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ABSTRACT In this article, we address the cyber-security problem of industrial control systems (ICSs)
when their sensor measurements may be compromised due to an attacker who has intercepted those
measurements via a network. We introduce a general-purpose method ‘‘Dynamic Watermarking (DW)’’
to detect potential cyber-intrusions on speed sensor measurements within industrial control systems, which
deploy an adjustable speed drive (ASD) to control a critical process. The DW method is injecting a random
private low-amplitude signal with a zero mean Gaussian distribution, ‘‘watermark’’, into one of the input
phase voltages powering the ASD system. The watermark signal propagates through the system including
pulse width modulation (PWM) power conversion stage and motor, then ultimately appears in the speed
sensor measurements. By deploying two statistical DW tests with two proper thresholds, the system can
detect potential cyber-intrusions or unobservable cyber-attacks such as replay attacks and false data injection
attacks (FDIA). The DW method tested on a laboratory-scale ASD system experimentally to protect the
system against cyber-intrusions. This system, powered by a commercial PWM drive operating at 208 V,
3-phase, and 3.7 kW, served as our experimental platform.

INDEX TERMS Cyber-physical systems (CPSs), industrial control systems (ICSs), cyber-attacks, dynamic
watermarking, adjustable speed drive (ASD), malicious sensors.

I. INTRODUCTION
Information and communication technologies have paved the
path to the fourth industrial revolution in the industrial sector,
known as Industry 4.0 [2]. Industry 4.0 represents the integra-
tion of advanced technologies via a network. This network
connectivity significantly widens intrusion points that inject
false data into the system such as false data injection attacks
(FDIA), resulting in system disruption and/or damage [3], [4].
Moreover, cyber-intrusions are becoming more sophisticated
and diverse and then, intruders have developed ways to
camouflage their activities [5]. Attackers are now able to
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access industrial control systems (ICSs) remotely, allowing
them to manipulate sensor data causing critical damage
on large-scale systems [3], [6], [7]. One example of such
intrusion was the Oldsmar Water Treatment Plant incident
in 2021 where the unauthorized individual gained access to
the system to increase the levels of sodium hydroxide in
the water supply to potentially dangerous levels [8]. Another
incident is the ransomware attack that disrupted operations
at Semikron, a semiconductor manufacturer, significantly
impacting production processes [9].

Adjustable speed drives (ASDs) are essential to the
industrial sector. They control many critical industrial
processes that are vital to national security, environmental
safety, and even human safety. A number of ICSs including
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FIGURE 1. Block diagram of the proposed cyber-intrusion detection
scheme.

ASDs consist of hardware devices and software that manage
necessary control tasks. These ICSs depend onmeasurements
reported from their sensors. However, such systems are
vulnerable to cyber-intrusions. Several cyber-intrusions have
been documented on critical industrial applications such
as Stuxnet [10], [11], showing the vulnerability of such
systems against sophisticated cyber-intrusions. In the Stuxnet
attack, upon analysis by industry experts, it is believed
that the speed sensor data was manipulated, resulting
in ASDs controlling centrifuges to increase their speed
causing them to self-destruct in time. Fig.1 shows the
block diagram closed-loop control of an ASD powering
a critical process. If the speed sensor is reporting lower
speed, which is manipulated by an attacker (FDIA), the
controller will increase the ASD’s speed resulting in dam-
aging the system. Therefore, designing a robust method for
detecting potential cyber-intrusions is the main topic of this
article.

