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ABSTRACT Spatiotemporal fusion (STF) techniques play important roles in Earth observation analysis
as they enable the generation of images with high spatial and temporal resolution. However, existing STF
models often fuse images from various satellites, not satisfying the demand for precise crop monitoring.
In contrast, unmanned aerial vehicle (UAV) images can deliver detailed data, and deep learning (DL)-
based STF models have the potential to automatically extract abstract features. To this end, this study
proposed a novel end-to-end DL-based STF model named UAV-Net, which can produce centimeter-scale
UAV images. UAV-Net has an encoder-decoder architecture with Modified ResNet (MResNet), Feature
Pyramid Network (FPN), and decoder modules. The encoder uses MResNet modules to extract input
features, while the FPN module performs a multiscale fusion of these features before reconstructing UAV
images using transposed convolution in the decoder module. Through comparative and ablation experiments,
this study evaluated the efficacies of MResNet modules with 18, 34, and 50 layers, along with the FPN
module of UAV-Net. The experimental results on real-world datasets demonstrated that UAV-Net adequately
produces UAV images both visually and quantitatively. Furthermore, a comparison with state-of-the-art STF
models highlights the innovation and effectiveness of UAV-Net in producing centimeter-scale images. The
predicted centimeter-scale images using UAV-Net have great potential for various environmental monitoring
applications.

INDEX TERMS Spatiotemporal fusion, crop monitoring, UAV-Net, ResNet, feature pyramid
network (FPN).

I. INTRODUCTION
Crop monitoring is a vital aspect of the agricultural produc-
tion process, which enables farmers to implement effective
management for yield optimization [1]. Conventional field
surveys for crop monitoring can be labor-intensive, time-
consuming, and potentially destructive. Thus, remote sensing
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(RS) techniques are an attractive option for high-efficiency
and non-destructive crop monitoring. RS technology is
widely used for Earth observation and is crucial in agricul-
tural applications. RS platforms can be broadly classified
into three categories based on the distance to the target
object: spaceborne (e.g., satellites), airborne (e.g., Unmanned
Aerial Vehicles [UAVs]), and ground-based (e.g., hand-held
devices). Among these platforms, UAVs are highly versatile
and can be equipped with a range of sensors, providing
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images with a high spatial resolution that includes precise
real-time information regarding crops [2]. On the other hand,
satellite images with moderate spatial resolution and fixed
revisit frequencies are ideal for long-term and large-scale
crop monitoring.

UAV images with dense time series and rich spatial infor-
mation have a wide range of potential applications [3].
These images are valuable for crop growth monitoring,
improved farming efficiency, and yield estimation. How-
ever, daily UAV imaging is challenging due to high opera-
tional costs, tedious image processing, etc. Spatiotemporal
fusion (STF) technology can address these challenges by
generating cost-effective, dense time-series UAV images.
STF can generate images with high spatial and temporal
resolution by combining temporally frequent but spatially
coarse images (below ‘‘coarse image’’) with spatially fine
but less temporally frequent imagers (below ‘‘fine image’’).
STF poses a challenging and undefined problem: how to
reconstruct a fine image by modeling the complex rela-
tionship between fine and coarse images [4]. Existing STF
models are categorized into four groups based on their
methods of linking fine and coarse images: unmixing-based,
weight function-based, learning-based, and hybrid-based [5].
Unmixing-based models use linear unmixing theory to map
the relationship between fine and coarse images [6], and
the multisensor multiresolution technique [44] was the first
STF model in this category [7]. Subsequently, multiple STF
models have been developed to manage the low spectral
accuracy and intraclass spectral variability issues that affect
the multisensor multiresolution technique [8], [9]. Weight
function-based models reconstruct fine images by empir-
ically weighing the inputs, with the spatial and temporal
adaptive reflectance fusion model (STARFM) being widely
used [10], [11], [12]. However, both unmixing-basedmethods
and weight function-based have limitations related to unrea-
sonable assumptions [13], [14]. Learning-based STF models
have rapidly advanced in recent years and can be further
divided into sparse representation, Bayesian, machine learn-
ing, and deep learning (DL) models. Sparse representation
learningmodelsmake key assumptions regarding dictionaries
and sparse coding coefficients [15], while existing Bayesian
learning models have stringent input requirements or are
designed for specific applications [16]. Machine learning
algorithms are not effective in high-dimensional RS image
prediction. DL-based STF models, on the other hand, exhibit
superior performance by establishing complex mappings
between input and output images and using a large number
of available RS images. Advances in DL network technology
have led to a rapid increase in the number of DL-based
STF models. Common DL networks used in STF models
include the deep convolutional neural network [7], [17], [18],
generative adversarial network [19], [20], [21], AutoEn-
coder [22], [23], Long Short-Term Memory Network [24],
and Transformer [25]. The performance of DL-based STF
models can be improved by combining various DL strategies
to accommodate complex image mapping. Such strategies

include residual learning [7], [18], [26], attention mecha-
nisms [23], [27], [28], super-resolution [17], [24], [29],
multiscale mechanisms [18], [29], [30] and a compound loss
function [21], [22]. Finally, hybrid-based STF models lever-
age the advantages of the three STF categories to achieve
more accurate results. However, this approach increases the
computational cost.

