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ABSTRACT This paper proposes formulating conceptual-stage vessel design optimization problems as
geometric programs, which can be transformed into convex optimization problems. Convex optimization
offers significant advantages in efficiency, reliability and automation potential over the general nonlinear
optimization approach typically used in naval architecture. Focusing on battery-electric vessels, geometric
program compatible models are derived for lithium-ion cells, power converters, propulsion motors and
propellers. Preliminary hull form development, stability calculation and structural design are also presented
in the context of geometric programming. The modeling approach is applied to study optimal battery sizing
for a coastal bulk carrier sailing in varying operational conditions. Using open-source software tools, the
battery sizing problem is solved in less than a second on a standard desktop computer. Local sensitivity
information encoded by optimal dual variables reveals that increasing the cell discharge upper bound by
1% decreases the optimal total number of cells by more than 1%. On the other hand, the sensitivities of
cell volume and maximum discharging current parameters are zero, indicating that the constraints involving
these parameters do not govern the solution.

INDEX TERMS Electric propulsion, battery energy storage, design, optimization, convex optimization,
geometric programming.

I. INTRODUCTION
A. ZERO EMISSION PATHWAYS
The maritime shipping industry is accelerating the search
for economically and technically viable zero-emission alter-
natives to conventional fossil fuels. Electricity generated
by renewable sources provides a zero-emission pathway
through either substitution of conventional fuels by elec-
trofuels (e-fuels) or by direct electrification. The latter
concept refers to storing electrical energy onboard the vessel
using battery energy storage in combination with electric
propulsion driveline. The direct electrification pathway is
typically at least four times more efficient than the e-fuel
pathway [1].

Rapid cost decline and energy density improvement of
lithium-ion batteries are driving the direct electrifcation
pathway. In another recent work [2], the authors evaluate the
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feasiblity of battery electrification for container carriers and
find it favorable for vessels over 8000 TEU with voyages less
than 1000 kilometers. The authors assume figures 470 Wh/l
for volumetric energy density and 94 e/kWh for the cost
of lithium-ion batteries, reflecting a realistic near-future
scenario.

B. DESIGN OF BATTERY-ELECTRIC VESSELS
The key technical challenge for battery-electric vessels
arises from the extra volume and weight of the battery
system, propulsion motor, and power electronics relative to
the volume of internal combustion engines and fuel tanks
of conventional vessels. Current commercially available
lithium-ion battery cells exhibit at least two orders of
magnitude lower volumetric energy density than liquid
hydrocarbon fuels [3]. The additional weight and volume
impact draught, resistance, hydrodynamics, aerodynamics,
stability, and energy consumption of vessels.
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The conventional design process, which relies on sta-
tistical data from similarly built vessels [4], is inadequate
for the design of novel battery-electric vessel concepts.
In the conventional approach, the design parameters (length,
displacement, block coefficient, length-to-breadth-ratio, etc.)
are calculated using empirical formulae, tabular values and
regression equations [5]. The advantages of this approach
are simplicity and speed. However, vessels in the database
could be poor designs which in turn impact all the vessels
that follow [4]. Another disadvantage is the poor reliability
of data. Useful data is likely missing for design tasks that
employ novel battery-electric architecture.

C. LOCAL SEARCH METHODS
The design should be derived from first principles when the
design is new, uncommon and data is lacking from similar
existing vessels [4]. First principles analysis requires that
physical relationships and performance bounds be described
analytically as equations and inequalities. Given an initial
guess (starting point), a classical local search method can be
employed to seek a locally optimal design. Steepest descent
and sequential quadratic programming are classical general-
purpose local search methods that iterate an initial solution
towards a locally optimal solution by incorporating first
and second derivatives. However, the optimal design can
possibly be located far away from the one found within the
search space. Another shortcoming is the failure to determine
feasibility in a reliable manner. Local methods can fail to find
a feasible design even though one exists.

Using a local optimization method involves experimenting
with the choice of algorithm and initial guess of optimization
variables as well as adjusting algorithm parameters. The typ-
ical approach is to start the search from many different initial
designs and take the best final design found. This approach
increases the likelihood of finding the globally optimal design
but does not guarantee it, while the computational effort
increases with the number of initial guesses.

D. GLOBAL SEARCH METHODS
Global search methods aim to avoid becoming trapped in
a locally optimal design by employing stochasticity in the
search process. Genetic algorithms are the most commonly
used global methods in vessel design [6], [7], [8]. Genetic
algorithms are based on a population of individual solutions
that evolves toward an optimal solution over generations,
mimicking the process of biological evolution. Other global
methods involve particle swarms and simulated annealing.

Although these methods can, in principle, compute the
global solution, in practice, there is no guarantee. Achieving
complete confidence that the global design has been found
within a given tolerance comes at a computational cost that
is prohibitive for practical design problems. Even without a
guarantee of global optimality, solution times for practical
problems in the industry typically range from hours to
days [9].

E. CONVEX OPTIMIZATION
The aim of this study is to propose a convex programming
framework for the conceptual-stage design optimization
of battery-electric vessels. The vessel design problem is
formulated as a special type of optimization problem, called
a geometric program (GP). The key feature of GPs is that
they can be reformulated as convex optimization problems.
Open-source interior point algorithms can solve convex
optimization problems with tens of thousands of variables
and constraints reliably in only a few seconds on a standard
desktop computer [10].

Vessel design problems cast as GPs can be globally
solved, which has important practical implications. Infea-
sible problems are unambiguously identified. The solution
algorithm either produces a feasible point or a proof that
the specification is infeasible. The choice of the initial point
(representing the initial design) has no effect on the final
design that is obtained by the optimization procedure. Thus,
the quality of the final design does not depend on the
naval architect’s skill in selecting a good initial point. Since
the optimization procedure is guaranteed to find the global
optimum, given that the design problem is feasible, the vessel
design obtained represents the absolute limit of performance
for given design constraints.

The availability of extremely efficient solutionmethods for
convex problems also has a number of important practical
implications. The efficiency can be exploited to obtain
designs that are guaranteed to meet a set of specifications
over a variety of parameter values. The variety arises from a
large number of operational scenarios derived from historical
weather conditions of planned routes or operational data of
similar vessels.

The speed and reliability of the GP modeling framework
are emphasized in extensive exploration of the design space.
The endurance and speed requirements and component
performance parameters can be swept over a range of values
to study when the design becomes infeasible or constraints
become activated. Since solving a single design problem
takes only a few seconds, even large sweeps over multiple
parameters can be completed quickly. Thus, system level
optimization can be applied at the very beginning of the
design process which leads to fewer changes in the latter
design stages and fewer associated costs.

F. CONTRIBUTION
The main contribution of this paper is to demonstrate that the
conceptual-stage battery-electric vessel design problem can
be formulated as a GP. Once formulated as a GP, the problem
can be transformed into a convex optimization problem and
solved efficiently and reliably using off-the-shelf solvers. The
convex optimization problem formulation brings a number of
advantages over current methods widely used in the maritime
sector.