A. RELATED WORKS
Several methods to secure ICSs against cyber-intrusions have
been proposed [12], [13], [14], [15], [16], [17], [18], [19],
[20]. Masood et al. [12] proposed employing blockchain
technologies based fault-tolerant control (FTC) in Industry
4.0. However, a significant drawback of this approach is
its limited scalability and potential delays in detecting
and responding to cyber-attacks. In [13], a hybrid testbed
to generate real-time data-sets for critical infrastructure
is utilized for the validation of real-time attack detection
algorithms. The approach is essentially a comparison tool
between the data obtained via simulation and the plant data
collected in real-time. However, this method fails in detecting
stealth and unobservable attack. Machine learning (ML)
and other data driven techniques based intrusion detection
methods have been proposed for applications of ICSs in [14],
[15], [16], [17], [18], [19], and [20]. Despite the effectiveness
of these methods in detecting cyber attacks, they require large
amounts of data to train to be effective, whichmay be difficult
to obtain in ICSs where data is often scarce or difficult to
access due to security and privacy concerns. Additionally,
these detection methods may classify the manipulated signal
as normal.

Multiple approaches to detect replay attacks in ICSs
have been proposed in [21], [22], [23], [24], and [25],
Guo et al. [21] proposed an output coding scheme where
the control input is coded into the measurement output
transmitted in the feedback channel. However, this approach
faces limitations when applied to commercial industrial
control systems due to the inaccessibility of control inputs.
Consequently, the proposed method may not be practically
viable for real-world applications, hindering its applicability
and effectiveness in commercial settings. In the context
of intrusion detection in wireless networks, the utilization
of watermarking signals for encrypting and decrypting
transmitted data has been proposed in [22] and [23]. However,
it is important to note that implementing such schemes
may necessitate additional computational resources and
introduce overhead in terms of communication bandwidth.
Ferrari et al. [24] proposed an intrusion detection to add
watermark signal into the sensor outputs with a bank of
filters. The approach may be compromised if the attacker can
substitute the real data before watermarking signal addition.
Bessa et al. [25] presents a control framework that uses a
dual-rate control approachwhich presents certain advantages.
However, its practical feasibility for commercial industrial
applications is limited since it requires access to the control
input for injecting the watermark signal.

B. MOTIVATION AND CONTRIBUTION
In this article, a method to reliably detect cyber-intrusions on
sensor signals of an industrial control system employing an
adjustable speed drive (ASD) system controlling a critical
process is discussed. The proposed system comprises the
implementation of a private, random signal with a zero
mean average, referred to as ‘‘watermarking signal e[k]’’,
which is added to the input phase voltage vc of the
DC-AC commercial inverter powering the motor [26]. This
watermark is shown to create a unique signature (time-
varying) that propagates through the system and appears in
sensor signals that control the motor such as current, speed,
torque, etc. Two statistical tests of variance are performed on
sensor measurements to identify anomalies or compromises
in the sensor measurements in the face of sophisticated
cyber-attacks such as false data injection attacks (FDIA),
stealth / unobservable attacks crafted to bypass traditional bad
data detectionmechanisms proposed by previous researchers.
The proposed approach (intrusion detection for ASD system)
has the following advantages:

• The watermark signal introduced into one of the
input phase voltages (described in Fig. 2) is small in
magnitude and does not show any discernible alteration
in the system’s performance.

• The proposed detection system does not alter the
commercial hardware employed in the industrial control
system by introducing the watermark signal into the
input phase voltage powering the system.

• The proposed Dynamic Watermarking (DW) approach
is shown to be a general-purpose method to detect
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FIGURE 2. Detailed implementation of the proposed intrusion detection system for DC-AC
inverter-controlled adjustable speed drive system controlling a critical process. [26].

unobservable FDIA such as record and replay on the
motor speed sensor measurements.

• The proposed approach works outside of the closed-loop
control system (described in Fig. 2) by employing
established data-driven system identification methods
[27], [29].

• The approach has been effectively implemented on a
low-cost DSP-TI28379D, yielding robust performance
as demonstrated by the obtained experimental results.

The remainder of this work is organized as follows:
Section II details the various components and processes of the
proposed detection mechanism on an adjustable speed drive
system controlling a critical process, Section III shows the
experimental results and discussions, and Section IV provides
an overview of the conclusions drawn from this research,
along with the knowledge acquired, and suggests potential
areas for future research regarding cyber intrusion detection
within the framework of ICSs.