STF has advanced significantly with many STF models
being developed. Existing STF models, on the other hand,
are commonly used to fuse images from various satellites,
such as MODIS and Landsat [22], [31], or Landsat and
Sentinel [32], [33]. Landsat and MODIS images are widely
used in STF considering their similar bandwidths and radia-
tions [34]. However, current fusions with spatial resolutions
of 10 m or 30 m are inadequate for precise and small-scale
applications. Additionally, existing STF models use fine and
coarse images, with scales that differ by less than 16-fold.
Therefore, fusions with centimeter-level spatial resolutions
and higher magnifications are in great demand for precise
Earth observation.

To this end, this study proposed a novel end-to-end STF
model named UAV-Net, which can generate UAV images
with a centimeter-level spatial resolution by fusing UAV and
PlanetScope satellite images with 150-fold magnification.
The predicted UAV image provides several advantages for
crop monitoring, including the high spatial resolution with
multiple spectral bands. This valuable information can be
used to generate vegetation indices maps to monitor crop
growth performance. As illustrated in Fig. 1, UAV-Net uses
a UAV-PlanetScope image pair captured at time t1 and a
PlanetScope image captured at time t2 as inputs to predict
the UAV image at t2. The PlanetScope and UAV images
captured at t1 and t2 are designated PIt1, PIt2, UIt1, and UIt2,
respectively. UAV-Net learns the changes in the features of the
PlanetScope images at t1 and t2 to guide the reconstruction of
the UAV image at t2, with reference to the UAV image at t1.

FIGURE 1. Spatiotemporal fusion of UAV and PlanetScope images
(t1 < t2).

UAV-Net is designed to predict centimeter-scale UAV
images that can be used for crop monitoring. UAV and Plan-
etScope images were collected over a corn field and used for
the UAV-Net training and validation. UAV-Net exhibits an
encoder-decoder architecture with Modified ResNet (MRes-
Net), Feature Pyramid Network (FPN), and decoder modules
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that address significant differences in spatial resolution when
reconstructing UAV images. The efficacy of the building
modules was evaluated through one comparative experiment
and one ablation experiment. The key contributions of this
study are threefold:

1) Proposed an end-to-end STF model that fuses UAV
and PlanetScope images. To our knowledge, this is the
first DL-based STF model to predict centimeter-scale
images using UAV and PlanetScope image datasets.

2) Investigated howMResNet and FPNmodules affect the
fusion accuracy of UAV-Net.

3) Provided a cost-effective way to generate time-series
centimeter-scale UAV images for crop monitoring and
other precise environmental monitoring application.

The remainder of this study is structured as follows:
Section II presents an overview of UAV-Net and the detailed
architecture of eachmodule. Section III conducts the compar-
ative and ablation experiments of the buildingmodules within
UAV-Net, as well as an experiment comparing the model
accuracy of UAV-Net with three state-of-the-art models.
It also discusses the limitation and future scope. Section IV
is the conclusion.

II. METHODOLOGY
This section provided a comprehensive description of the pro-
posed UAV-Net. Firstly, an overview of the entire UAV-Net
architecture was presented, followed by a detailed explana-
tion of the design of each module, including the MResNet,
FPN, and decoder architectures, as well as the compound loss
function. Additionally, the Normalized Difference Vegetation
Index (NDVI) and four evaluation metrics used to assess the
fusion results were introduced.

A. OVERVIEW OF PROPOSED UAV-NET ARCHITECTURE
The proposed UAV-Net architecture is made up of three
components: an encoder, an FPN, and a decoder. The encoder
is MResNet modules. As shown in Fig 2, the model inputs are
three images including one PlanetScope image at t1 (PIt1) and
t2 (PIt2,), and a UAV image at t1 (UIt1). The encoder is used
to compress the inputs to extract and encode important image
features, while the FPN is used for multiscale feature fusion.
Lastly, the decoder is used to reconstruct the UAV image at
t2 (UIt2) based on the extracted input features. Considering
the approximately 150-fold difference in spatial resolution
between UAV and PlanetScope images, it is necessary to
interpolate PlanetScope images to match the pixel size of
the UAV image before inputting them into UAV-Net. Conse-
quently, the features of the PlanetScope images will become
larger. To extract adequate features from PlanetScope images,
a larger receptive field is required for the convolution kernel.
The downsampling processing in the encoder module helps
to increase the receptive field, ensuring that the extracted fea-
tures include enough information for accurate reconstruction
in the decoder module. This encoder and decoder architecture
would be highly advantageous for UAV-based STF.