GP modeling has found success in many areas of
engineering design that are related to subproblems in the
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vessel design workflow. These subproblems include the
design of three-dimensional layouts [11], transformers [12],
and aerodynamic structures subjected to drag [13]. However,
to the knowledge of the authors, the GP framework has not
previously been applied to marine vessel design optimization.

II. PROBLEM DESCRIPTION
The vessel design process progresses in stages, beginning
with the definition of requirements, then advancing to
concept design, contract design and finally to detail design
and manufacturing. At each stage, decisions are locked,
imposing constraints for later stages and increasing the cost
of making changes [9]. Key decisions regarding design
trade-offs must be made early in the process when design
knowledge is most limited.

The conceptual design stage aims at understanding the key
design trade-offs. The design problem typically consists of
many objectives that are in conflict with each other or may
be poorly defined in the beginning [9]. The objective can be
a single quantity, such as the total cost of ownership, or a
weighted combination of several quantities of interest. In the
most simple form, a function to be minimized is formulated
as the total number of cells in the battery pack and the
performance requirements are encoded as a set of constraints.

Requirements are system-level performance bounds
imposed by the naval architect. These are simple expressions,
e.g., payload, minimum range between bunkering or charging
(endurance) and design speed with sea margin. Underlying
physics is encoded as equations. Engineering limits impose
practical limits on the design quantities: stresses, deflections,
and margins of safety.

The major subsystems have recursive design relationships.
For example, towing resistance depends on the wetted surface
area of the hull, which depends on the weight of the vessel.
The size of the battery pack depends on the towing resistance,
which depends on the weight of the battery pack. Similarly,
resistance, longitudinal strength and transverse stability are
strongly coupled.

In summary, the main tasks of the conceptual design stage
are:

1) Selection of main dimensions;
2) Hull form development;
3) Resistance and propulsion estimations;
4) Selection of energy carriers, energy storage devices,

and energy converters;
5) Analysis of energy saving devices;
6) Development of internal layout;
7) Preliminary structural design;
8) Weight estimation;
9) Intact and damage stability calculations;

10) Assessment of economic performance.
Explosion and fire hazard risks are emphasized in

high-energy battery-electric vessels. Classification societies
impose rules regarding the safety aspects of marine battery
systems. In case of a fire in a cell, propagation must be
prevented by either insulating each cell, or alternatively

limiting the propagation to a group of cells with total capacity
less than 11 kWh [14]. Fire risk and potential toxic gas
development is managed by locating all battery system
components to a dedicated battery space in the vessel. The
battery space boundaries must be vessel structures and the
space requires continuously running mechanical ventilation.

III. GEOMETRIC PROGRAMMING
In the context of geometric programming, we refer to a
posynomial as a function of real positive variables x ∈ Rn

++

of the form

f (x) =

K∑
k=1

ck
n∏
i=1

xai,ki , (1)

where ck > 0 are constant coefficients and ai,k ∈ R are
(possibly negative or fractional) constant exponents. If K =

1, f is called a monomial.
A GP is a problem of the form:

min.
x

f0(x)

s.t. fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p (2)

where fi are posynomials and gi are monomials. Since a GP
is a nonlinear and nonconvex optimization problem, it is not
readily amenable to efficient and reliable solution.

A. CONVEX FORM OF A GP
The special structure of a GP allows it to be transformed to a
nonlinear, but convex optimization problem, i.e., a problem
with convex objective and inequality constraint functions,
and linear equality constraint. The transformation is based
on a logarithmic change of variables, and a logarithmic
transformation of the objective and constraint functions. The
details of the transformation are given in [10].

As a simple example, we consider the log-transformation
of the propeller torque relation (introduced in Sec. IV-F)

KQ =
Mp

ρswD5
pn2p

with variables KQ,Mp,Dp and np. The above equation
defines a nonconvex set. With new variables K̄Q =

logKQ, M̄p = logMp, D̄p = logDp and n̄p = log np the
equation takes the form

ρsweK̄Qe5D̄pe2n̄pe−M̄p = 1.

Applying the function log-transformation yields

log
(
ρsweK̄Qe5D̄pe2n̄pe−M̄p

)
= log 1

⇒ log ρsw + K̄Q + 5D̄p + 2n̄p − M̄p = 0,

where the left-hand side is a linear expression and the
equation defines a convex set.
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B. FORMULATING AND SOLVING CONVEX PROBLEMS
Domain-specific languages (DSLs) for convex optimization
are programming languages for specifying convex opti-
mization problems. DSLs support syntax that follows the
mathematical description of the problem. In the GP case,
user specifies the posynomial and monomial functions for
the problem instance. DSLs parse the input, log-transform
the variables and functions, and translate the problem to
a standard form that solvers accept. Examples of DSLs
include CVX [15] in MATLAB and CVXPY [16] in
Python.

Standard open-source solvers such as ECOS [17],
OSQP [18] and SCS [19] can be used. When applied to solve
convex programs, the solvers [10]:
1) Provide a certificate on infeasibility if no point exists

that simultaneously satisfies all the constraints;
2) Guarantee convergence to a global optimum given that

the problem is feasible;
3) Achieve speed that compares to linear programming

solvers, which means that in practice, problems with
many thousands of variables and constraints can
be solved in a few seconds on a standard desktop
computer;

4) Determine globally optimal values for dual variables,
which express how tightly constrained the problem is
with respect to each constraint.

Convex optimization solvers do not require the user to make
initial guesses, tune optimizer parameters or evaluate the
quality of the solution. This is in stark contrast to methods
for general nonlinear optimization.

C. MULTICRITERION GP
A GP with q different scalar objectives, each of which is to
be minimized, is expressed as a vector optimization problem:

min.
x

(w.r.t. Rq
+) f0(x)

s.t. fi(x) ≤ 1, i = 1, . . . ,m

gi(x) = 1, i = 1, . . . , p (3)

where fi are posynomials, gi are monomials and f0 is a vector
with elements (F1, . . . ,Fq) of posynomial objectives.
An optimal point x∗ for the multicriterion problem is

a point that is simultaneously optimal for each objective
F1, . . . ,Fq [10]. However, typical multicriterion vessel
design problem has competing (or conflicting) criteria
and no optimal point exists. Instead, the aim is to
identify Pareto optimal points from the set of achiev-
able values. Solving the multicriterion problem entails
obtaining a set of Pareto optimal values, which can be
interpreted as a trade-off surface between the competing
objectives.

The scalarized multicriterion GP is formulated by forming
a scalar objective function that is a sum of objectives

F1, . . . ,Fq multiplied by weights λ1, . . . ,λq:

λT f0(x) =

q∑
i=1

λiFi(x). (4)

Regardless of the values that the weights λ1, . . . ,λq receive,
i.e., prioritization of each objective, if x∗ is an optimal
point for the scalarized problem, then x∗ is an efficient
point (Pareto optimal) for the original multicriterion vector
problem [10]. This insight enables a solution strategy for
the multicriterion problem. By solving a sequence of regular
scalar optimization problems with varying weight vector,
different Pareto optimal solutions are obtained. Since the
log transformation of a GP yields a convex problem, and
for convex problems scalarization yields all Pareto optimal
points, all Pareto optimal points are obtained for a GP.

