
more accurate functional model of the general form y =

ax^2+bx+c, where a, b, and c are the coefficients to be solved
for. When performing a second-order polynomial fit, we need
to process the data first and then use least squares to solve for
the coefficients.

b: STEPWISE REGRESSION ANALYSIS MODEL
Stepwise regression analysis (SR) is a kind of multiple linear
regression analysis, which establishes the optimal regression
equation by selecting the independent variables and mainly
solves the multivariate covariance problem. The process is to
introduce the independent variables with significant effects
into the regression equation one by one according to their
effects on the dependent variable, while those with insignif-
icant effects on the dependent variable are chosen to be
ignored. When new variables are introduced, the effects of
the ignored variables on the original regression equation
may change, and if they become significant, they are rein-
troduced into the regression equation until Therefore, the
stepwise regression analysis combines the forward introduc-
tion method and the backward elimination method.

c: PARTIAL LEAST SQUARES REGRESSION ANALYSIS MODEL
Partial least squares regression analysis (PLSR) is a regres-
sion modeling method to study multiple dependent variables
or single dependent variables on multiple independent vari-
ables, including three basic analysis methods using multiple
linear regression analysis, principal component analysis and
typical correlation analysis, combining their advantages to
enable regression modeling in the presence of severe multiple
correlations in the independent variables, effectively solving
the problem of self-model co-linearity, and its regression
model has a strong stability [29].

6) MODEL EVALUATION INDEXES
To indicate the goodness of fit and prediction accuracy of
the regression model, the coefficient of determination (R2),
root mean square error (RMSE), and relative analytical error
(RPD) were selected to evaluate the chlorophyll and total
nitrogen inversion models in this paper. There are three levels
of RPD for model evaluation, when RPD < 1.4, it means
that the regression model has the worst accuracy and cannot
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make effective prediction of sample data; when 1.4≤ RPD<

2, it means that the regression model has average accuracy
and can make rough prediction of sample data; when RPD ≥

2 when RPD≥2, it means that the accuracy of the regression
model is good and canmake effective prediction of the sample
data.

III. RESULTS AND ANALYSIS
A. COTTON LEAF TOTAL NITROGEN INVERSION
ESTIMATION
1) SPECTRAL REFLECTANCE MEASUREMENT
A total of 200 samples of cotton leaf total nitrogen were
collected at the bud stage in June and the flocculation stage in
October, and 30% of the samples were randomly selected as
the validation set and 70% as the modeling set. The distribu-
tion and statistics of chlorophyll data are shown in Figure 1
and Table 3, and it can be seen from the graphs that the range
of variation and coefficient of variation of the three groups
of leaf total nitrogen samples did not vary much, and the
normal curve data were evenly distributed, and there was no
significant difference between the three groups of samples by
single-factor analysis, which in summary indicates that the
modeling set validation set is reasonably divided and suitable
for modeling and validation.

FIGURE 1. Distribution of leaf total nitrogen sample data.

TABLE 3. Statistical table of leaf total nitrogen sample data.

FIGURE 2. R2 distribution of total nitrogen wavelet coefficient sensitivity
in cotton leaves.

By subjecting 200 sets of spectral data collected in 2021 to
mexh continuous wavelet analysis at scales a=1 to 160,
wavelet coefficients at different scales and bands were
obtained, and the calculated wavelet coefficients were cor-
related with the measured values in turn, and finally the
distribution of wavelet coefficient sensitivity R2 of cotton leaf
total nitrogen was obtained, as shown in Figure 2.

To determine the characteristic wavelet coefficients of total
nitrogen in cotton leaves more accurately and reasonably,
and to establish a better fitting and more accurate and sta-
ble inversion model, the wavelet characteristic coefficients
of leaf chlorophyll need to exclude the common sensitive
area of leaf chlorophyll and leaf nitrogen content for this
selection. To exclude the common sensitive area as the prin-
ciple, the 10 wavelet coefficients with the largest correlation
were selected for comparative analysis, and the average value
of the determination coefficient of the selected 10 wavelet
coefficients was 0.6543.

3.1.3. Correlation analysis of total nitrogen in cotton leaves
by conventional spectral transformation.

FIGURE 3. Distribution of correlation coefficients between spectral
transformations and total leaf nitrogen.

