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ABSTRACT The driving behaviors of electric vehicle (EV) and hybrid electric vehicle (HEV) drivers have
received considerable attention in the literature. The use of image recognition in combination with GPS and
driving data has emerged as a popular approach to improving driver safety. However, such methods often
generate sensitive personal information, including driver images, names, and GPS locations, which may
risk the safety of the driver’s privacy. To address this issue, a privacy-preserving approach for identifying
driver behavior characteristics is necessary. To achieve this, we utilize on-board diagnostic (OBD) interface
vehicle-mounted devices to collect and analyze data from an electronic control unit (ECU), thereby collecting
only onboard data for data processing and analysis. In this work, we propose deep learning models such as
long short-term memory (LSTM) networks and gated recurrent units (GRUs), which enable the learning of
specific behavior patterns and represent the state-of-the-art model to classify and predict driving behavior
that potentially leads to dangerous accidents. The predictions were then converted into alarm signals and
transmitted to the dashboard of vehicle. Our experiments showed that our proposed system model achieved
excellent results with an excellent kappa score of 96.5%, demonstrating that it can accurately identify unique
driving behaviors in a privacy-preserving manner.

INDEX TERMS Driving behavior, deep learning model, privacy-preserving approach, prediction, safety
diagnostic system.

I. INTRODUCTION
Due to various factors such as the driver’s habits, emo-
tions, and driving preferences, the driver has become the
most unsafe part of the driver-vehicle system. Moreover,
every driver has unique driving behavior characteristics.
To understand the driver’s behavior characteristics, most
driver behavior recognition research is mainly based on
head movement and facial features (such as eye move-
ment recognition) that can identify the driver’s driving state
(fatigue/drunk/drowsy/distracted) to provide advanced warn-
ing to avoid driving accidents [1], [2], [3]. However, some
behavioral studies on car use focus on tracking vehicles daily
for several weeks, and the global positioning system (GPS)
captures the geographic location once a second. Using GPS
to collect travel behavior data, researchers can figure out the
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dynamic characteristics of travel behavior. Unfortunately, the
abovemethods generate a lot of sensitive information, includ-
ing driver images, driver names, GPS locations, etc., which
makes it difficult to protect driver privacy. GPS location
information can expose drivers’ activities, personal habits,
social relationships, health status, and other private informa-
tion. For example, the length of time the vehicle stays in the
hospital and the frequency of visits may reveal the health
of the user. The leakage of the driver’s trajectory and the
exposure of personal habits is an issue that drivers are very
concerned about, which has caused many controversies about
track exposure [4], [5], [6].

Many studies have analyzed vehicle driving behavior and
established recognition models to detect abnormal driver
operation for safer driving, such as using the visual method
of monitoring [7], [8], [9], [10]. However, to effectively
recognize driver behavior while preserving privacy, it is
necessary to select feasible metrics that can describe driver
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TABLE 1. Recent studies of using the visual feedback of driving behavior.

characteristics. Additionally, the measurement system rep-
resenting driver characteristics should be properly utilized
by expressing and validating it using measurable parameters
[11], [12], [13], [14], [15], [16], [17]. In this study, we uti-
lized OBD interface vehicle-mounted devices to communi-
cate with an ECU. Only onboard data collected from the
ECU was communicated to the onboard device for data
processing and analysis. In contrast to previous approaches,
we utilized machine learning methods, including various
deep learning models, to calculate the driving pattern. This
approach provided more accurate results from a larger num-
ber of diverse and related characteristics, predicting the
driving mode for different characteristics from a macro-
scopic perspective. The model can determine the current
driving pattern and decide whether the driver is engaging
in unsafe or dangerous driving behaviors while protecting
driver privacy by not requiring sensitive driver and vehi-
cle information such as driver images and GPS location
data.

In this work, we developed a model for predicting dan-
gerous driving behavior and conducted experiments using
various deep learning methods to analyze both the driving
mode of the vehicle and the driver’s habits. Feedback is
provided to the warning system, which is integrated with a
website API and delivers notifications to the car dashboard
system in front of the driver.