D. SENSITIVITY ANALYSIS
A perturbed GP is defined as:

min.
x

f0(x)

s.t. fi(x) ≤ eui , i = 1, . . . ,m

gi(x) = evi , i = 1, . . . , p (5)

where ui and vi are relative perturbations of the con-
straints [10]. If ui and vi are zeros, the perturbed problem
equals the original problem. If ui < 0, then the corresponding
constraint is tightened compared to the original. If ui > 0,
the constraint is loosened. Let f ∗

0 (u, v) denote the optimal
objective value as a function of the parameters ui and vi such
that the original objective value is f ∗

0 (0, 0). Variation of f
∗

0 as
a function of small changes in u and v, is called sensitivity
analysis. The relative change in objective is expressed as:

Si =
∂ log f ∗

0

∂ui
, Ti =

∂ log f ∗

0

∂vi
(6)

evaluated at (0, 0). The key insight is that a standard solver
using an interior-point method returns the sensitivities Si and
Ti by default from the solution of the dual problem [10]. The
sensitivity values are useful in practical engineering design,
because they tell how tightly constrained the problem is with
respect to each constraint.

Perturbations in the model’s parameters corresponds to
tightening or loosening of one or more constraints. Using
chain rule and optimal dual variable values, we can compute
the relative change of the objective to any combination of
simultaneous parameter perturbations [20].

E. FITTING GP COMPATIBLE SURROGATE FUNCTIONS TO
DATA
If an equation in the vessel model cannot be manipulated
algebraically into forms required by GP, a GP compatible
model may be fitted to approximate the original relationship
in a restricted range. This fitting procedure can also be
applied to make models encoded by simulation data available
in an analytical form, e.g., by using data from CFD and
hydrostatics simulations.
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The approximation procedure begins with sampling l
data points from the original GP incompatible model or
computational routine:

(xi, yi) ∈ Rn
++ × R++, i = 1, . . . , l.

The log-transformation (zi,wi) = (log xi, log yi) generates
the data

(zi,wi) ∈ Rn
× R, i = 1, . . . , l.

A convex function is fitted to the transformed data using
standard nonlinear regression method. Convex functions
belonging to the class of softmax-affine (SMA) have been
observed to work well in practice with only a small number
of terms [21]. This class of functions has the log-sum-exp
form

fSMA(z) =
1
α
log

K∑
k=1

exp(α(bk + aTk z)), (7)

where the fitted model parameters are α > 0, ak ∈ Rn and
bk ∈ R. The number of user specified exp terms is K .
The SMA function corresponds to the posynomial con-

straint
K∑
k=1

exp(αbk )
n∏
i=1

xαaik
i ≤ yα. (8)

IV. GP COMPATIBLE VESSEL SUBSYSTEM MODELS
This section introduces GP compatible models for technical
aspects of the battery-electric vessel design problem.Amodel
refers to a relation that is expressed as either an inequality
f (x) ≤ 1 or an equation g(x) = 1 where f is a posynomial
and g is a monomial. The symbols used in Sec. III will
be redefined in this section and used consistently in the
following sections.

A. DIMENSIONS AND FORM COEFFICIENTS
We first define the quantities that are relevant in preliminary
hull resistance and displacement calculations. The length
overall LOA extends from the hull’s foremost point to
its aftmost point. In resistance calculations the length
of the water plane area, called waterline length LWL,
is more relevant. If the bow design is straight-edged
and vertical, the difference between LWL and LOA is
negligible.

Draught T describes the vertical distance between the
hull’s deepest point and the waterline plane. Under normal
conditions the foremost and the aftmost draughts are the
same. Moulded depth D describes the vertical distance from
the keel to the freeboard deck. Another key quantity is breadth
at the waterline BWL.

Displacement is the mass of the water displaced
by a floating vessel. The volume of displacement is
denoted ∇ and it depends on the mass density of the
water [4], [22].

Various form coefficients are used to express the shape
of the hull. The most important of these coefficients is the

block coefficient CB that is defined as the ratio between
the displacement volume ∇ and the volume of a box with
dimensions LWLBWLT :

CB =
∇

LWLBWLT
. (9)

Displacement volume cannot exceed the volume of the box,
which imposes CB ≤ 1. The expression for CB is a monomial
and thus compatible with the GP framework.

Other commonly used hull form coefficients are water
plane area CWL, midship section coefficient CM , prismatic
coefficient CP and fineness ratio CLD. The cofficients are
expressed, respectively, as monomials

CWL =
AWL

LWLBWL
, (10)

CM =
AM
BWLT

, (11)

CP =
∇

LWLAM
, (12)

CLD =
LWL
3
√

∇
, (13)

where AWL is waterline area.

B. HULL GEOMETRY AND DISPLACEMENT
Hydrostatic calculations and design variations with para-
metric models are standard features in naval architecture
software tools. These tools support hull form definition as
parametric polynomial curves and respective surfaces [8].
Datasets generated by hydrostatics software can be included
in the GP framework by fitting a posynomial models to
the data as describe in Sec. III-E. However, in this and the
following sections, we consider a hull model in analytical
form and derive closed form expressions for the relevant
quantities.

We consider a setH of hull sections with varying geometry.
A Cartesian coordinate system denoted XYZ is used to give
the surface geometry of a hull section. The origin of the
coordinate system is located at the foremost point at the keel
centerline of the section. The X -axis is the lateral horizontal
axis pointing to port side, Y -axis is the longitudinal horizontal
axis pointing to the direction of stern and the Z -axis points
upwards. The surface geometry of a section j ∈ H is the set of
points with coordinates (x, y, z) that satisfy z = fj(x, y), where
fj : R2

→ R is a smooth function that is strictly increasing in
x for all y > 0.
Let Lj denote the length of a section in longitudinal Y -axis.

For the breadth on freeboard deck B and breadth on waterline
BWL, the following hold:

max
y∈[0,Lj]

f (BWL, y) = T , (14)

max
y∈[0,Lj]

f (B, y) = D (15)

for all j ∈ H .
An elementary hull form can be assembled from only

three sections, as illustrated in Figs. 1 and 2. The geometry
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FIGURE 1. Composition of an analytical hull model.