After the Savitzky-Golay convolution smoothing of
the original spectra, the first-order differentiation, inverse
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logarithmic, and first-order inverse logarithmic differentia-
tion processes were then performed to establish the correla-
tion analysis between the obtained different spectral values
and the total nitrogen content of cotton leaves, and the results
are shown in Figure 3.
Figure 3 reflects the correlation between the total nitrogen

content of cotton leaves and the spectral values obtained from
the spectral transformations of different methods. From the
figure, the total nitrogen of cotton leaves almost positively
correlated with the original spectral reflectance, which is
consistent with the results of the Yierxiati experiment [16];
the logarithm of the reciprocal almost negatively correlated
with the total nitrogen content, with correlation coefficients
between −0.307 and −0.682, reaching a highly significant
level; the first-order differential and the logarithm of the
reciprocal first-order differential correlations alternated posi-
tively and negatively, with large curve fluctuations. Themaxi-
mum correlation between raw spectral reflectance and inverse
log spectral values appeared at 674 nm and 678 nm with
correlation coefficients of 0.682 and −0.682, respectively;
the maximum correlation between first-order differentiation
and inverse log first-order differentiation appeared at 379 nm
and 686 nm with correlation coefficients of 0.774 and 0.94,
respectively. Different forms of mathematical transforma-
tions had different effects on the correlation between raw
spectral reflectance and total nitrogen of cotton leaves. The
difference between the logarithmic transformation on the cor-
relation of cotton leaf total nitrogen content and the original
spectrum did not change much, while the correlations of both
first-order differential and logarithmic first-order differential
were significantly improved, and the maximum correlation
wavelengths also changed differently, making the maximum
correlation wavelengths relatively concentrated.

In the above figure of the four method treatments, we can
find the location of the wave peak in the region around
550 nm, and Buscaglia et al. concluded that the spectral
reflectance at 550 nm is closely related to the nitrogen con-
centration of cotton leaves [30], in addition to the conclusion
that can be drawn from the figure, the characteristic wave-
lengths related to the nitrogen content are mainly located
in the red edge region (670-760 nm) In addition, Clevers
suggested that the red-edge region could be used to estimate
chlorophyll and nitrogen content [31]. Wood et al. stud-
ied an experiment using handheld chlorophyll to determine
the nitrogen content of cotton leaves and found a correla-
tion between chlorophyll and nitrogen content. In addition,
Shankar and Gupta [32]used a chlorophyll meter to pre-
dict the nitrogen content of Bt cotton and showed that the
chlorophyll meter could effectively quantify the nitrogen con-
tent of Bt cotton during the first Gitelson et al. suggested
a high sensitivity to chlorophyll around 540-630 nm and
700 nm [33], and Curran suggested that 460 and 640 nm
are sensitive to chlorophyll b while 660 nm is sensitive to
chlorophyll a [34], thus suggesting that leaf nitrogen content
in the above-mentioned regional range correlates well with
spectral There is a large correlation between leaf nitrogen

content and spectral reflectance in the above-mentioned
region.

Modeling of hyperspectral inversion of total nitrogen in
cotton leaves

a: UNIVARIATE REGRESSION ANALYSIS MODEL
The univariate regression model was constructed by using
the characteristic wavelet coefficients obtained by wavelet
analysis, the original spectral reflectance, and the spectral
parameters of the three traditional spectral transformations as
independent variables and the total nitrogen of cotton leaves
as dependent variables. The modeling and validation results
are shown in Table 4.
As can be seen from Table 4, different forms of spec-

tral treatments equally enhanced the correlation and inverse
model accuracy of spectral reflectance with total nitrogen
in cotton leaves to different degrees. The univariate model
with the original spectral rate and the inverse logarithm as
independent variables had the smallest coefficient of deter-
mination R2, and the model prediction was average; for the
first-order differential and the inverse logarithm first-order
differential lg′ (1/R) transformed model established after the
coefficient of determination R2 was significantly improved
compared with the former, but its RPD was still less than 2,
so the model prediction ability was average. The models with
characteristic wavelet coefficients as independent variables
obtained from CWT, in the modeling set, the R2 are between
0.6378∼0.7086, and the RMSE are between 0.6200∼0.6912,
with little overall variation but the second-order polynomial
model is obviously better than the linear model; in the valida-
tion set, the R2 of the models are between 0.5489∼0.6593,
and the RPD are in 1.452∼1.720, thus indicating that the
univariate regression models established by CWT could not
make effective predictions for the sample data and could only
be used for rough predictions of the inverse model.