II. PROPOSED INTRUSION DETECTION SYSTEM
Fig. 1 shows the overview of the proposed detection scheme
and Fig. 2 shows the implementation of the detection
scheme on a commercial ASD system. The proposed defense
mechanism is injecting a watermark signal e[k] into the
input phase voltage vc as shown in Fig. 2. A digital signal
processor (DSP) is generating the watermarking signal e[k]
and a series-connected transformer to inject the e[k] signal
into the vc. Then, this signal will propagate through the PWM
power conversion stage and motor, and it will be appeared
in the speed sensor measurements of the ASD system. The
attack detector also receives the output speed measurements
transmitted to the DC-AC commercial inverter controller.
As shown in Fig. 2, the motor speed sensor measurements can
potentially be altered/modified via possible cyber-intrusions.
To identify the integrity of the motor speed sensor signal,
the DSP performs two statistical DW tests. The background
theory, algorithm robustness, and proofs of the DW method
for detecting cyber-intrusions are explained in [32]. If one or
both of theDW tests show high value, it can be concluded that
the speed sensor measurements have been manipulated [32].

A. ASD AS A SINGLE INPUT SINGLE OUTPUT SYSTEM
(SISO)
The ASD system shown in Fig. 2, can be considered as a
single input single output (SISO) system. The relationship
between the input (one of the phase voltages of the
commercial ASD system) and output (motor speed) can be
written as:

z[k + 1] = Az[k] + Bvc[k] + w[k + 1] (1)

where z[k] is the motor speed measurements, vc[k] is one of
the input phase voltages, and w[k + 1] is the system noise.

Then, the watermarking signal e[k] is injected into the
vc[k]; thus, the equation 1 can be written as follows:

z[k + 1] = Az[k] + B(vc[k] + e[k]) + w[k + 1] (2)

Now (2) can be rewritten in two equations as follows:

z[k + 1] − [Az[k] + B(vc[k] + e[k])] = w[k + 1] (3)

or

z[k + 1] − [Az[k] + Bvc[k]] = Be[k] + w[k + 1] (4)

In (3), the left-hand side is equivalent to the system noise.
In (4), the left-hand side is equivalent to the system noise
with the addition of watermark signal e[k]. The next step
is to validate the speed sensor measurements utilizing two
DW variance tests that will compare the actual measurements
against the SISO model with and without the watermarking
signal e[k] [32].

B. SYSTEM ID MODEL
The equation for the system model can be represented by (1)
with the input phase voltage vc and the output motor speed
z[k] as shown in Fig. 2. To analyze the system, matrices A
and B as shown in (1) need to be calculated at specified an
operating point. However, due to the nonlinearity of the ASD
system, the system model is unknown. Therefore, identifying
the values of A and B in (1) is a crucial task. Several system
identification methods are described in [27], [28], and [29],
we used the least squares method with (auto-regressive model
with exogenous inputs) ARX format to determine parameters
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in matrices A and B for our system [28]. The general form of
the prediction model is expressed as follows:

f (x[k − n : k], u[k − m : k],An,Bm)

= α0x[k] + α1x[k − 1] + · · · + αnx[k − n]

+ β0u[k] + β1u[k − 1] + · · · + βmu[k − m] (5)

where x is the output speed z[k], u is the input phase voltage
vc, An = [α0 α1 . . . αn]T , and Bm = [β0 β1 . . . βm]T

represent the parameters associated with the inputs and
outputs of our system, respectively.