FIGURE 2. Body plan of a vessel with hull fullness b = 2.5.

functions fj, j ∈ {aft,mid, fore}, are parameterized by Lj
and form coefficients a and b. The contribution of each
hull section to steel weight, displacement and wetted surface
area is required in the preliminary design calculations. Next,
we’ll focus on the midship and fore sections and illustrate
the derivation of a section’s contribution to the displacement
volume at draught T by means of definite integrals.
The geometry of the midship section is uniform in the

longitudinal direction. Thus, we can write the volume under
the surface of the section, denoted Vmid,under, as a single

integral:

Vmid,under = Lmid

∫ (
T
a

)1/b
0

axb dx

= Lmida
[
xb+1

b+ 1

]( T
a

)1/b
0

=
LmidT

(T
a

)1/b
b+ 1

. (16)

The volume of a cuboid that encloses the midship section at
the waterline is

Vmid,block =
LmidTBWL

2
= LmidT

(
T
a

)1/b

. (17)

Given that b is a fixed parameter, the expressions (16)
and (17) are monomials. The volume of displaced water
relates to the volumes defined above according to

1
2
∇mid = Vmid,block − Vmid,under, (18)

which can be relaxed to a valid posynomial inequality

∇mid + 2Vmid,under ≤ 2Vmid,block. (19)
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The fore section exhibits curvature in two directions, and
the volumes enclosed by the section are given by double
integrals. We consider the following three volumes:

1) Vfore,block, volume of a cuboid that encloses the hull
section at the waterline:

Vfore,block =
LforeTBWL

2
; (20)

2) Vfore,under, volume under the surface of the section:

Vfore,under

= Lb/2forea
∫ Lfore

0

∫ (
Tyb/2

Lb/2forea

) 1
b

0

xb

yb/2
dx dy

= Lb/2forea
∫ Lfore

0

1
yb/2

[
xb+1

b+ 1

]( Tyb/2

Lb/2forea

) 1
b

0
dy

=
Lb/2forea

b+ 1

(
T

Lb/2forea

)1+1/b ∫ Lfore

0
yb/2+1 dy

=

2LforeT
(
1
T

)−1/b

3(b+ 1)
; (21)

3) Vfore,res, residual volume, i.e., the volume between the
cuboid and a vertical surface following the edge of the
section:

Vfore,res = T
Lb/2forea

T

∫ (
T
a

)1/b
0

xb dx

= Lb/2forea
[
xb+1

b+ 1

]( T
a

)1/b
0

=
LforeT

3

(
1
T

)−1/b

. (22)

The volume of displaced water at draught T relates to the
volumes above according to

1
2
∇fore = Vfore,block − (Vfore,res + Vfore,under), (23)

which attains a GP compatible form when relaxed to an
inequality

∇fore + 2Vfore,res + 2Vfore,under ≤ 2Vfore,block. (24)

C. HULL RESISTANCE
A body moving through a liquid will encounter dynamic
pressure according to Bernoulli’s law [22]:

pdyn =
ρsw

2
v2, (25)

where ρsw is density of seawater and v is the speed of the
vessel. The dynamic pressure acts on the submerged surface
of the vessel, the so-called wetted area As and results in a
reference force K [22]:

K =
ρsw

2
Asv2. (26)

The wetted area is given by integrating over the surfaces
specified by the analytical hull section models. However,
the surface integrals do not yield closed from expressions
in general. We can instead approximate the total area by
breaking up the interval [0,T ] into a number of subintervals,
computing an approximation for each subinterval by closed
form surface integral, and then adding up. Approximation
of the arc length rT for the midship section from keel to
waterline (0 to T ) by Narc segments is

rT ,mid

≈

Narc−1∑
i=0

√√√√( 1
Narc

(
T
a

)1/b
)2

+

(
Tb
N b
arc

(
1
2

+ i
)b−1

)2

.

(27)

Although the right-hand side of (27) is not a posynomial,
in this case we can reformulate it as a posynomial by
introducing new variables and inequalities. The new variables
t0, . . . , tNarc−1 relate to the terms in (27) via posynomial
inequalities(

1
Narc

(
T
a

)1/b
)2

+

(
Tb
N b
arc

(
1
2

+ i
)b−1

)2

≤ ti (28)

for all i = 0, . . . ,Narc − 1. We can now write (27) as a valid
posynomial inequality

rT ,mid ≥

Narc−1∑
i=0

t0.5i . (29)

Having obtained an estimate of the arc length from keel
to waterline, the midship wetted area is written simply as
As,mid = rT ,midLmid. The wetted areas of the aft and fore
elements can be estimated based on As,mid or by a more
elaborate integration scheme.

The reference force K and the dimensionless total calm
water resistance coefficient Ct are used to calculate the hull’s
total calm water resistance RT :

RT = CtK =
ρsw

2
CtAsv2. (30)

The total calm water resistance and the total calm
water resistance coefficient can be split into several com-
ponents. The most important coefficient components are
the friction coefficient CF and the residual resistance
coefficient CR:

Ct = CR + CF . (31)

The frictional resistance constitutes 50-90% of the overall
resistance [22]. This percentage depends on the vessel’s speed
and is higher for slow vessels. The frictional resistance is
explained by two phenomena. First, it considers the friction
caused by a plate with equivalent length and wetted surface
area. Second, it takes into account the additional friction
caused by the hull’s curvature.
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FIGURE 3. Posynomial fit of data for friction coefficient CF as a function
of vL. The RMS error of the softmax-affine function (K=2) fit is 9.18e-4.

According to the guidelines [23] the friction coefficient is
approximated as

CF =
0.075

(log10 (Re) − 2)2
, Re =

vL
ν

, (32)

where Re is Reynold’s number and ν is kinematic viscosity
of the fluid. To avoid numerical problems due to very small
value of ν, the formulation is rearranged:

CF × 103 =
75

(log10 (vL)− log10 (ν) − 2︸ ︷︷ ︸
>0

)2
, (33)

where the right-hand side is not log-convex with respect to
v and L for all vL > 0. However, the right-hand side is
log-convex for vL range [1e2,1e3] that is relevant in vessel
design problems. In this case a GP compatible posynomial
can be fitted following the procedure introduced in Sec. III-E
(Fig. 3). Similarly, the residual coefficient can be obtained in
an analytical form by fitting a posynomial to data generated
by CFD simulation.

The resistancemodel can be written in GP compatible form
as the posynomial inequality:

RT ≥
ρsw

2
(CF + CR)Asv2. (34)

D. LONGITUDINAL STRENGTH
Decks, bulkheads, side and bottom plating along with the
longitudinal framing system form the closed load carrying
mechanism of the hull called hull girder. Bending moment
and shear forces are the primary load resultants acting on
the hull girder. In the conceptual design phase, the structure
is assumed to behave as a beam and the bending response
follows Euler-Bernoulli beam theory [24].
According to the beam theory, normal stress at distance z

from the beam neutral axis relates to the bending momentM
as

σy =
M
I
z, (35)

FIGURE 4. Schematic of the midship structural cross section geometry.
Members contributing to the hull girder longitudinal strength are
highlighted as blue.

where I is a geometrical property of the cross section, called
second moment of area. The maximum values of the normal
stresses are in the bottom shell and weather deck that are
located furthest from the neutral axis. The second moment of
area divided by the distance to bottom (or deck) from neutral
axis gives the section modulus Z = I/z in relation to the
bottom (or deck), which is applied to calculate the ultimate
strength of the hull girder.

We consider a symmetrical hull girder midship cross
section (Fig. 4) of a longitudinally stiffened vessel, where
the load carrying structural elements are the bottom shell,
weather deck and the stiffeners. The L profile is composed of
a horizontal part (flange) and vertical part (web). The widths
of the plates and flanges are related to hull breadth B via
the parameters φ and η, respectively. The height of the web
related to depth D via parameter τ . The plate thickness tp is
a decision variable.

The second moment of area for the deck plate
element is

Iplate = 2
φB
12

(
D3

− (D− 2tp)3
)

= φB
(
D2tp − 2Dt2p +

2
3
t3p

)
.