II. RELATED WORK
In recent years, there has been a growing interest in develop-
ing systems that utilize visual feedback or visually monitor
driving behavior to enhance driver safety. This trend is sum-
marized in Table 1. Kashevnik [18] proposed a technique
and mobile application for driver monitoring, analysis, and
recommendations based on observed risky driving behavior.
The approach utilizes the smartphone’s cameras and built-
in sensors, including an accelerometer, gyroscope, GPS, and
microphone, to monitor the driver’s behavior. It includes
a reference model, a classification of risky states, and the

detection of dangerous states. Wang [19] proposed a method
for modeling aggressive driving behavior by utilizing graph
construction based on time-series data. The study employed
raw data to construct graphs representing specific driv-
ing trips, incorporating driver characteristics, environmental
information, and driving behavior variables. The perfor-
mance of regression models was evaluated, demonstrating
the suitability of a 5-second time window. Eleven significant
variables, such as speed, acceleration, gender, age, distrac-
tions, and time-to-collision, were selected. Xiao [20] intro-
duced the Attention-Based Deep Neural Network (ADNet)
as a method for driver behavior recognition. The frame-
work incorporates a channel attention (CA) block to capture
inter-channel dependencies within the ADNet. Additionally,
a spatial attention block is combined with the CA block
to enable adaptive feature extraction. Data augmentation
techniques are applied during the data processing stage
to enhance recognition performance. Notably, the ADNet
method achieves an impressive Top-1 accuracy of 98.48%.
Hou [21] presented a lightweight framework aimed at detect-
ing abnormal driving behavior. This framework leverages the
capabilities of edge intelligence, empowering IoT devices to
efficiently process and understand data. It encompasses four
crucial modules: mask detection for bus drivers, detection
of abnormal driver motion, fatigue driving detection, and
video recovery. Chen [22] proposed a recognition method
that combines Convolutional Neural Network (CNN) and
transfer learning. The model leverages multi-source data
fusion, including natural driving GPS data and drivers’ facial
expression data from online car-hailing services, to accurately
identify five driving behavior patterns: acceleration, deceler-
ation, turning, lane changing, and lane keeping. Experimental
results demonstrate the superior performance of the trans-
ferred model, which achieved an accuracy score of 0.80.
The literature discussed presents promising approaches for
improving driver safety through visual feedback andmonitor-
ing of driving behavior. However, it is important to address
privacy concerns related to the use of personal driver data,
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which can impact the reliability and ethical considerations of
such research.

On the other hand, numerous researchers have been inves-
tigating how driving habits or behaviors influence the con-
figuration of vehicular systems, specifically in the context
of electric vehicles. Lv et al. [23] focused on the codesign
optimization approach for adapting the automatic control of
an intelligent electric vehicle to driving styles. It proposed
a cyber-physical system (CPS)-based framework to optimize
the plant and controller parameters of the vehicle, considering
dynamic performance, drivability, and energy efficiency in
relation to different driving styles.Wang et al. [24] conducted
a study to investigate the eco-driving behaviors and motiva-
tions of EV drivers compared to internal combustion engine
vehicle (ICEV) drivers. The researchers analyzed survey
data and applied statistical analysis methods. The findings
of the research indicate that EV drivers exhibit calming
driving maneuvers and fuel-efficient driving habits, demon-
strating their willingness to save energy during travel time.
Rahmati et al. [25] identified a potential mismatch between
the braking decisions of Connected and Automated Vehicles
(CAVs) and the expectations of human drivers. The study
revealed systematic differences in their braking trajectories,
prompting the adoption of a Markovian decision model-
ing framework to design a CAV braking profile that aligns
with human expectations and facilitates safe and comfort-
able maneuvers in mixed driving environments. Oh et al. [26]
developed the Vehicle Energy Dataset (VED), a large-scale
dataset tailored for research on vehicle energy consumption.
This dataset enables the identification of driving behaviors
that protect the personal information of the driver while
also providing insights into eco-driving approaches based
on fuel consumption. By leveraging this extensive dataset,
researchers can gain valuable insights into both privacy-
preserving driving behavior and eco-friendly driving strate-
gies correlated with fuel consumption. These studies have
shed light on various aspects of vehicular systems and driving
behaviors, particularly in the context of electric vehicles.