Initially, the dimensions of the output m and input n are
unidentified and need to be properly determined based on
the data collected previously. For our system, the optimal
dimension for the A and B matrices was determined to be
four delays. Therefore, the prediction model for our specific
system can be expressed as follows:

zsystem−ID[k + 1] = a1z[k] + a2z[k − 1] + a3z[k − 2]

+ a4z[k − 3] + b1vc[k] + b2vc[k − 1]

+ b3vc[k − 2] + b4vc[k − 3] (6)

where:

A = [a1 a2 a3 a4] (7)

B = [b1 b2 b3 b4] (8)

Once A and B matrices are computed, the system
identification algorithm can predict the output signal z[k+1]
according to (5). Fig. 6 shows how the system ID tracks the
motor speed sensor measurements experimentally to validate
the system ID approach.

C. PROPOSED INTRUSION DETECTION ALGORITHM
Sections II-A and II-B provide a comprehensive examination
of the principles behind dynamic watermarking signals and
their injection into the input phase voltage vc that powers
the inverter. The proposed intrusion detection scheme of
an ASD system controlling a critical process is presented
in Fig. 2. The feedback control system adjusts the motor
speed based on the motor speed sensor signal output and
the reference speed signal. In industrial environments, the
motor speed, which is measured by a sensor, is commonly
collected through a programmable logic controller (PLC) and
transmitted to the system controller via an industrial intranet.
As detailed earlier, such systems are susceptible to cyber
intrusions, which can manipulate the actual motor speed
signal to disrupt the system.

Test 1: The proposed intrusion detection scheme evaluates
and compares the actual motor speed signal with the system
ID model via Test 1 and Test 2 as detailed in this section. The
variance of Test 1, represented by (9), compares the actual
motor speed signal, z[k + 1], obtained via a sensor with the
motor’s speed obtained through system identification method
(zsystem−ID) as discussed in Section II-B. The equation can be

rewritten for our specific plant as follows:

lim
K→∞

1
K

K−1∑
k=0

(
z[k + 1] − (zsystem−ID[k + 1] + e[k])

)2
= σ 2

ω

(9)

The output from the system identification continuously
depicts the expected output of a healthy system and serves
as a reference for comparison with the actual system’s
measurement obtained from the sensor data. The algorithm
evaluates both speed signals, z[k + 1] and zsystem−ID[k + 1],
for the presence of the watermarking signal e[k] to determine
if the system has been manipulated or not. During normal
operation, Test 1 (9) output will produce the variance of the
system noise, σ 2

w, which is nearly zero. However, in the case
of an intrusion, where the speed sensormeasurement, z[k+1],
is manipulated with false data, Test 1 (variance) will produce
a higher value, indicating a possible intrusion on the system.

Test 2: Equation (10) details variance Test 2, which serves
to assess the system’s security status by comparing the actual
motor speed signal data to the system identification model as
described in Section II-B. The equation can be rewritten for
our specific plant as follows:

lim
K→∞

1
K

K−1∑
k=0

(
z[k + 1] − zsystem−ID[k + 1]

)2
= B2σ 2

e + σ 2
ω

(10)

Unlike Test 1, the watermarking signal, (e[k]), is not
included in the output of the system identification block.
This redundancy in the intrusion detection system ensures a
more robust approach [32]. In normal operating conditions,
the result of Test 2 will reflect the system’s noise variance,
σ 2
w, and the variance of the watermarking signal, σ 2

e which is
nearly zero. However, in the event of an intrusion where the
sensor data, z[k + 1], is altered, the output of Test 2 will be
greater than expected, indicating a potential intrusion on the
system.

III. EXPERIMENTAL RESULTS AND DISCUSSION
In this section two attack scenarios that were implemented
on a 208V, 3-phase 3.7 kW adjustable speed drive sys-
tem operating in closed-loop speed control (Table 1) and
Fig. 3 [33] are discussed. These malicious intrusions include
speed amplitude manipulation and replay attack. Further,
Fig. 4 shows; the motor speed at 1200 rpm (Ch 1), PWM
output voltage vAB (Ch 2), andmotor current IA in steady state
(Ch 3). The proposed detection system has been implemented
on a low-cost DSP (TI28379D).