Since D ≫ tp the term t3p has negligible influence on Iplate.
With this insight we use the approximation

Iplate ≈ φB
(
D2tp − 2Dt2p

)
. (36)
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The second moment of areas of the stiffener web and flange
elements are

Iflange =
ηB
12

(
(λD)3 − (λD− 2γ tp)3

)
≈

ηB
2

(
(λD)2γ tp − 2λD(γ tp)2

)
, (37)

Iweb =
γ tp
12

(
D3

− (D− 2τD)3
)

≈
γB(τ − 2τ 2)

2
D2tp, (38)

where λ = 1 − 2τ and D ≈ B in the the last expression.
With nL denoting the number of stiffeners, the total midship
second moment of area can now be written as a posynomial
inequality

Imid + DBt2p (2φ + nLηλγ 2)

≤
tpBD2

2
(2φ + nLηγλ2

+ nLγ (τ − 2τ 2)). (39)

The distance from neutral axis to both deck and bottom
is D/2. Thus, the section modulus for midship cross section
geometry is

Zdeck =
2Imid

D
. (40)

Although the net buoyancy force and weight cancel out as
a whole, they are unbalanced for each transverse section of
the hull girder. This line load causes shear force and bending
moment even in calm water. The vertical bending moment at
each cross section can be obtained exactly by integrating the
net force twice from the vessel’s end.

In vessels with uniformmidship section, e.g., bulk carriers,
high block coefficient and even loading, the still water load
is small compared to the contribution of waves. Thus, the
ultimate strength is evaluated based on the negative wave
bending moment, i.e., the sagging condition where the girder
is bent downward [25]. Due to the irregular nature of waves,
the vertical bendingmoment in themidship transverse section
is calculatedwith an empirical formula combining calmwater
and negative wave moments:

Mwv+sw ≈ 0.3365 CwBL2, (41)

where Cw is the wave coefficient.
Finally, the high level constraint of ultimate strength is

σperm ≥
Mwv+sw

Zdeck
. (42)

E. INTACT TRANSVERSE STABILITY
Center of buoyancy is the centroid of the volume of water
displaced by the submerged hull. When the vessel heels
the center of buoyancy shifts while the center of gravity
remains unchanged. The shifted center of buoyancy creates
a moment arm between the vertical force vectors FG and FB
(Fig. 5). If the moment acts to revert the vessel back to upright
orientation, the vessel is initially stable.

Let Aup denote submerged area of midship half cross
section with draught T in upright orientation as illustrated

in Fig. 5 by a dashed horizontal line. Using the analytical
expression z = axb for the midship cross section geometry,
the distance from keel to the center of buoyancy is given by
first moment integral

zB =
1
Aup

∫ T

0
z
( z
a

)1/b
dz

=
1
Aup

(
1
a

)1/b ∫ T

0
z(1/b+1) dz

=
1
Aup

(
1
a

)1/b bT 1/b+2

2b+ 1

=
T (b+ 1)
2b+ 1

, (43)

where

Aup =

∫ T

0

( z
a

)1/b
dz =

(
1
a

)1/b bT 1/b+1

b+ 1
. (44)

Consider the right triangle that forms between the hori-
zontal waterlines in upright orientation and heel by angle θ .
Length of the adjacent side is (T/a)1/b. The area and the
location of the centroid from vertical centerline are

Aheel = tan θ
1
2

(
T
a

)2/b

, (45)

xheel =
2
3

(
T
a

)1/b

. (46)

For small nonzero angle of heel, the shape of the submerged
cross section can be composed from the shape in upright
position and two triangle shapes. The location of the center
of buoyancy is the location of the centroid of the composed
form:

xB′ =
Aheelxheel − Aheel(−xheel)
2Aup + Aheel − Aheel

=
2Aheelxheel

2Aup
=

tan θ(b+ 1)(T/a)2/b

3Tb
. (47)

For small θ , the distance between pM and pB is

zBM =
xB′

tan θ
=

(b+ 1)(T/a)2/b

3Tb
, (48)

which is used to calculate metacentric height:

zKM =
(b+ 1)(T/a)2/b

3Tb
+
T (b+ 1)
2b+ 1

. (49)

The moment from heel acts to revert the vessel back to
upright orientation and the vessel is initially stable if the
metacentric height is greater than the center of gravity:
zKM > zGK. Imposing a safety margin via parameter
zsafe ≥ 1 yields a posynomial inequality for the stability
condition:

(b+ 1)(T/a)2/b

3Tb
≥ (zsafe − 1)

T (b+ 1)
2b+ 1

+ zGK. (50)
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FIGURE 5. Shifting of center of buoyancy due to heel and the resulting
moment arm.

F. PROPELLER TORQUE AND THRUST
Fixed pitch propellers are considered for propulsive thrust
generation. Themathematical model needs to replicate thrust,
torque and efficiency with sufficient accuracy, but it is not
required to capture all hydrodynamic effects. The latter can
be achieved with CFD software during the propeller design
process, which is not in the scope of this work.

Independent from the specific design of a propeller, its
performance can be described using its general open water
characteristics [22]. These are based on the forces and
momentums of the propeller when operating in open water
without any disturbances and are usually expressed using the
non-dimensional thrust coefficient

KT =
Tp

ρswD4
pn2p

, (51)

torque coefficient

KQ =
Mp

ρswD5
pn2p

, (52)

open water efficiency

ηo =
Pp,out
Pp,in

=
Tpva

2πMpnp
=
KT
KQ

J
2π

, (53)

and advance coefficient

J =
va
npDp

=
(1 − fw)v
npDp

, (54)

whereDp is the diameter of the propeller, np is the shaft speed,
Mp is the shaft torque, Pp,out is the thrust power and Pp,in is
the shaft input power [22].

The advance speed va describes the average speed of
the water across the surface of the propeller. Due to the
interaction of the hull with the surroundingwater, the advance
speed is lower than the vessel speed. This is mathematically

expressed through the wake fraction coefficient fw and the
relation between advance and vessel speed is given in
equation (54).

GP compatible propeller model is derived by second-order
polynomial approximation of KT and KQ coefficients. The
second-order approximations are expressed as:

KT = aT0 − aT2J2, (55)

KQ = aQ0 − aQ2J2, (56)

where aT0, . . . , aQ2 are coefficients of the polynomials.
The second-order approximation of KT yields the thrust

equation

Tp = KTρswD4
pn

2
p

=

[
aT0 − aT2

(
va
npDp

)2
]

ρswD4
pn

2
p

= ρswD2
p

(
aT0D2

pn
2
p − aT2v2a

)
. (57)

The total required thrust generated by the propeller exceeds
the resistance RT due to the sucking action of the rotating
propeller [22]. Thrust deduction coefficient tTD accounts for
this effect:

tTD = 1 −
RT
Tp

⇒ Tp =
RT

1 − tTD
. (58)

Combining (57) and (58) gives the propeller speed as a
function of towing resistance:

n2p =
RT /(1 − tTD) + ρswaT2v2aD

2
p

ρswaT0D4
p

. (59)

The torque equation is

Mp = KQρswD5
pn

2
p = ρswD3

p

(
aQ0D2

pn
2
p − aQ2v2a

)
. (60)

By substituting n2p in (59) to the torque equation and relaxing
the equation to inequality constraint yields

Mp ≥ Dp
aQ0
aT0

RT
1 − tTD

+ ρswv2aD
3
p

(
aQ0aT2
aT0

− aQ2

)
, (61)

where
(
aQ0aT2/aT0 − aQ2

)
> 0 ensures that the right-

hand side is a posynomial and the inequality is GP
compatible.