The emerging method of artificial intelligence (AI)
enhances the results and aids in achieving the goal of inves-
tigating driving behavior [27], [28]. Shahverdy et al. [29]
proposed a classification method that utilizes deep learning
for analyzing driving behavior. The method employs a 2D
Convolutional Neural Network (CNN) with imaging features
and utilizes the recurrent plot technique to recognize driving
signals. The classifier model has 21.5k parameters and a com-
putational complexity of 0.043 MFLOP, which results in low
computational costs. Despite this, the model achieves a high
accuracy rate of 99.76%. Specifically, Lu et al. [30] analyzed
the factor of stress while driving a vehicle without using psy-
chological data. The extreme gradient boosting (XGBoost)
algorithm outperformed traditional machine learning mod-
els such as support vector machine (SVM) and achieved
an accuracy range of 91.18% to 93.25%. On the other
hand, Sethuraman et al. [31] elaborated on the use of the

AdaboostMSVM algorithm paired with the CMO algorithm
for anomaly detection in the Advanced Driver Assistance
System (ADAS). The hyperparameters of the CMO algorithm
significantly boosted the performance of the model, resulting
in an accuracy of 91.45%, an F-score of 94.45%, a pre-
cision of 93.38%, and a recall of 94.90%. These results
outperform other existing methods that handle specific tasks.
Ping et al. [10] introduced a method for recognizing dis-
tracted behavior utilizing the Temporal-Spatial double-line
DL network (TSD-DLN) and causal And-or graph (C-AOG).
The TSD-DLN combines attention features from dynamic
optical flow information with spatial features from single
video frames to accurately identify distracted driving pos-
tures. The proposed model outperforms other state-of-the-art
methods on two public datasets as well as a collected dataset
specifically focused on distracted driving behavior. Mean-
while, Liu et al. [32] introduced a novel framework called
DSDCLA, which combines attention-based hybrid convo-
lutional neural network (CNN) and LSTM models. DSD-
CLA aims to extract local spatial features from multi-modal
driving sequences and utilizes LSTM and multi-head atten-
tion mechanisms to capture long-term temporal relationships
between timesteps. Additionally, the researchers designed
three variants with different fusion levels, which not only
demonstrate the advantage of selecting components but also
improve interpretability. The proposed DSDCLA framework
was evaluated on two public real-world datasets, and the
experimental results showcased its superiority over current
state-of-the-art methods, achieving impressive F1-scores of
97.03% and 97.65%. Furthermore, Song et al. [33] proposed
a method to reduce the complexity of the model by utilizing
lightweight deep learning image classification models. The
proposed model increases the speed of model operations
without degrading performance, as compared to traditional
deep learning models. Ma et al. [9] proposed the LSTM-R
algorithm for real-time detection of abnormal driving behav-
ior. The research demonstrated that LSTM-R outperforms
other algorithms, achieving a maximum F1-score of 0.866.
The evaluation of the model showed that LSTM-R is effective
even with a small proportion of abnormal driving behav-
ior in the training set, indicating relaxed requirements for
labeled data. The findings highlight the potential application
of LSTM-R in enhancing roadway safety through real-time
detection, driving risk assessment, and behavior improve-
ment. The rapidly developing field of AI has a lot of potential
for advancing studies on driving behavior. In particular,
numerous deep learning-based methodologies have demon-
strated noteworthy improvements in terms of accuracy and
efficacy, playing a significant role in the ongoing effort to
understand and improve driving behavior by utilizing AI
techniques.

This literature review examines advancements in analyz-
ing driving behavior, particularly in the context of EV. The
reviewed studies emphasize the identification of abnormal
driving patterns using methodologies such as data mining,
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FIGURE 1. System Framework.

machine learning, and deep learning. However, there is a
lack of literature specifically focusing on electric vehicle
study cases and utilizing AI models to achieve state-of-the-
art analysis of abnormal driving behavior. Overall, the field
of AI shows great potential for advancing the study of driving
behavior, with deep learning-based methodologies playing a
significant role in improving accuracy and effectiveness.