From the above analysis, there may be the following rea-
sons for the poor accuracy of the cotton nitrogen inversion
model: first, there are problems with the experimental mea-
surement of leaf total nitrogen operation, resulting in errors
between the measured and true values; second, the complete
spectral range was not used in this study in this paper, and
it can be seen from the CWT and cotton leaf correlation
coefficient graph that after the wavelength of 1200 nm, it may
also have a wavelet coefficient that reaches a highly sig-
nificant level. Clever argued that the spectra collected by
remote sensing techniques are mainly used to obtain infor-
mation on chlorophyll rather than directly on nitrogen content
[35]. In general, raw spectral reflectance can provide useful
information, but its function may be limited in some specific
orders. Therefore, future research in this paper will focus on
extracting the complete spectral range.

b: MULTIVARIATE REGRESSION ANALYSIS MODEL
The characteristic wavelet coefficients obtained by wavelet
analysis as well as the spectral parameters of raw spectral
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TABLE 4. Univariate regression model modelling and validation results. TABLE 4. (Continued.) Univariate regression model modelling and
validation results.

reflectance and three conventional spectral transformations
were used as independent variables and total nitrogen of
cotton leaves was used as dependent variable to construct
a model for estimating total nitrogen of cotton leaves by
stepwise regression and partial least squares regression meth-
ods, respectively, and the modeling and validation results are
shown in Table 5.

TABLE 5. Multivariate regression model modelling and validation results.

By analyzing Table 5, it can be seen that the model estab-
lished by stepwise regression analysis after CWT decomposi-
tion has better model superiority, smaller prediction bias, and
RPD is greater than 2, which indicates that the model has a
good prediction effect on the sample data.

c: COMPARATIVE ANALYSIS OF COTTON LEAF TOTAL
NITROGEN REGRESSION MODELS
In order to analyze the differences between different mod-
eling methods, the optimal model among different modeling
methods was selected for comparative analysis. The results
are shown in Table 6.

From the above Table 6, it can be seen that the stepwise
regression analysis model has good applicability in the pre-
diction of total nitrogen content of cotton leaves. In order
to better present the results of the regression model, the
linear results of the chlorophyll inversion model are shown
in Figure 4.
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TABLE 6. Regression model modelling and validation results.

FIGURE 4. Results of a linear fit of the inverse model for total nitrogen in
leaves.

IV. DISCUSSION
In this paper, a total of 200 sets of cotton leaf spectral data
were collected from the Horticultural Experiment Station of
Tarim University with a portable geophysical spectrometer,
and cotton leaf total nitrogen was obtained by experimental
means, and the continuous analysis of 200 sets of spectral
data at 160 scales was performed by using the principle
of Mexh wavelet analysis, and the original spectra were
transformed by using traditional mathematical methods, and
then the biochemical and biochemical parameters of cot-
ton leaf total nitrogen were analyzed by statistical software.
The correlation between biochemical parameters and wavelet
coefficients and spectral values of total nitrogen in cotton
leaves was analyzed by statistical software to find out the
wavelet coefficients and spectral values with the highest sen-
sitivity, and the inverse model of biochemical parameters in

cotton was established by using univariate analysis, stepwise
regression analysis and partial least squares method.

A. CONTINUOUS WAVELET ANALYSIS
In this study Mexican Hat wavelets are used as the mother
function of the continuous wavelet transform. Each wavelet
eigencoefficient contains scale and wavelength information
and reflects the similarity of the function to the reflectance
at a particular wavelength and scale. It has been shown that
the mesoscale wavelet decomposition can truly reflect the
information of chlorophyll and nitrogen content of the crop,
and it can be seen from Fig. 2 that the wavelet feature scale
with nitrogen correlation is mainly located in the middle and
low scales, and the wavelength position is mainly located in
400-500 nm and 720 nm, and it has been analyzed before
that there is a significant correlation between the nitrogen
content of the leaf and the chlorophyll, and Curran concluded
that there is a relationship with chlorophyll b around 460 nm
and 430 nm [34], and from this experimental study it can
also be seen that there is a significant correlation between
nitrogen content and chlorophyll at 430-460 nm, so whether
a more significant correlation between cotton leaf nitrogen
content and chlorophyll b can be considered to provide an
idea for future research. Secondly, due to the limitation of
the measurement range of the experimental measurement
instrument, the maximum wavelength is 1075 nm, but it can
be seen from the figure that there is a sensitive area at the
wavelength of 1075 nm, so it can be considered that there
may be a more considerable sensitive area in the range after
1075 nm, and it is suggested that a spectrometer with a larger
wavelength range can be used to measure in order to find
more possibilities.