The model formulation above applies the propeller as a
single-screw plant. The towing resistance is allocated evenly
to both propellers in the case of a twin-screw plant.

G. PROPULSION MOTORS
Various electric machine types fulfil the propulsion motor
requirements for vessels. Synchronous electricmachines with
permanent excitation usually operate more efficient than
other machine types of comparable rating, since the resistive
losses in order to excite the air gap magnetic field are
reduced [26]. The power losses in electric machines can
be divided into copper (resistive) losses, iron (magnetiza-
tion) losses, bearing friction losses, windage (drag) losses
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and additional losses. In Permanent Magnet Synchronous
Machines (PMSMs), copper losses occur only in the stator
windings and depend on the square of the stator current.
Moreover, in PMSMs, iron losses mainly occur in the
stator as the rotor turns synchronously with the rotating
magnetic field. Iron losses are proportional to the square
of the magnetic field density as well as to the square of
the magnetic field frequency. Bearing friction losses can be
assumed proportional to the angular speed of the shaft [26].
Windage losses are the result of drag forces on rotating
surfaces and therefore proportional to the cube of the shaft
speed. The additional losses include various losses that
are not considered in the other categories, mainly due to
eddy currents caused by the time and space harmonics of
the magnetic field. The additional losses can be therefore
assumed proportional to the square of the magnetic field
density and the square of the magnetic field frequency like
the iron losses.

LetMN be the nominal shaft torque and nN be the nominal
(mechanical) speed of an electric machine. Therefore,
(nN ,MN ) corresponds to the nominal operating point and
PN = 2πMNnN to the nominal shaft power. Using the per
unit (pu) system, power can be expressed as a proportion of
the nominal power [27]. For instance, if the total power losses
of the machine at the nominal operating point are PL,N , the
per unit total power losses are pL,n = PL,N /PN . Let pN ,Cu
be the per unit copper losses in the stator at nominal load that
can be measured through a short circuit test. Moreover, let
pN ,FeO be the pu iron losses at nominal speed and no-load
that can be measured through a no-load test. Further, let pN ,fr
be the pu friction losses and pN ,w be the pu windage losses
at nominal speed, which can be estimated through a no-load
test. Furthermore, let pN ,add be the pu additional losses at the
nominal operating point, which correspond to the difference
between the total measured losses pL,N and the sum of the
losses pN ,Cu, pN ,Fe0, pN ,fr and pN ,w at the nominal operating
point. When PMSMs are driven under field-oriented control
that imposes maximum torque per stator current, the stator
current is roughly proportional to the shaft torque. Therefore,
according to the dependence of each power loss category on
speed and load, the per unit power losses of a PMSM at the
operating point (np,Mp) approximate

pL = pL
(
np, Mp

)
= pN ,Cu

(
Mp

MN

)2

+ pN ,Fe0

(
np
nN

)2

+ pN ,fr

(
np
nN

)
+ pN ,w

(
np
nN

)3

+ pN ,add

(
np
nN

)2 (Mp

MN

)2

, (62)

where Mp/MN is the per unit torque and np/nN is the per
unit speed. A similar method to estimate the pu power
losses at any operating point is described in the standard
IEC 60034-2-3 [28], which, however, requires measurements
at seven operating points.

H. POWER CONVERTER
Permanent magnet synchronous machines are usually driven
by dedicated power converters, which facilitate operation
at variable speed. Power losses in semiconductor-based
power converters can be divided into conduction and
switching losses. Considering that the switching frequency
of semiconductors is usually constant, power converter
losses are approximately proportional to the square of the
semiconductor current. The nominal power converter losses
PL,N ,pc correspond to the power losses at the nominal power
converter current IN ,pc and therefore at the nominal power
converter power SN ,pc. Manufacturers usually specify the
nominal power converter losses in order to facilitate the
design of cooling systems. The pu power converter losses
are defined as pL,pc = PL,pc/SN ,pc, where PL,pc denotes the
power converter losses. Considering that the power converter
current is rated as high as the rated current of the electric
machine, nominal current in the power converter corresponds
roughly to nominal torque on the shaft of the electricmachine.
Therefore, the pu power losses of power converters can be
expressed as a function of the power converter current Ipc,
which is roughly proportional to the shaft torque of the
electric machine they drive, that is

pL,pc = pL,N ,pc

(
Ipc
IN ,pc

)2

≈ pL,N ,pc

(
Mp

MN

)2

. (63)

Power converters with a rated power over 100 kVA usually
have a nominal efficiency that ranges between 97% and 99%.
Therefore, pL,N ,pc lies in the 0.01. . . 0.03 pu range.

I. BATTERY ENERGY STORAGE
The battery is modeled at the level of cells, which are
described by an open circuit voltage and a series resistance.
A linear approximation of the open circuit voltage u with
respect to discharged capacity q̄ gives the cell model:

u = u0 − kdvq̄, (64)
˙̄q = i, (65)

where u0 is the line intersection of the linear approximation
(Fig. 6), kdv is the negative of differential voltage (−du/dq̄)
and i is the cell current. Fig. 6 illustrates that the linear
approximation is valid for the normal operating region of the
cell because the strongly nonlinear parts lie outside the lower
and upper bounds.

The battery pack is assembled from large number of cells
arranged in series and parallel. However, the cell current for
a given discharge power does not depend on the particular
arrangement. Using chain rule, we can write the discharged
energy E with ncell total number of cells as

E = ncell

∫ q̄

0
u(q̄′) dq̄′

= ncell

(
u0q̄−

1
2
kdvq̄2

)
= ncell

1
2kdv

(u20 − u2) (66)
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FIGURE 6. Discharge characteristics of a lithium-ion cell.

and its derivative as

Ė =
dE
dt

=
dE
dq̄

˙̄q = ncellui = Pbp + PL,bp, (67)

where Pbp is the battery pack terminal power and PL,bp is the
dissipation power.

The dissipation power due to cell internal and contact
resistance Rcell increases with the square of the current:

PL,bp = ncellRcelli2 = Rcell
(Pbp + PL,bp)2

ncellu2

= Rcell
P2L,bp + 2PL,bpPbp + P2bp

ncellu20 − 2kdvE
. (68)

Rearranging the terms and relaxing the constraint gives the
posynomial inequality

ncellu20
Rcell

≥
2Ekdv
Rcell

+ PL,bp + 2Pbp +

P2bp
PL,bp

. (69)

The derivative of the posynomial on the right-hand side
of (69) with respect to PL,bp is 1−P2bp/P

2
L,bp. Thus, decrease

in PL,bp increases the right-hand side of the inequality and
drives it tight under the condition that

Pbp > PL,bp

⇒ (u0 − kdvq̄max)imax − Rcelli2max > Rcelli2max

⇒ u0 > 2Rcellimax + kdvq̄max. (70)

The condition is trivially satisfied by typical lithium-ion
cells. The inequality (69) will hold as equality at the optimal
solution of any problem that minimizes battery discharged
energy (e.g., by minimizing ncell).
Constraints on the discharged energy follow from the

bounds of allowed cell operating region [q̄min, q̄max]:

ncell

(
u0q̄min −

kdvq̄2min

2

)
≤ E (71)

FIGURE 7. Coordinates of cuboid spaces.