FIGURE 2. The architecture of UAV-Net.

FIGURE 3. The architecture of the modified ResNet module with
50 layers.

B. MRESNET
It has been claimed that the deeper the DL network, the
better performance of the network. Because a deeper network
can learn more complex and non-linear functions, thereby
extracting more abstract features with semantic information.
Deeper networks, on the other hand, are more difficult to
train due to the issue of vanishing or exploding gradients,
as well as overfitting and degradation. Thus, He et al. [35]
proposed the deep residual network (ResNet) architecture
to alleviate the issues raised by increasing depth in deep
neural networks. The most important idea in ResNet is the
introduction of shortcut connections, which could facilitate
information propagation and enable the networks to operate
with fewer parameters.

Although ResNet has gained popularity as a feature extrac-
tor network, it has some shortcomings when used for image
reconstruction tasks. The maximum pooling layer, which
retains only the maximum value of features, increases the risk
of detail information loss. Therefore, the MResNet module
was used in the UAV-Net by modifying ResNet according to
the following operation: 1) the maxpooling layer in Stage 1
was removed, and 2) the stride of the first convolutional layer
in Stage 1 was changed to 2 to ensure that the feature map
is the same size as the original ResNet architecture. The
residual configuration of theMResNet is identical to the orig-
inal ResNet, as outlined in [35]. This modification enhances
the subsequent high-resolution UAV image reconstruction
process. Fig. 3 illustrates the architecture of the MResNet
module with 50 layers used in the UAV-Net.

C. FEATURE PYRAMID NETWORK
DL architectures typically use multiscale fusion mechanisms
to enrich the details of feature maps [36]. Because the
deep convolution gradually loses spatial information as the
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FIGURE 4. The architecture of the FPN module.

convolution layer is continuously downsampled. Therefore,
a multiscale mechanism can be used to extract temporal
changes and spatial details at various scales from images,
resulting in more diverse features and better details preser-
vation. FPN [37] is a multiscale fusion mechanism that uses
a top-down architecture with lateral connections to construct
high-level semantic feature maps at all scales, thus leveraging
the inherent feature hierarchy [38]. The use of top-down
and bottom-up pathways to combine high-level semantic
information and low-level feature information is particularly
useful for multi-scale and small object detection [39], [40].
Thus, the role of FPN in UAV-Net was investigated. The
last four-layer feature maps output by the MResNet module
are fed into the FPN for multiscale feature fusion, resulting
in an output feature map with a dimensional size of 128 ×

128 (Fig. 4). In UAV-Net, the FPN module offers several
advantages. It enables the features of different scales from the
MResNet module to be directly connected into the decoder
module, allowing each stage to independently learn features
of different size. For example, when the features learned in
stage 1 are sufficient for the fusion task, they could be directly
used in the decoder module, reducing the learning burden on
stages 2 to 4. Conversely, when the FPN module is not used,
the increase in receptive field size can potentially introduce
more noise and affect the final results. Overall, the FPNmod-
ule, positioned between the encoder and decoder modules,
provides flexibility in optimizing the extracted features for
UAV image reconstruction. Note that the batch normalization
layer is removed from the FPN module, as previous studies
have demonstrated that it causes significant color patches in
the predicted image that are difficult to remove [41], [42].

D. DECODER
In image reconstruction tasks, the high-level features
extracted from the inputmust be upsampled tomatch the scale
of the original input images. Several methods exist for this
upsampling purpose, including transposed convolution, near-
est neighbor interpolation, and bilinear interpolation. How-
ever, only transposed convolution incorporates data learning
and thus is considered a general technique. Transposed con-
volution uses learnable parameters to increase the size of
the input feature map, making it the most effective method
for upsampling abstract representations. Consequently, trans-
posed convolution is commonly used in DL networks that

FIGURE 5. The architecture of the decoder module.

require image reconstruction. However, it is important to note
that if the parameters are not properly set, a feature map with
checkerboard artifacts may be produced [43]. DL networks
are typically reconstructed images with multiple layers of
transposed convolution, constructing high-resolution images
from low-resolution images through iterative processes [44].

As shown in Fig. 5, the output of the FPN module, which
has a feature map size of 128 × 128, is used as input in the
decoder module. The decoder module used two transposed
convolutions, each with a 2 × 2 filter and a stride size of 2,
to upsample the extracted feature map. The final layer is a 1×

1 convolutional layer that transforms the number of channels
to four to reconstruct a UAV image with four spectral bands.

E. LOSS FUNCTION
In this study, the errors between the predicted UAV image
and the captured true UAV image were evaluated using
a weighted combination of the structural similarity index
measure (SSIM) and L1 loss, as shown in Equation (1).
The SSIM loss function quantifies differences in luminance,
contrast, and structure between the predicted and ground
truth images [45]. Meanwhile, the L1 loss measures the
mean absolute error between the predicted image and ground
truth images [46]. To ensure the predicted high-resolution
UAV image retained both the structural similarity and the
data distribution and to avoid bias during the optimiza-
tion process, equal weight was assigned to the two loss
functions.