III. SYSTEM MODEL
A. SYSTEM FRAMEWORK
Based on the previous study by Hung [34], which presented
an approach for analyzing safe and dangerous driving behav-
ior. In this work, we expand the previous work to incorporate
the proposed model by strengthening the behavior model and
enhancing the feedback mechanism. In this study, we employ
deep learning methods to detect and predict unsafe driving
patterns using OBD vehicle data. We also investigate the
impact of various influencing variables on different levels of
dangerous driving, such as aggressive acceleration and sharp
turn driving, in real-time environments. Fig. 1 illustrates the
framework of our proposed system, which involves collect-
ing telematic data from the vehicle and extracting driving
labels. The preprocessed data is then aggregated to create an
experimental dataset, and labels are assigned based on their
corresponding values. A deep learning classification model,
specifically LSTM and GRU methods as supervised learning
techniques, is utilized for training and testing purposes to
learn driving behavior. Feedback is provided to the warning

system, which is integrated with a website API and delivers
notifications to the car dashboard system in front of the driver.
The details of the system framework are depicted in Fig. 1.

B. DATA SOURCE
1) DATA ACQUISITION
The vehicular data for the driving records were obtained
from six drivers using the same car, a Toyota Prius V
2ZR-FXE. Real-time scenarios were applied to imitate safe
and unsafe driving behaviors in a real-world environment.
The data was collected using a cloud fleet management
system, which recorded driving parameters such as steering
angle, speedometer readings, acceleration, deceleration, gear
information, vehicle speed, and steering wheel angle. The
collected data was stored on a local hardware device and
transmitted to a cloud platform for analysis. Approximately
1.5 million real-time data points were collected, covering
60 hours of driving time. A total of 76,948 pieces of data were
collected after the data were cleaned and compiled. After
being labeled according to driving behaviors, these datasets
were saved in CSV format for further processing.

2) BEHAVIOR MODELING
As shown in Fig. 1, we simulated various driving behav-
iors, including safe driving (Safe), aggressive acceleration
(Ace), rapid deceleration or hard braking (Dece), and sharp
turns (Turn). Each driver performed these behaviors on the
same track and car to ensure the complexity of the data.
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FIGURE 2. Vehicle speed data sample confirmed by connection of the
vehicle wheels.

Furthermore, the drivers imitated real-time scenarios of safe
and unsafe driving behaviors. For aggressive acceleration,
the drivers accelerated rapidly during the straight sections of
the track, achieving a higher acceleration rate compared to
normal driving. A sudden deceleration or hard braking was
imitated by rapidly reducing the vehicle’s speed during the
straight sections or when approaching a turn, applying the
brakes forcefully for quick deceleration. Sharp turns were
imitated by taking specified turn angles with higher steering
input, requiring a significant change in the vehicle’s direction.
Safe driving behavior was simulated by following the track
without abrupt accelerations, decelerations, or aggressive
turns. The drivers maintained a steady speed, followed the
designated path, and adhered to traffic rules and regulations.
By controlling the acceleration, braking, and steering inputs
during each section of the track, the drivers imitated different
driving behaviors according to the specified scenarios for
aggressive acceleration, sudden deceleration or hard braking,
sharp turns, and safe driving.

3) VEHICLE DIAGNOSTIC DATA
Table 2 presents the data obtained from the onboard vehicle,
which served as the foundation for further processing [34].
This dataset consists of 21 variables labeled with driving
behaviors such as safe driving, aggressive acceleration, rapid
deceleration or hard braking, and sharp turns. These variables
were utilized in the training process to construct a classifier
model for driving behavior analysis.

C. VALIDATION OF THE PATTERNS BASED ON SAMPLE
TELEMATICS DATA
In this work, we verified data correctness using interactive
numerical calculations on specific selected features, as shown
in Fig. 2.

Subsequently, we verified the relationships between engine
speed, throttle voltage, and acceleration and deceleration
by performing driving tests, as shown in Fig. 3. Generally,
throttle voltage and acceleration increase as vehicle speed
increases [34].
According to the driving test results, we found that the

value of the deceleration will change drastically when there

TABLE 2. The variables in the vehicle data [34].