As discussed in section I, the watermarking signal used
in the system is extremely small and does not impact the
operation of the inverter or motor. Fig. 5 provides additional
evidence of the minimal impact of the watermarking signal
by showcasing the watermark signal e[k] (Ch 1), which is
2.5V (equivalent to 2% of the phase voltage vc). The figure
demonstrates two scenarios: one without the watermarking

78474 VOLUME 11, 2023



F. H. Alotaibi et al.: Designing an Intrusion Detection for an ASD System Controlling a Critical Process

TABLE 1. Experimental PWM ASD inverter and induction motor
setup [33].

FIGURE 3. Experimental implementation of the proposed intrusion
detection scheme on a 3 phase, 208V, 3.7kW PWM ASD inverter motor
drive system (schematic shown in Fig. 2).

signal (Ch 2) and another with the watermarking signal
(Ch 3). It can be observed that there are no discernible visual
differences between the two cases, indicating the negligible
effects of adding the watermarking signals to the sensors.
Furthermore, the figure also displays the line-to-line voltage
vac′ (Ch 4) applied to the inverter terminals with the addition
of the watermarking signal.

A. SYSTEM ID VALIDATION
In this section, Fig. 6 shows the validation of the system
identification (system ID) through experimental results. The
comparison between the system ID and the actual motor
speed sensor data demonstrates the system ID’s high accuracy
in accurately tracking the measured motor speed.

B. EVALUATION OF VARIOUS TYPES OF CYBER ATTACKS
ON ASD MOTOR DRIVE SYSTEM (Fig. 2)
In this section, the experiment results on PWM ASD inverter
motor drive setup (Table 1 and Fig. 3) are discussed. Fig. 3

FIGURE 4. Experimental results of the ASD system (Fig. 2) with
superimposed watermarking signal e[k] into the phase input voltage vc ,
(Ch 1) Motor Speed (tachometer signal), z[k]′ , (Ch 2) Line to Line voltage
of the motor, vAB, (Ch 3) Phase current of the motor, IA. The oscilloscope
scale: (time: sec/div is 10m),(Ch 1: volt/div is 5), (Ch 2: volt/div is 250),
and (Ch 3: A/div is 50).

FIGURE 5. Experimental results of the ASD system (Fig. 2) with
superimposed watermarking signal e[k] into the input phase voltage vc ,
(Ch 1) watermarking signal, ne[k] (note: n is the turns ratio = 5 ), (Ch 2)
Phase voltage without watermarking signal, vc , (Ch 3) Phase voltage with
superimposed watermarking signal, v ′

c , (Ch 4) Line to Line voltage with
superimposed watermarking signal, vac′ . The oscilloscope scale: (time:
sec/div is 4 ms),(Ch 1: volt/div is 2.5), (Ch 2: volt/div is 170), (Ch 3:
volt/div is 170), and (Ch 4: volt/div is 500).

shows the hardware setup of the experiment. As shown in
Fig. 2 and Fig. 3, z[k]′ represents the motor speed signal
which is processed via a DSP and z[k] represents the
manipulated (attacked) signal generated by the DSP. TheDSP
is used to perform (simulate) several attack scenarios such as
FDIA on the motor via altering motor speed z[k] and feeding
it back to the controller as a manipulated signal. Fig. 7 shows
the normal operation of the system where (Ch 1) is the motor
speed z[k]′, (Ch 2) is the speed signal generated by the DSP
z[k], and (Ch 4) and (Ch 3) represent variance tests 1 and 2,
respectively. It is noted that for normal operation (no attack)
the mean values of the variance for Test 1 and Test 2 are
407mV and 382 mV, respectively. These values will serve
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FIGURE 6. Experimental results of the ASD system (Fig. 2) demonstrating
the system ID validation (Discussed in Section II-B.) (Ch 3) actual motor
speed signal, z[k]′ , (Ch 4) The predicted motor speed signal,
zsystem−ID[k + 1]. The oscilloscope scale: (time: sec/div is 800 µs),(Ch 3:
volt/div is 5), and (Ch 4: volt/div is 5).