LUAVNet = LSSIM + L1 (1)

F. NORMALIZED DIFFERENCE VEGETATION INDEX
The NDVI was used to quantitatively and qualitatively evalu-
ate the spectral band information of the predicted UAV image
for crop monitoring. The calculation of NDVI is shown in
Equation (2), where NIR represents the near-infrared band
and RED represents the red band. The NDVI is a widely used
index for determining the richness and health of vegetation,
with values ranging from -1 to 1.

NDVI =
NIR− RED
NIR+ RED

(2)
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TABLE 1. Evaluation metrics and their Formula for fusion result
performance.

G. EVALUATION METRICS
In addition, the performance of UAV-Net was evaluated
using four commonly used quantitative evaluation metrics,
as outlined in Table 1. These metrics include the structural
similarity index measure (SSIM) [47], correlation coefficient
(CC), spectral angle mapper (SAM), and root mean square
error (RMSE). Among the equation of these metrics, y rep-
resents the value of the ground truth image, ŷ represents
predicted image value. The SSIM quantifies the differences
in luminance, contrast, and structure between correspond-
ing pixels in fused UAV images and ground truth UAV
images [45]. A higher SSIM value indicates higher similarity
between the images. The mean intensity, standard deviation,
and covariance of the fused images and the ground truth
image are represented by µŷ, µy, σ 2

ŷ , σ 2
y , σŷy, respectively.

The constants c1 and c2 guarantee that the SSIM value is
between -1 and 1. The CC metric is used to indicate the
linear relationship between pixels in fused and ground truth
UAV images. The SAM metric computes the average angle
between the spectra of corresponding pixels in two images,
with a lower value indicating higher fusion accuracy [48].
Additionally, the RMSE is frequently used to quantify fusion
errors, with a lower value indicating higher fusion accu-
racy [49]. Further information on image quality assessment
metrics can be found in [50].

III. EXPERIMENTS AND RESULTS
A. STUDY AREA AND DATASETS
A corn field on Yao Farm in Iwamizawa, Hokkaido, Japan
(Fig. 6) served as the study area. UAV-Net was trained and
evaluated using paired UAV and PlanetScope images that
have been captured over the corn field during the growing sea-
son of 2021. The duration of the corn growth cycle spanned
from the end of May to the beginning of September.

PlanetScope is a satellite constellation operated by Planet
(https://www.planet.com). PlanetScope provides high tempo-
ral resolution imaging with near-daily coverage, as well as
global coverage images that are analysis-ready for real-time
analysis. The spatial resolution of PlanetScope is 3m. In this

FIGURE 6. Location of the corn field and its corresponding UAV image
(RGB composite).

TABLE 2. Bands information of PlanetScopeScope images.

TABLE 3. Acquisition dates (YYYY/MM/DD) of UAV and PlanetScope
images for STF.

study, the blue, green, red, and NIR bands of PlanetScope
images were used for STF. Table 2 summarizes key informa-
tion on the PlanetScope bands.

In addition, DJI Phantom 4 Multispectral and MicaSense
RedEdge-MX cameras were used to capture high-resolution
UAV multispectral images from June to August 2021. The
spatial resolution of the UAV was approximately 2 cm. The
corresponding blue, green, red, and NIR bands from UAV
multispectral images were used for the STF. Table 3 provides
the list of UAV and PlanetScope images available for the
2021 corn growing season. In total, 32 sets of cross-paired
UAV and PlanetScope images were generated, and each
image set with two UAV-PlanetScope image pairs.

B. EXPERIMENTAL SETTINGS
To assess the efficacies of UAV-Net and its building mod-
ules, comparative and ablation experiments were performed.
The comparative experiment evaluated the accuracy and effi-
ciency of three MResNet configurations with 18, 34, and
50 layers. The ablation experiment examined the effects of
the FPN module on UAV-Net performance. To address the
reduction in feature map size when the FPN module was
ablated, three additional transposed convolution layers were

85604 VOLUME 11, 2023



J. Xiao et al.: DL-Based STF of UAV and Satellite Reflectance Images for Crop Monitoring

FIGURE 7. Decoder architecture for the experiment without the FPN
module.

incorporated into the decoder module (Fig. 7). Furthermore,
the fusion accuracy of UAV-Net was compared to three state-
of-the-art algorithms. These algorithms include the enhanced
Deep Convolutional SpatioTemporal Fusion Network (EDC-
STFN) [22], HIgh-resolution SpatioTemporal Image Fusion
(HISTIF) [51], and improved HISTIF (IHISTIF) [52] fusion
algorithm. The EDCSTFN is a deep learning-based STF
model that uses ‘‘encoder-merge-decoder’’ architecture. HIS-
TIF is a non-deep learning algorithm that has demonstrated
good performance in high-resolution crop monitoring at the
sub-field level. IHISTIF aims to enhance the performance of
HISTIF.