FIGURE 3. Validation relationships among engine speed, throttle voltage,
and deceleration [34].

is a sudden acceleration and rapid deceleration when driving.
There are positive and negative values in this field. If the value
is positive, it means that the value is forward acceleration,
which means that the actual driving action is the accelerator
action. The larger the value, the faster the speed. If the value
is negative, it means that the actual driving action is backward
acceleration, and the actual driving action is a braking action.
The larger the value, the greater the braking force. Here,
we define the former driving behavior as rapid acceleration
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FIGURE 4. Validation of sample data on steering angle and lateral
acceleration [34].

driving behavior and the latter driving behavior as rapid
deceleration driving, which is used as a label for data labeling.

Fig. 4 shows that yaw increases when lateral acceleration
increases, and lateral acceleration increases as steering angle
increases. According to the actual driving-test results, the
changes in the values can be observed from Fig. 4, and
the driving actions and patterns can be found from them.
We found that when driving into a sharp turn, the value of
the Lateral G acceleration field will change drastically. For
example, at the red circle, there are positive and negative
values in the field. A positive sign indicates that the value
is acceleration to the right, indicating that the actual driving
action is turning the vehicle to the right. If the value is
negative, it means that the actual driving action is turning the
vehicle to the left. The larger the value, the faster the speed,
which is used for subsequent labeling of the data.

D. EXPERIMENTAL DESIGN
The development of a prediction model for driving behavior
is described in Algorithm 1, which outlines the steps for
building, training, and evaluating an LSTMorGRUmodel for
multi-class classification. Firstly, the input data, consisting
of 21 variables along with the driving behavior label, is nor-
malized using Min-Max normalization. The normalized data
is then divided into training and testing sets with an 80/20
split. Next, the model architecture is defined, incorporating
specific input layers, hidden layers, and a final output layer
that utilizes Softmax as the activation function for multi-class
output. ReLU activation functions are applied to the hidden
layers, and dropout layers with a rate of 0.2 are inserted
between each layer to mitigate overfitting.

In this work, the model is compiled with a categorical
cross-entropy loss function and accuracy as the metric. It is
then fitted to the training data and computed for 500 and
1000 epochs for comparison. Once trained, the model is
evaluated on the testing data, and benchmarking metrics are
calculated. Finally, the trained model, model accuracy and
loss, and evaluation metrics are outputted for further analysis
and comparison with other models. Overall, Algorithm 1
provides a clear and structured framework for developing a
prediction model for driving behavior.

Algorithm 1 The Development and Evaluation of Learning
Models
Input:

• Vehicle OBD data (training and testing data)
• Bidirect // The parameter times two

Output:
• Trained model
• Model accuracy and loss
• Evaluation metrics (accuracy, recall, precision,

F1-score, and kappa score)
Steps:

1. Normalize the input data using Min-Max
Normalization

2. Split the data into training and testing sets (80/20)
3. Define the LSTM orGRUmodel architecture with

the following parameters:
• Input layers: 128
• Hidden layers:128∗Bidirect and 64∗Bidirect

layers
• Activation function: ReLU // for hidden layers
• Final output layer: Softmax (4 class label)
• Optimizer: Adamwith a learning rate1e−3

• Batch size: 128
• Dropout layer: 0.2 in each layer // prevent

overfitting
4. Compile themodel with categorical cross-entropy

loss function
5. Fit the model to the training data with a specified

number of epochs (e.g., 500 and 1000)
6. Evaluate the model on the testing data and

calculate the accuracy and loss
7. Calculate the following evaluation metrics on

testing data
8. Output the trained model, model accuracy and

loss, and evaluation metrics

IV. RESULTS AND DISCUSSION
A. EVALUATION METRICS
First, we explain the method and criteria for model evaluation
in the experiments. In this work, we use three classification
metrics as review and evaluation criteria for the numerical
model‘s effectiveness in predicting specific driving behav-
iors. Prior knowledge contained in the confusion matrix
incorporates various critical measures, including precision
and recall rates for each class, which express the classifier’s
recognition ability for each class. Accuracy, recall, precision,
and F1-score were defined as follows:

Accuracy =
TP+ TN )

(TP+ FP+ FN + TN )
(1)

Recall =
TP

(TP+ FN )
(2)

Precision =
TP

(TP+ FP)
(3)
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TABLE 3. Kappa coefficient strength.