E ≤ ncell

(
u0q̄max −

kdvq̄2max

2

)
. (72)

Permissible discharging current imax imposes a bound on the
discharging power via the power dissipation:

PL,bp ≤ ncellRcelli2max. (73)

J. GENERAL ARRANGEMENT
The hull is subdivided to watertight compartments via trans-
verse walls, called bulkheads. Necessary elements include
collision bulkhead, fore and aft machinery room dividers and
aft bulkhead [4]. We consider the number of the bulkheads as
given.

Let C1, . . . ,CNspace denote Nspace cuboid spaces, called
blocks, assigned to different productive functions. These
include, but are not limited to, cargo holds, propulsion
motors and battery energy storage. The problem concerns
the placement and configuration of the dimensions of the
blocks. The problem formulation exploits known convexity
properties of placement problems [10] (Ch. 8).

The ith block is specified by its width wi, length li, height
hi and left lower corner (w′

i, l
′
i , h

′
i) in relation to the origin

located at the keel centerline of the foremost part of hull
(Fig. 7). The dimensions relate to the volume via monomial
equations:

wilihi = Vi (74)

for each i = 1, . . . ,Nspace. Here, Vi depends on the installed
power rating or capacity of the equipment corresponding to
the function the block belongs to. A block i can be similar to
another block j, i ̸= j, by a variable scaling ratio si,j:

xi = si,jxj, x ∈ {w, l, h}. (75)

A block is placed inside a bounding box with width
B, length L and height D, which are the hull principal
dimensions. The bounding box constraints are:

w′
i + wi ≤ B/2, h′

i + hi ≤ D, l ′i + li ≤ L (76)

for each i = 1, . . . ,Nspace. The placement of the blocks is also
constrained by the geometry of the relevant hull sections.
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The blocks do not overlap except at the boundaries. At least
one of the following relations holds for each i ̸= j:

Ci is left or right of Cj,

Ci is above or below of Cj,

Ci is front or behind of Cj.

The relative positioning constraints are written as:

w′
i + wi ≤ w′

j, ∀(i, j) ∈ 3X (77)

where 3X is the set of adjacent blocks meaning that Ci is to
the left of Cj if (i, j) ∈ 3X . Similar positioning constraints
hold for pairs above/below and front/behind. Bounding box,
overlap and relative positioning constraints are posynomial
inequalities.

Tanks for ballast water occupy spaces between the outer
hull and the bottom decks of the battery spaces and the cargo
hold. In the double hull design, the spaces between the cargo
hold walls and the hull can also carry ballast water. The
ballast tanks are not configured explicitly in the presented
optimization framework, but a constraint can be imposed on
the distance from keel to the bottom deck to ensure adequate
space for the tanks.

V. NUMERICAL DESIGN EXAMPLE
A. CASE DESCRIPTION
1) VESSEL CONFIGURATION
In this section, we formulate and solve a design problem
within the GP framework. We consider the design of
battery-electric short-sea vessel for the transport of dry
bulk at low speed. The hull is assembled from the fore,
midship and aft sections as presented in Sec. IV-B. The
propulsion system is a twin-shaft direct drive configuration
with a single propulsion motor driving each propeller.
The total mass breaks down into a sum of hull, bulk-
head, deck, deckhouse, cargo hold, driveline, and battery
masses. Component masses are linear functions of nominal
sizes.

In the all-electric vessel of the present design study,
electrical energy stored in batteries is the main source
of energy for propulsion motors and auxiliary loads.
In this case two independent systems, located in separate
spaces, are required according to classification society
redundancy rules [14]. The battery packs are located in
spaces at the midship and aft sections. Both systems
must have sufficient capacity for a typical operation
cycle.

2) REQUIREMENTS
The specified endurance, i.e., range between charging
opportunity is 456 nmi (848 km) at 13 kn. The required dry
bulk (ρcargo = 0.77 t/m3) cargo carrying capacity isWcargo ≥

4600 t. Independent of specific operation profile, the vessel
is required to attain speed 16 kn.

FIGURE 8. Leg speed distribution.

3) OBJECTIVE
We consider a single merit criterion for the design. The
objective is to minimize the size of the battery pack, which
translates to minimizing total number of cells: fobj = ncell.

4) OPERATION PROFILE
The voyage is split to 20 legs with varying speed along
each leg. The speeds are sampled from distribution 6 + 10 ·

Beta(5, 3), which agrees with observed speeds of a general
cargo vessel reported in [29]. Fig. 8 shows a histogram of
1000 values sampled from the distribution. The leftmost panel
in Fig. 11 shows the vessel speed over time.

The decision variables relating to operation are defined
as vectors with 20 elements. The constraints involving these
variables are enforced for each leg with index t = 1, . . . , 20.
However, the indexing is omitted in the problem formulation
(Sec. V-B) for sake of clarity. The only exception is the
discrete-time battery energy update, which relates the values
of E at consecutive periods

E(t + 1) ≥ E(t) + 1t(t)(Pbp(t) + PL,bp(t)), t = 1, . . . , 20

where E is a 21-vector and 1t is a 20-vector of voyage leg
sailing durations.

B. GP PROBLEM FORMULATION
The battery-electric vessel design problem is formulated as
the following GP:

min. fobj = ncell

s.t.
Lj
L

= yj, j ∈ {fore,mid, aft}

BWL = 2
(
T
a

)1/b

2
(
D
a

)1/b

≤ 16.5

T ≤ 8.7

T + F ≤ D



Principaldim
ensions
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Vmid,under =
LmidT

(T
a

)1/b
b+ 1

Vfore,under =

2LforeT
(
1
T

)−1/b

3(b+ 1)

Vfore,res =
LforeT

3

(
1
T

)−1/b

Vaft,below =
1
3
Vmid,below

Vblock = LTBWL

∇ ≤ Vblock − 2Vfore,below − 2Vfore,res
− 2Vmid,below − 2Vaft,below



D
isplacem

ent

As ≥ 2(Lmid +
1
3
(Laft + Lfore))rT ,mid

rT ,mid ≥

Narc−1∑
i=0

√
dx2T ,mid + dy2T ,mid

dxT ,mid =
1
Narc

(
T
a

)1/b

dyT ,mid = Tb
(
1
2

+ i
)b−1 1

N b
arc



W
etted

area

C3.1673
F ≥ 108.284(vL)−0.697

+ 28.968(vL)−0.317

RT ≥
1
2
ρsw(CF + CR)Asv2


R
esistance

Imid + DBt2p (2φ + nLηλγ 2)

≤
tpBD2

2
(2φ + nLηγλ2

+ nLγ (τ − 2τ 2))

Mwv+sw = 0.3365 CwBL2

σperm ≥
DMwv+sw

2Imid



L
ongitudinalstrength

Whull ≥

2ρsteeltp(Lmid +
1
3
(Laft + Lfore))rD,mid
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TABLE 1. Subscript nomenclature in the problem formulation.