Among the 32 sets of images, 30 were used for training
and validation, while the remaining two were used for testing.
This is to ensure that the training dataset contained a diverse
range of image pairs that represented various time spans
of crop growth stages for training a generalized DL model.
Notably, the test datasets were not used in the training pro-
cess. The two sets of test images were used to produce UAV
images on July 31 and August 7, 2021. The corresponding
true images captured by the UAV on these two dates served
as the ground truths for the evaluation.

To facilitate the training process, the pixels of UAV and
PlanetScope images were normalized to a standardized value
range of 0 to 1 for all four spectral bands. The PlanetScope
images were up-sampled to match the spatial resolution of
the UAV image using the bilinear interpolation method. The
30 image sets used for training and validation were then
clipped into 512 × 512 patches to reduce their size before
being fed into the UAV-Net. The experiments were con-
ducted using the PyTorch framework on a computer with
an Intel(R) Core (TM) i9-12900K central processing unit
(CPU)@3.20 GHz, NVIDIA GeForce RTX 3090, and 48 GB
RAM configuration. The validation dataset was created by
randomly selecting 10% of each of the 30 datasets that
were clipped into patches. Validation was performed every
10 epochs using a cross-validation method, and the SSIM
metric was used to identify the best model. The following
hyperparameters were used in this study: the batch size was
set to 32, and the initial learning rate was 0.001, while the
WarmupPolyLR learning scheduler was used with a warmup
epoch of 3. All training was conducted for 300 epochs using
the rectified linear unit (ReLU) activation function and the
Adam optimizer.

Note that the UAV image did not cover a square or rect-
angular area, there are significant areas with no data values.
To ensure a fair and accurate evaluation of the fusion results,
the predicted images were clipped into small patches, exclud-
ing patches with no data value for the evaluation. Fourmetrics
were used to evaluate individual bands, and the mean metrics
values of the four bands were also calculated.

TABLE 4. Objective evaluation of mresnet modules with 18, 34, and
50 layers using cross-validation.

C. COMPARISON AND RESULTS
1) COMPARATIVE STUDY
Table 4 presents a summary of the results on the validation
dataset, exhibiting the performance of MResNet 18, 34, and
50 based on four evaluation metrics. The best values are
highlighted in bold font. It was observed that the MRes-
Net modules with 50 layers achieved slightly better results
compared to the modules with 18 and 34 layers. This is
evident from the mean value across most metrics, except for a
marginal difference of 0.0001 in SAM compared toMResNet
34. The better performance of the deeper MResNet module
can be attributed to the fact that deeper layers can better
fit the data and thus exhibit better performance. However,
anMResNet module with evenmore layers was not compared
due to the potential risk of overfitting. TheMResNet modules
with 18, 34, and 50 layers combine with the decoder mod-
ule underwent a training and validation process that lasted
14h8m1s, 14h26m58s, and 18h32m21s, respectively.

Fig. 8 presents a visual comparison of ground truths (col-
umn a), and fusion results (columns b, c, and d) of RGB
bands composition on two test image sets. The images in
columns b, c, and d were predicted using MResNet 18, 34,
and 50, respectively. The images from July 31 and August
7 were presented in the first and second rows, respectively.
It can be observed that the fusion results closely resembled the
ground truths in terms of shape, texture, color, and brightness,
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FIGURE 8. Red-green-blue composition of the fusion results for July 31, 2021 (first row), and August 7, 2021 (second row), with different
MResNet layers. (a) Ground truth, (b) MResNet 18, (c) MResNet 34, (d) MResNet 50.

highlighting theUAV image fusion capacities of theMResNet
with the decoder architecture. Additionally, two randomly
selected red-boxed areas are magnified regions, allowing a
more detailed comparison of the fusion results.

Fig. 9 displays two magnified areas, with the top two rows
showing images from July 31, and the bottom two rows
showing images from August 7. By the visual inspection,
it is evident that the predicted images from August 7 exhibit
better performance than those from July 31 compare to their
respective ground truths. Notably, the highlighted red circle
area in the topmost row indicates that MResNet 50 (column
d) optimally predicted UAV images that were more accurate
compared to images predicted using other MResNet modules
(columns b, c). Furthermore, theMResNet module with more
layers produced sharper images, as observed in the fusion
images displayed in columns b, c, and d.