FIGURE 5. Accuracy for LSTM model training.

FIGURE 6. Loss for LSTM model training.

F1 − Score =
(2 ∗ Precision ∗ Recall)
(Precision+ Recall)

(4)

Subsequently, we introduce the concept of Kappa Coef-
ficients. The Kappa coefficient is a statistical measure of
reliability or consistency between evaluators.

K =
Po − Pe
1 − Pe

(5)

Kappa coefficients are commonly used to evaluate qualita-
tive documents and determine consistency between two eval-
uators, and they provide a useful benchmark for comparing
specific methods. K = 1 if the evaluators agree completely,
and K = 0 if there is no agreement between the evaluators.
Table 3 shows the Kappa statistic ranges and corresponding
descriptors.

B. EXPERIMENTAL RESULTS OF LEARNING MODELS
IN 500 EPOCHS
1) LSTM MODEL
The smooth and converging curves of the training and ver-
ification data for LSTM are depicted in Figs. 5 and 6 [34].
The accuracy and loss metrics show rapid improvement up to

FIGURE 7. Confusion matrix for training LSTM model.

TABLE 4. Evaluation model of LSTM.

around epoch 80, followed by a slower but steady improve-
ment until around 250 and 400 epochs, respectively. Beyond
these epochs, the metrics become relatively stable, indicating
that increasing the number of epochs can enhance the model’s
accuracy.

Fig. 7 indicates that all categories have high accuracy, with
Ace achieving the highest accuracy among the categories,
indicating that it is the least likely to be confused with other
categories [34]. Safe, which has 2068 records, is the category
that is most frequently confused with other categories, most
often with Ace. Conversely, Ace is often misclassified as a
turn.

Table 4 shows that the precision and recall for all categories
are similar, resulting in an overall accuracy of 0.962 and a
kappa score of 0.947. Therefore, the LTSM model provides
excellent classification performance.

2) GRU MODEL
Figs. 8 and 9 indicate that the training of GRU starts relatively
smoothly and that accuracy and loss vary rapidly up to 40 and
90 epochs, respectively [34]. Although the rate of change
gradually decreases as the epoch increases, the model never
reaches stability. Therefore, by increasing the number of
epochs, further improvements in accuracy and loss can be
achieved.

Fig. 10 shows Ace has the highest accuracy (4367 records)
and is hence least likely to be confused. Safe (2013 records) is
the most easily confused category, most commonly with Ace,
whereas Ace is most misjudged as turn [34].
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FIGURE 8. Accuracy for training GRU model.

FIGURE 9. Loss for training GRU model.

FIGURE 10. Confusion matrix for GRU training 500 epochs.

TABLE 5. GRU training 500 epochs classification performance.

Table 5 validates the alignment between precision and
recall, exhibiting an overall accuracy of approximately

TABLE 6. Evaluation and classification performance for the considered
models, 500 epochs.

FIGURE 11. Accuracy for LSTM model training to 1000 epochs.

FIGURE 12. Loss for LSTM model training to 1000 epochs.

0.935 and a kappa score of 0.911. This suggests that GRU can
serve as an exceptional classification model, although it may
not offer as exceptional a performance as the LSTM model.

3) COMPARISON OF LEARNING MODEL
Table 6 indicates that the GRU model has a satisfactory
Kappa score, but there are notable discrepancies between
precision and recall for the Safe category. Consequently,
the LSTMmodel demonstrates superior classification perfor-
mance compared to the other models.

C. EXPERIMENTAL RESULTS OF LSTM AND GRU (1000
EPOCH)
1) LSTM MODEL
The stability of LSTM is maintained beyond 500 epochs
up to a minimum of 1000 epochs, as depicted in
Figs. 11 and 12 [34].
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FIGURE 13. Confusion matrix for LSTM training to 1000 epochs.