B. TRADITIONAL MATHEMATICAL ANALYSIS
Compared to the original spectra, derivative spectra are less
affected by sun angle and crop physiology, and by using
spectral slopes it is possible to convert samples with the
same characteristics corresponding to different raw spectral
reflectances into the same signal, reducing the redundancy
of spectral data. It can be seen from Figure 3 that the
derivative-treated spectra improve the correlation to nitrogen,
and the stability and validity of the model are differently
enhanced, and the sensitive bands with correlation to nitrogen
are basically concentrated in the visible range.

C. COTTON LEAF TOTAL NITROGEN CONTENT DETECTION
MODEL
From the point of view of the selected feature variables, the
fit and accuracy of the model built using wavelet feature
coefficients as variables is higher than that of the model built
with sensitive wavelengths under the processing of traditional
mathematical methods. Previous studies have also shown
that the model constructed based on wavelet coefficients has
better predictability, and the data decomposed by successive
wavelets can increase the dimensionality to mine the useful
information in the spectrum effectively. The results of B.
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Rivard et al. [35] using continuous wavelet analysis with min-
erals showed that continuous wavelet analysis can reduce the
variance in the spectral library and is applicable to vegetation
studies. Meng et al. [36] selected GF-5 satellite image data
and used the discrete wavelet transform to compare and ana-
lyze the spectral data of soil organic carbon at two scales of
original reflectance and first-order derivative reflectance. The
study showed that the discrete wavelet transform effectively
eliminated the noise in the satellite hyperspectral data at low
decomposition scale and significantly improved the model
accuracy. In terms of the number of modeling variables,
the mean R2 of the multivariate model is at 0.700 and the
mean R2 of the univariate model is at 0.627, and the results
indicate that the multivariate estimation capability is higher
than that of the univariate model. Among the multivariate
models, the R2 value of CWT-SR model was 0.8410; the R2
value of CWT-PLSR model was 0.6993, the R2 value of lg′

(1/R)-SR model was 0.6746; and the R2 value of lg′ (1/R)-
PLSR model was 0.6511, from which it can be seen that the
use of stepwise regression method to build models is more
suitable for the prediction of cotton leaf total nitrogen The
R2 value was 0.6511.

D. FUTURE RESEARCH
With the development of imaging hyperspectral technology,
there is therefore the ability to build a more convenient and
fast model for nitrogen monitoring through hyperspectral
images by collecting hyperspectral images of sample leaves.
Although continuous wavelets can further suppress their clut-
ter interference to the raw spectra, the derivative spectra
can be combined with continuous wavelet analysis due to
the moment-to-moment variation of the sun’s position and
the differences between its crop physiological structures. The
selection of sensitive bands and characteristic wavelets in this
study is based on the maximum correlation coefficients, and
multicollinearity can occur between adjacent wavelengths;
therefore, the use of local peaks of correlation coefficients
to extract sensitive bands and characteristic wavelets can be
considered to reduce multicollinearity and make the reflec-
tion more comprehensive.

V. CONCLUSION
In this study, the continuous wavelet transform method and
the traditional mathematical method were used to analyze the
correlation with the raw hyperspectral data, to compare the
contributions of both in terms of nitrogen correlation, and to
evaluate the differences between the above two methods in
terms of nitrogen estimation ability, and the main findings of
the study are as follows:

(1) The correlations of cotton leaf total nitrogen content
after the transformation of the original spectra by first-
order differentiation, inverse logarithm and inverse logarithm
first-order differentiationwere all improved in different ways,
among which the inverse logarithm first-order differentiation
improved the correlation of cotton leaf total nitrogen by 0.26;
the improvement of the correlation by inverse logarithm was

less obvious, and the continuous wavelet analysis processing,
which can effectively reduce the external factors and back-
ground conditions on the reflectance of the original spectra
The continuous wavelet analysis treatment can effectively
reduce the interference of external factors and background
conditions on the original spectral reflectance, aiming to
quickly find the effective wavelet sensitive to the biochemical
parameters of cotton.

(2) The CWT cotton leaf total nitrogen estimation model
established by using stepwise regression analysis has better
predictive ability for the sample data than other models with
the same treatment.

(3) Among the traditional spectral transformation models,
the model after inverse logarithmic first-order differential
transformation was higher than the other three traditional
spectral transformation models in terms of prediction accu-
racy and model superiority.

(4) The estimation ability of CWT for cotton leaf total
nitrogen content model was better than some of the traditional
spectral transforms, indicating that continuous wavelet anal-
ysis is more effective in mining the hidden information in the
original spectrum.
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