The feasibility of the fusion results for crop monitoring
was further validated by visually examining NDVI maps and
corresponding error maps. The NDVI maps and their error
maps for July 31 (Fig. 10) and August 7 (Fig. 11) based on
MResNet 18, 34, and 50 are shown in columns b, c, and
d, respectively, and ground truth NDVI maps are shown in
column a. The NDVI error maps in the first rows of Figs. 10
and 11 were obtained by subtracting the ground truth NDVI
values from the fusion results NDVI values, and the error
map values were stretched to the range of 0 and 0.2 to
emphasize errors. This error map stretching strategy has also
been used in previous studies [49], [23]. An examination of

the overall distributions of NDVI values reveals that NDVI
maps produced using the MResNet with the decoder mod-
ules exhibited a closer resemblance to the ground truths.
Additionally, the NDVI error maps were dominated by light
blue color, indicating minimal errors and thus confirming
the reliabilities of the predicted red and NIR bands for crop
monitoring. However, the error maps for July 31 exhibit more
error noise representation compared with the error maps for
August 7.

The visual comparison of the fusion results obtained from
MResNet with 18, 34, and 50 layers on two test image
sets demonstrated that each combination of MResNet with
the decoder module produced visually satisfactory images.
To further evaluate and compare their performance, quantita-
tive metrics were calculated for two test image sets, as shown
in Table 5. The results indicate that the MResNet 50 outper-
formed both MResNet 18 and 34, with the highlighted values
across most metrics for the two test image sets. However,
the SAM values were higher for MResNet 50 compare to
MResNet 18 and 34. Moreover, the inferior performance of
the NIR band, as indicated by poorer SSIM and RMSE values
compared to RGB bands, could be attributed to differences
in the distribution of spectral band data. The distribution of
NIR band data significantly differs from that of the RGB
bands. Additionally, the values of four metrics for the fusion
image on August 7 are consistently better than those for the
fusion image on July 31, which is consistent with the visual
observation results.
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FIGURE 9. Images of two magnified areas from July 31 (top two rows) and August 7 (bottom two rows) using different MResNet modules.
(a) Ground truth, (b) MResNet 18, (c) MResNet 34, (d) MResNet 50.

2) ABLATION EXPERIMENT
The comparative study revealed that MResNet 50 was opti-
mal as the MResNet module for UAV-Net. Therefore, MRes-
Net 50 was used as the backbone for the ablation experiment
that aimed to investigate the effect of FPN on the fusion
performance. An FPN module is used before the decoder
module to enable multiscale fusion.

Table 6 summarizes the results for the four metrics on the
validation dataset using MResNet 50, and MResNet 50 with
an FPN module. A comparison between MResNet 50 alone
and MResNet 50 with the FPN module revealed that the
FPN module improved all of the metrics values. Notably,
the improvements achieved by incorporating the FPNmodule
surpassed the improvements observed by using deeper layers
in MResNet. This finding highlights the beneficial effect

of multiscale fusion on UAV-Net performance. Furthermore,
the training and validation processing time of UAV-Net is
20h40m20s.

Fig. 12 provides a visual comparison of the ground truth
(column a) and the fusion images obtained from MRes-
Net 50 (column b), and MResNet 50 with FPN (column
c) in the RGB bands composition on two test image sets.
The images display in the first and second rows from July
31 and August 7, respectively. The fusion images resulting
from the ablation experiment exhibit a remarkable resem-
blance to the ground truth images in terms of shape, texture,
brightness, and color. This observation demonstrated the
effectiveness of FPN modules in UAV image prediction. The
two red-boxed areas are magnified regions used for closer
inspection, as shown in Fig. 13.

VOLUME 11, 2023 85607



J. Xiao et al.: DL-Based STF of UAV and Satellite Reflectance Images for Crop Monitoring

FIGURE 10. The NDVI maps of fusion result on July 31 and their error
maps based on (a) ground truth. (b) MResNet 18. (c) MResNet 34.
(d) MResNet 50.

FIGURE 11. NDVI maps of the fusion result for August 07 and their error
maps based on (a) ground truth, (b) MResNet 18, (c) MResNet 34,
(d) MResNet 50.

TABLE 5. Objective evaluations of mresnet modules 18, 34, and 50 based
on Test datasets.

The images in the top two rows of Fig. 13 were from
July 31, while the images in the bottom two rows were
from August 7. Visual examination demonstrated that the
fusion results obtained using MResNet 50 alone and MRes-
Net 50 with FPN had a high similarity. All of the models
predicted UAV images with good color preservation and
smooth backgrounds.

TABLE 6. Objective evaluation of mresnet 50, and mresnet 50 with FPN
model based on cross-validation.

The fusion results by MResNet 50 with FPN (column c)
were also validated by their NDVI maps and error maps.
A comparison was made between the NDVI map of the abla-
tion experiment fusion results, the NDVIs map of the ground
truth image (column a), and the NDVI maps of MResNet
50 (column b). Figs. 14 and 15 present the NDVI maps of
July 31 and August 7, respectively. The NDVI value range
for the fusion results on July 31 was close to the ground
truths, but the NDVI error maps revealed a significant visual
noise. In contrast, although the NDVI range for the fusion
results on August 7 was less similar to the ground truths, the
error maps exhibited significantly less noise. The difference
in error noise between the error maps of July 31 and August
7 suggested the potential influence of input qualities. Nev-
ertheless, it was observed that the NDVI values of the soil
background (without crops) in the fused images of August
7 were much lower than the ground truths compared to those
of July 31.