FIGURE 7. Experimental results show the normal operation of the ASD,
(Ch 1) actual motor speed signal, z[k]′ , (Ch 2) feedback motor speed
signal, z[k], (Ch 3) mean variance of test 2, and (Ch 4) mean variance of
test 1. The oscilloscope scale: (time: sec/div is 1 ms),(Ch 1: volt/div is 5),
(Ch 2: volt/div is 5), (Ch 3: volt/div is 1), and (Ch 4: volt/div is 1).

as a comparison baseline to identify cyber-intrusions on the
system when they occur.

1) MOTOR SPEED INCREASE ATTACK
In this attack scenario, the assumption is that an attacker gains
control of the incoming motor speed measurements, z[k]′,
which is equal to 1200 rpm in normal operation and then,
the attacker is able to modify the signal by decreasing it to
1100 rpm (false data injection). The system controller now
reacts to regulate the speed by increasing the speed above
1200 rpm to 1345 rpm. Fig. 8 details this scenario of speed
measurement manipulation. It is shown in Fig. 8 that both
variance tests signals show a sudden increase, indicating that
themotor speed signal has beenmanipulated. Fig. 9 shows the
continued steady-state operation of the motor drive system
at the increased speed level of 1345 rpm. The steady-state
values of Test 1 and Test 2 are observed to be 2.45 and

FIGURE 8. Experimental results show motor speed false data injection
that reports lower speed, this results in motor speed to increase, (Ch 1)
actual motor speed,z[k]′ , (Ch 2) manipulated motor speed signal
(reduced by 8.3%),z[k], (Ch 3) mean-variance of test 2, and (Ch 4)
mean-variance of test 1. The oscilloscope scale: (time: sec/div is
2 ms),(Ch 1: volt/div is 5), (Ch 2: volt/div is 5), (Ch 3: volt/div is 1), and
(Ch 4: volt/div is 1). Notice the rapid increase in Test 1 and Test 2 variance
indicating intrusion detection.

FIGURE 9. Experimental results show the mean variance values of test
1&2 when the attack happens to show an attack. The mean variances of
test 1&2 jumps from 407 mV & 382 mV to 2.45 & 2.48 respectively, which
is passed the threshold value of 1, (Ch 1) motor speed, z[k]′ , (Ch 2)
feedback motor speed, z[k], (Ch 3) mean variance of test 2, (Ch 4) mean
variance of test 1. The oscilloscope scale: (time: sec/div is 1 ms),(Ch 1:
volt/div is 5), (Ch 2: volt/div is 5), (Ch 3: volt/div is 1), and (Ch 4: volt/div
is 1).

2.48, respectively. Comparing this to Fig. 7, both Test 1 and
Test 2 show a six-fold increase, clearly indicating speed
manipulation and successful detection within milliseconds
after the attack begins.

2) REPLAY ATTACK
In the replay attack, the attacker has access to the motor speed
data z[k]′ and is able to record the real speedmeasurements of
the motor. The attacker then disconnects the actual measured
speed signal z[k]′ and transmits the pre-recorded signal to
the motor controller to test the system operation and may
decide to further manipulate the speed at a later time. Since
the recorded signal is identical to the actual motor speed
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FIGURE 10. Experimental results show motor speed replay attack
scenario, (Ch 1) actual motor speed,z[k]′ , (Ch 2) feedback motor speed
signal,z[k], (Ch 3) mean variance of test 2, (Ch 4) mean variance of test 1.
It is observed that there is a significant increase in the magnitude of
Test 1 and Test 2 when the attack begin. The oscilloscope scale: (time:
sec/div is 2 ms),(Ch 1: volt/div is 5), (Ch 2: volt/div is 5), (Ch 3: volt/div
is 1), and (Ch 4: volt/div is 1).

signal, it is nearly impossible to detect any manipulation on
the actual system’s signals using conventional physics-based
cyber security methods.