TABLE 7. LSTM training 1000 epochs classification performance.

FIGURE 14. Accuracy for GRU model training to 1000 epochs.

Fig. 13 shows comparable results to the shorter train-
ing duration of 500 epochs, where Ace exhibits the highest
accuracy (4471 records) and is the least susceptible to con-
fusion [34]. Although the accuracy of other categories is
slightly lower, their predictability remains high with minimal
confusion.

Table 7 illustrates that the LTSM model achieved an accu-
racy of 0.955 and a kappa score of 0.938 after 1000 epochs,
exhibiting excellent agreement between precision and recall.
Hence, the model demonstrates exceptional classification
performance.

2) GRU MODEL
Figs 14 and 15 show that the GRU curves tend to become
more stable as epochs tend toward 1000 [34].

FIGURE 15. Loss for GRU model training to 1000 epochs.

FIGURE 16. Confusion matrix for GRU training 1000 epochs.

TABLE 8. GRU training 1000 epochs classification performance.

Fig. 16 is similar to Figs. 10 and 13. Ace is the most
accurately predicted (4464 records), but all categories have
good predictions with some confusion [34].

Table 8 illustrates that the GRU model trained for
1000 epochs achieved an accuracy of 0.961 and a kappa score
of 0.947, with minimal variations between precision and
recall for all categories. Overall, the extended GRU model
outperformed all other models examined.

3) COMPARISON OF LEARNING MODEL
Table 9 indicates that the GRUmodel achieves a Kappa score
of 0.946, which is equivalent to the Kappa score of the LSTM
model. Therefore, by increasing the number of epochs to
1000, the GRUmodel surpasses all other models and delivers
superior performance.
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TABLE 9. Evaluation and classification performance for the considered
models, 1000 epochs.

TABLE 10. Evaluation of deep learning models in different epochs.

D. DISCUSSION
In this study, we observed that accurately classifying specific
abnormal driving patterns requires the inclusion of a substan-
tial number of characteristic variables that exhibit correlation
changes. The choice of classification model significantly
influences the classification performance, and therefore,
we applied the same network parameters to the learning
models.

Based on the results presented in Table 10, it is evident
that among the four evaluated models, the GRU model with
bidirectional features, training for 500 and 1000 epochs,
respectively, demonstrated superior performance in terms of
accuracy, loss, and kappa score. The 500-epoch GRU model
achieved an accuracy of 0.963, a loss of 0.129, and a kappa
score of 0.949, while the 1000-epoch model achieved an
accuracy of 0.975, a loss of 0.081, and a kappa score of 0.965.
These results indicate that the GRU model with bidirectional
features is the most effective model for predicting driving
behaviors, including safe and dangerous behaviors.

The incorporation of kinematic data related to vehic-
ular motion is vital for the analysis of driving behav-
ior [35], [36], [37], [38]. In this regard, our proposed model
exhibits superior performance compared to other current
state-of-the-art models when it comes to detecting driver
behavior while ensuring privacy preservation through the
utilization of kinematic datasets. The BiGRU model out-
performs the multi-classifier fusion approach in accurately
identifying safe and aggressive driving events, resulting in
a noteworthy 0.75% increase in accuracy [8]. Additionally,
the model surpasses the general LSTM model, even when
combined with a Regression algorithm [9]. These findings

highlight the effectiveness and superiority of our proposed
model in the field of intelligent transportation systems.

V. CONCLUSION
In this study, we collected data from a vehicle’s ECU using
OBD interface devices installed in automobiles. The data was
then sent to an onboard device for processing and analysis.
The novel methodology of this investigation involves using
deep learning models to analyze driving behaviors and pat-
terns gathered from real vehicles. This method offers several
advantages. For instance, it enables us to predict driving
behavior based on various macroscopic traits, leading to
more accurate and comprehensive results. The model can
also determine the current driving mode and identify risky
driving behaviors without requiring any private driver infor-
mation. Our proposed deep learning model can match the
most advanced models in this field. Moreover, it is reliable
enough to directly assign certain tasks to the driver, thus
enhancing the safety system.
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