The fusion results obtained from the ablation experiment
on the two test image sets were objectively evaluated using
four metrics (Table 7). Incorporating the FPN module into
UAV-Net resulted in better mean values across all four met-
rics, indicating the effectiveness of multiscale feature fusion
in UAV image reconstruction. The values of SSIM and RMSE
for the NIR band were consistently poorer on both test sets
than those for the RGB bands, indicating the need for further
attention and investigation to address this issue in the future.
Additionally, the mean values of four metrics were better for
the fusion results on August 7 than those on July 31, which
is consistent with the results of the comparative experiment.
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FIGURE 12. Red-green-blue composition of the fusion results on July 31 (first row) and August 7 (second row) using different
MResNet alone or augmented. (a) Ground truth, (b) MResNet 50, and (c) MResNet 50+FPN.

Therefore, it is indicated that input image quality significantly
affects the quality of fusion images.

3) MODEL ACCURACY COMPARISON
The two test image sets were used to assess the accuracy of
the EDCSTFN, HISTIF, and IHISTIF models. Fig. 16 illus-
trates the visual comparison results of the EDCSTFN model
(column c) in comparison to the ground truth images (column
a) and the results from UAV-Net (column b). The fusion
results produced by EDCSTFN exhibit noticeable dissimi-
larities when compared to the ground truth images. Fig. 17
displays two magnified areas to compare the fusion results
in more detail, revealing that EDCSTFN did not effectively
learn accurate information for the UAV and Planet image
fusion.

Table 8 compares four metrics between UAV-Net and
EDCSTFN on two test sets. In terms of SSIM value, EDC-
STFN exhibits relatively high values in RGB bands, possibly
due to the datasets being from a crop field where changes
are less in structures but rather in crop growth. However,
the CC values in RGB bands indicate a lower correla-
tion between the ground truth and fused image obtained
by EDCSTFN. Moreover, the significant difference in the

SAM values between UAV-Net and EDCSTFN, suggests that
EDCSTFN has limited capability in capturing the spectral
information changes from UAV and Planet images. Further-
more, in terms of processing time, CPU-based predictions for
a 512 × 512 UAV image take 0.38s with UAV-Net and 1.89s
with EDCSTFN. When using the GPU, the times decrease
to 0.02s for UAV-Net and 1.00s for EDCSTFN. UAV-Net
has 23,740,308 parameters, while EDCSTFN has 447,972
parameters. Despite having a higher parameter count, UAV-
Net demonstrates greater computational efficiency due to the
downsampling process in the encoder module, which consis-
tently reduces the feature map size. In contrast, EDCSTFN
consists only of stacked convolutional layers without a down-
sampling process.

Fig.18 presents visual comparison results of the HISTIF
(column b) and IHISTIF (column c) models. Due to the
requirement of square-shaped input images for HISTIF and
IHISTIF models, the fusion results only represent a portion
of the corn field. The two non-deep learning-based STF mod-
els do not require a training process and directly input two
PlanetScope images and one UAV image into their model.
However, they inadequately capture the changes between
reference to prediction dates. Notably, the fusion results keep
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FIGURE 13. Magnified area images from August 7 (bottom two rows) and July 31 (top two rows).
(a) Ground truth, (b) MResNet 50, and (c) MResNet 50+FPN.

the same as the input reference UAV images (column d) rather
than resemble the ground truth (column a), indicating the
limitation of the HISTIF and IHISTIF in accurately fusing
UAV and satellite images for crop monitoring.

Note that existing proposed STF models, such as EDC-
STFN, HISTIF, and IHISTIF, were designed for fusing satel-
lite imageswithmeter-scale fusion results. Hence, using these
STF models directly for centimeter-scale image prediction
presents challenges. This highlights the innovation and effec-
tiveness of UAV-Net for centimeter-scale UAV image fusion.

D. LIMITATIONS AND FUTURE SCOPE
Currently, there are no benchmark datasets available that
pair UAV and satellite images for STF, thereby hindering
comparative evaluations of the performance of UAV-Net in
crop monitoring. The lack of benchmark datasets and the fact
that existing DL-based STF models are typically designed

TABLE 7. Objective evaluation of the performance of mresnet 50 alone,
and mresnet 50 with fpn using two Test datasets.

for fusing satellite images with scales differing by less than
16-fold, pose a challenge when attempting to compare the
performance of UAV-Net (handles 150-fold scale difference)
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FIGURE 14. NDVI maps of fusion results for July 31 and their error maps.
(a) Ground truth, (b) MResNet 50, and (c) MResNet 50+FPN.