Fig. 10 shows the variance Test 1 (9) and variance
Test 2 (10) results of the replay attack on the speed sensor
measurements. The attacker recorded the actual speed sensor
data at some time in the past, then replays them back to
the controller as a current speed sensor measurement at the
attack time. It should be noted that the recorded speed signal
that feeds back to the controller has an embedded watermark
signal from a previous time, which is a different signature
since the random nature of the watermark signal e[k]. Fig. 10
illustrates that there’s a sudden increase in the variance
of Test 1 and Test 2, indicating a cyber intrusion on the
motor speed sensor measurements. As it is shown in Fig. 11,
(Ch 3 and Ch 4) shows the steady state values of both variance
tests are observed to be 1.42 and 1.4, respectively after the
attack occurs. Comparing this to Fig. 7, both tests show
3.5 times increase. Therefore, theDW-based two specific tests
with two pre-specified thresholds can detect the replay attack
successfully once the attack initiates.

C. EFFECT OF UTILITY VOLTAGE DISTURBANCES ON THE
INTRUSION DETECTION MECHANISM
In this section, the resilience of the proposed detection
algorithm to distinguish between actual manipulations on
the sensors and a natural disturbance on the grid will be
demonstrated. Fig. 12 shows natural disturbances on the input
utility ac voltage and their effect on the detection algorithm,
namely the variance values of Test 1 and Test 2. A 30 %
voltage sag on vac′ is triggered, as shown in Fig. 12. This
natural change in the grid’s voltage shows negligible effect
on variance values in Test 1 and Test 2 proving the robustness
of the proposed method to not only detect manipulations but

FIGURE 11. Experimental results show the mean variance values of test
1&2 when the attack occurs to show an attack. The mean variances of
test 1&2 jumps from 407 mV & 382 mV to 1.42 & 1.40 respectively, which
is passed the threshold value of 1, (Ch 1) motor speed, z[k]′ , (Ch 2)
feedback motor speed, z[k], (Ch 3) mean variance of test 2, and (Ch 4)
mean variance of test 1. The oscilloscope scale: (time: sec/div is
1 ms),(Ch 1: volt/div is 5), (Ch 2: volt/div is 5), (Ch 3: volt/div is 1), and
(Ch 4: volt/div is 1).

FIGURE 12. Effect of utility voltage disturbance on the intrusion
detection. (Ch 4) Input voltage vac′ dropped from 208 V RMS to 144 V
RMS (30 % voltage sag). (Ch 3) Mean variance value of Test 1, (Ch 2)
Mean variance value of Test 2. The oscilloscope scale: (time: sec/div is
40 ms), (Ch 2: volt/div is 2), (Ch 3: volt/div is 2), and (Ch 4: volt/div is
200). It is observed that Test 1 and Test 2 do not respond during the
normal operation of the system.

also to accurately differentiate between an attack and a natural
change in the system.

IV. CONCLUSION
In this article, a general-purpose detection method ‘‘Dynamic
Watermarking’’ against potential cyber intrusions on speed
sensor measurements on an adjustable speed drive (ASD),
has been discussed. Experimental test results of the Dynamic
Watermarking (DW) method on a lab-scale 208 V, 3-phase,
3.7 kW induction motor drive system have been shown to
detect speed sensor signal manipulations and replay attacks
within 0.4 ms. Furthermore, the effect of input voltage dis-
turbances has been evaluated. The proposed detection system

VOLUME 11, 2023 78477



F. H. Alotaibi et al.: Designing an Intrusion Detection for an ASD System Controlling a Critical Process

has been implemented on a low-cost DSP (TI28379D). The
additional cost of the additional hardware is low to provide
a robust defense against cyber-attacks in critical processes.
We are applying the Dynamic Watermarking (DW) method
on multiple ASDs connected system to identify the attack
locations.
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