TABLE 2. Breakdown of power loses by category for a three-phase
12-pole water-cooled PMSM rated at 160 kW, 1500 r/min
and 1019 Nm [30].

Table 1 defines the new subscripts in the problem
formulation above.

C. ELECTRIC MACHINE LOSS FUNCTION
PARAMETRIZATION
The power losses of a three-phase 12-pole PMSMwith buried
rotor magnets rated at 160 kW, 1500 r/min and 1019 Nm
are used to parametrize the loss function (62) [30]. The
stator of the 12-pole PMSM is water-cooled, however,
the consumption of the cooling system is not considered
in the machine losses. Table 2 breaks down the power losses
of the 12-pole PMSM by category at the nominal operating
point. Since friction and windage losses were not identified
separately in [30], a share of 20% for friction losses and a
share of 80% for windage losses is assumed.

According to the loss breakdown presented in Table 2,
the nominal efficiency of the electric machine for motor
operation, which is defined as the ratio of shaft power to
electric power at the nominal operating point, is 96.36%. The
size of the electric machine is not fixed but an optimization
variable. However, considering that the rated power of the
electric machine remains in the range of a few hundred kW,
the loss breakdown presented in Table 2 can be assumed
unchanged.

For the loss function defined in (62) and the power loss
shares listed in Table 2, the efficiency map of the PMSM over
pu torque and pu speed is shown in Fig. 9. Torque over 1 pu
corresponds to overload and speed over 1 pu corresponds to
operation in field weakening. The nominal operating point
(nN ,MN ) corresponds to the nominal efficiency of 96.36%,
however, the motor operates with an efficiency over 96.5%
at nominal speed and a torque between 0.7 pu and 0.8 pu.
For operating points with a torque greater than 0.25 pu
and a speed greater than 0.3 pu, the machine operates with
an efficiency of over 90%. As expected, low shaft power
corresponds to low efficiency.

FIGURE 9. Estimated efficiency map of a three-phase 12-pole
water-cooled PMSM rated at 160 kW, 1500 r/min and 1019 Nm over per
unit torque and per unit speed [30]. The efficiency is given as a
percentage of the ratio of shaft power to electric power. Torque over 1 per
unit corresponds to overload and speed over 1 per unit corresponds to
operation in field weakening.

D. SOLUTION OF THE DESIGN OPTIMIZATION PROBLEM
The GP vessel design problem is formulated with
CVXPY [16] modeling language and solved with the primal-
dual interior point algorithm implemented in the solver
ECOS [17]. Table 3 shows values of selected fixed parameters
for the problem instance. The solver computed the global
optimum in less than 0.17 s on a standard desktop computer
for the problem instance with 208 decision variables and
209 constraints.

The optimal values of scalar design variables are listed in
Table 5. Fig. 10 illustrates the hull geometry of the optimal
design and the dimensions of the battery (green), cargo (red)
and propulsionmotor (blue) spaces. Fig. 11 shows the optimal
values of the vector variable E∗ divided by the number
of cells (center) and cell voltage as a function of current
(right).

E. SENSITIVITIES
When a convex optimization problem is solved using primal-
dual interior point solver, the optimal dual variable values
are obtained for free. The local sensitivity of the objective
function to each fixed parameter can be obtained from the
dual solution, as discussed in Sec. III-D and [20]. The
sensitivities are useful for guiding the naval architect to focus
on the most important design decisions. Table 4 shows the
sensitivities to selected input parameters for the vessel design
problem instance formulated above.

A sensitivity of +1 means that increasing the parameter
value by 1% increases the objective function value (number
of cells) by 1%. A sensitivity of zero indicates that those con-
straints that include the parameter are inactive at the optimum
and do not govern the solution. The minimum freeboard,
stability safety margin and maximum cell discharging current
show zero sensitivities.

Interestingly, the cell volume sensitivity is also zero.
Fig. 10 shows that the battery pack in the deck below the cargo
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FIGURE 10. Optimal hull geometry and space allocation. Bulkheads and deckhouse in the aft section are not
shown.

FIGURE 11. Operation profile (left), cell discharged energy (center), and cell voltage (right).

hold does not extend to the full length of the midship section.
This occurs because the height of the deck below the cargo
hold is constrained to a minimum 2.2 m. The pack can reserve
a larger volume in the deck without any need for changes to
the hull dimensions.

The sensitivity of the cell discharge upper bound exceeds
one. This occurs because the higher cell capacity reduces the
number of cells, and their total weight, in the optimal solution.
The weight saving reduces displacement and resistance,
which further reduces the required number of cells.
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TABLE 3. Selected fixed constant scalar parameters for the design
problem.

TABLE 4. Local sensitivities of selected parameters.

The negative sensitivity of the hull fullness parameter
b indicates that the design is improved by increasing the
fullness, which corresponds to larger block coefficient. This
agrees with typical high block coefficient values found in
conventional slow bulk carriers [22]. By increasing the block

TABLE 5. Values of selected decision variables and derived quantities for
the solved design problem.

coefficient, thewetted surface area is reduced relative to cargo
capacity.

VI. CONCLUSION
This paper presented a novel approach to conceptual-
stage design optimization of battery-electric marine vessels.
By using posynomial forms for all subsystem models, the
optimization problem can then be formulated as a geometric
program, enabling the use of convex optimization tools to
efficiently search the design space.

While the method has been demonstrated using only
continuous decision variables, in practical vessel designmany
decisions are distinct or involve discrete quantities. Typical
discrete decisions are the positions of spaces with respect
to each other in the general arrangement, the number of car
lanes in RoPax ferries, installed sizes of components and
component on/off switching over time. Incorporating discrete
decisions to the presented framework should be explored in
future work.

The discrete decisions are modeled mathematically by
integer variables that give rise to a nonconvex feasible
set. A problem that follows the GP form with respect to
log-convex functions but which features both continuous
and discrete variables belongs to the class of optimization
problems called convex mixed-integer nonlinear programs
(MINLP). A convexMINLP exhibits desirable properties that
can be exploited by solution methods, namely, relaxing the
integrality requirements yields a convex problem. Thus, it is
possible to solve a convex MINLP exactly by decomposing
it into a finite sequence of convex subproblems, which is
not necessarily true for a general MINLP problem [31].
Nevertheless, the solution times for convex MINLPs are
many orders of magnitude greater compared to convex
problems.
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Whilemethods for solving convex problems are considered
mature technology, methods for convex MINLPs are still
undergoing active development and rapid improvement.
Standard methods for solving convex MINLPs are described,
for example, in [31]. Solvers employing these methods
include SHOT [32], AOA [33] and BARON [34]. A recent
survey revealed significant performance differences between
the solvers [35].
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