FIGURE 15. NDVI maps of fusion results for August 07 and their error
maps. (a) Ground truth, (b) MResNet 50, (c) MResNet 50+FPN.

with other STF models. Moreover, the interval between the
reference and prediction dates of the training datasets used
in this study do not all lie within the difference span of the
test dataset derivation, which may reduce fusion accuracy.
Thus, it is suggested that the interval between the refer-
ence and the prediction dates of the future UAV-satellite
STF benchmark datasets should be varied to improve STF
model generalizability. Additionally, as discussed previously
[53], [54], high-quality satellite image datasets are important
to ensure STF performance. This study found that different
test images yielded different fusion results, and high-quality
input UAV images improved UAV image prediction. Some
UAV images in the training datasets in this study exhib-
ited mosaic distortion (Fig. 17), which was caused during
three-dimensional photogrammetry reconstruction. There-
fore, the repair of both distortion and noise during UAV
image reconstruction is important to achieve accurate UAV

FIGURE 16. Red-green-blue compositions of the fusion results on July 31
(first row) and August 7 (second row). (a) Ground truth, (b) UAV-Net, and
(c) EDCSTFN.

FIGURE 17. Magnified area images from August 7 (bottom two rows) and
July 31 (top two rows). (a) Ground truth, (b) UAV-Net, and (c) EDCSTFN.

image prediction. Furthermore, the results showed that the
performance of the NIR band in the predicted UAV images is
comparatively lower than that of RGB bands, which requires
further investigation.

Note that the proposed UAV-Net adequately predicted
UAV images for crop monitoring because the training dataset
focused on crop phenological changes. This is due to deep
neural networks performing well in learning data distribution
patterns. Therefore, UAV-Net may predict land cover changes
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FIGURE 18. Red-green-blue compositions of the fusion results on July 31
(first row) and August 7 (second row). (a) Ground truth, (b) HISTIF, (c)
IHISTIF, and (d) input UAV images.

FIGURE 19. Distortion of a UAV image of the training dataset.

TABLE 8. Objective evaluation of the performance of UAV-Net and
EDCSTFN using two Test datasets.

if training dataset images show such changes, but prediction
accuracy may be low if the training dataset does not teach the
model to learn specific data distribution patterns. Moreover,
crop randomness and external environmental factors can cre-
ate significant uncertainty in the growth of plant branches and
leaves. Therefore, DL networks cannot accurately predict the
growth of specific branches and leaves of crops but can detect
overall growth trends.

Considering the computational constraints and the high
resolution of the UAV image over the corn field that is larger
than 2 GB, it is not feasible to predict the entire UAV image
during the fusion process. Instead, fused UAV images in
small patches were merged to form the entire scene. As a
result, the merged images are bordered by lines. Although
the presence of such lines can be overlooked if the entire
UAV image is examined, expanding the computation resource
would resolve this issue.

In the future, further investigation into the fusion of
other spectral bands, such as the red edge band, could
be explored to generate other vegetation indices for crop
monitoring. In addition to vegetation indices, the pro-
duced centimeter-scale UAV images have a high potential
to enhance crop monitoring in various aspects. They can
improve crop classification accuracy, enable effective detec-
tion of crop diseases, and facilitate time-series monitoring of
crop growth. As a result, they can further enhance manage-
ment practices and yield prediction accuracy. Furthermore,
to improve image fusion accuracy, multimodal DL techniques
can be employed that incorporate various information, such as
the interval between the reference date and date of prediction,
and the details of precipitation, temperature, and fertilizer.
Additionally, attention mechanisms could also be used to
focus on the spatial and spectral information of images, fur-
ther enhancing UAV image fusion.

IV. CONCLUSION
State-of-the-art STF models can fuse images from various
satellites to predict images with meter-level spatial resolu-
tions. However, precise environmental monitoring such as
cropmonitoring requires imageswith centimeter-scale spatial
resolution. Thus, the UAV-Net STF model was proposed in
this study to predict centimeter-scale UAV images for crop
monitoring. The comparative experiment revealed that the
MResNet module with 50 layers outperformed those with
18 or 34 layers in producing UAV images. Additionally,
the ablation experiment demonstrated that incorporating the
FPN module further improved the fusion performance. The
comparison with three STF models confirmed the superior
performance of UAV-Net. Visual and quantitative assess-
ments indicated that UAV-Net adequately fused UAV and
PlanetScope images. Nevertheless, some issues remain, such
as the impact of input image quality, blurry corn plant leaves
in the predicted images, and bordered lines in merged images.
To improve the accuracy and generalizability of STF models
to predict centimeter-scale resolution images, high-quality
UAV benchmark datasets are urgently needed. The results of
this study show the potential of UAV-Net for precise crop
monitoring, as well as broader environmental monitoring
applications.
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