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ABSTRACT A gastrointestinal disease is a group of cancers which mainly affects the digestive system,
along with the stomach, small intestine, oesophagus, rectum, and colon. Accurate classification and earlier
diagnosis of this cancer are crucial for better patient outcomes. Deep learning (DL) algorithm, especially
convolutional neural network (CNN), is trained to categorize endoscopic images of gastrointestinal tissue
as either benign or malignant. Gastrointestinal cancer (GC) classification with DL is the process of using
artificial intelligence (AI), especially the DL algorithm, to categorize endoscopic images of gastric tissue
as benign or malignant. It could help clinicians to identify the earliest symptoms of cancer and make
treatment decisions, resulting in improved patient outcomes. The study designs a new gastrointestinal
disease Detection and Classification using Hybrid Rice Optimization with Deep Learning (GDDC-HRODL)
model. The presented GDDC-HRODL model intends to classify the medical images for GC. To achieve
this, the GDDC-HRODL technique initially preprocesses the input data to improve image quality. In addition,
the presented GDDC-HRODL algorithm employs the HybridNet model to produce feature vectors and the
hyperparameter tuning process takes place using the HRO algorithm. For GC classification purposes,
the GDDC-HRODL technique uses an attention-based long short-term memory (ALSTM) model and its
hyperparameters can be selected by the ant lion optimization (ALO) algorithm. The design of hyperparameter
tuning processes helps to accomplish enhanced GC classification performance. The experimental analysis
of the GDDC-HRODL algorithm on the medical dataset demonstrates its betterment in the GC classification
process.

INDEX TERMS Artificial intelligence, gastric cancer classification, deep learning, medical imaging,
hyperparameter tuning, hybrid rice optimization.

I. INTRODUCTION
Gastric cancer (GC) has commonly occurred in the cavity
organs with the maximum prevalence that was a severe threat
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to health [1]. The diagnosis of GC is relevant to the dis-
ease phase. The treatment and diagnosis of earlier GC are
useful for the recovery of patients, and the survival rate
of patients is exceeded up to 90%. But it is found that
many patients are in an advanced stage [2]. Owing to the
inadequate treatment, the survivability of advanced GC is
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lower and the diagnosis is poor [3]. With the enhancement
of people’s health awareness and the progression of medi-
cal devices, the treatment and diagnosis of GC are becom-
ing an urgent need for many victims. Thus, enhancing the
precision of GC identification, particularly initial GC, has
been the focus of recent studies [4]. GC can be assessed
by imaging examination, endoscopy, pathological pictures,
and so on. Initially, endoscopy was broadly utilized in GC
detection. Image-enhanced endoscopies, like linked color
imaging and narrow-band imaging, can precisely scrutinize
the structure of the surface [5]. The research works stated
that the implementation of such endoscopic techniques could
enrich the precision of GC diagnosis. In tumor diagnostics,
pathology slides were routinely set from resections or biop-
sies and cancer tissue was stained with hematoxylin and
eosin (HE) [6].

With whole-slide scanners, histological slides are trans-
formed into digital imageries encompassing complicated
visual data that can be mined by artificial neural net-
works (ANN) [7]. Convolutional Neural Network (CNN)
was an existing deep-learning (DL) technique that was
proven effective computational mechanism for image clas-
sifications. Several difficulties should be resolved before
the medical application of digital biomarkers, the DL con-
cept might have incredible advantages for therapeutic and
diagnostic decisions. Advancements of digital biomark-
ers in DL-based tumor pathology for typical cancer types
were recently studied [8]. The emergence of whole-slide
images (WSI) led to the application of medical imag-
ing analysis methods to help pathologists in diagnos-
ing and reviewing WSIs cancer [9], [10]. Particularly, deep
CNNs (DCNN) have shown existing outcomes in medic-
inal imaging analysis and a large number of computer
vision (CV) applications [9]. Successful and Promising com-
putational pathology applications involve tumor segmen-
tation and classification, resultant predictive and mutation
classification. Such results emphasize the potential large
advantages that could be gained while deploying DL-related
tools and workflow mechanisms to support histopathologi-
cal diagnosis and to help surgical pathologists, particularly
for rising diagnostic double-reading and primary screening
efficiency [10].
This study focuses on the development of auto-

mated gastrointestinal cancer Detection and Classification
using the Hybrid Rice Optimization with Deep Learning
(GDDC-HRODL) model. The presented GDDC-HRODL
model primarily preprocesses the input data to improve
image quality. Next, the presented GDDC-HRODL tech-
nique employs the HybridNet model to produce feature
vectors and the hyperparameter tuning process takes place
using the HRO algorithm. For GC classification purposes,
the GDDC-HRODL technique uses an attention-based long
short-termmemory (ALSTM)model and its hyperparameters
can be selected by the ant lion optimization (ALO) algorithm.
The experimental result analysis of the GDDC-HRODL tech-
nique takes place on the medical dataset.

II. RELATED WORKS
In [11], a multi-scale visual transformer method so-called
GasHis-Transformer was presented for Gastric Histopatho-
logical Image Detection (GHID) that allows the automated
global recognition of GC images. The gasHis-Transformer
method comprises 2 key components planned for extracting
local and global data utilizing a position-encoder transformer
system and CNN with local convolution correspondingly.
Additionally, a Dropconnect-based lightweight network was
presented for reducing the size of models and trained time of
GasHis-Transformer for medical application with enhanced
confidence. Wang et al. [12] present a Smart connected elec-
tronic gastroscope (SCEG), a smart-connected electronic gas-
troscopy scheme which carries out dynamic cancer screening
from gastroscopy. The authors establish an AdaBoost-based
multiple-column CNN (MCNN) to enhance GC screening by
combining electronic gastroscopy with a cloud-based medic-
inal image diagnosis service.

Togo et al. [13] established an automated gastritis recog-
nition scheme utilizing double-contrast upper gastrointesti-
nal barium X-ray radiography. The researcher planned a
DCNN-based GC recognition method and estimated the
efficacy of the technique. The recognition efficiency of
our process has been related to ABC (D) stratification.
Hmoud Al-Adhaileh et al. [14] present 3 networks, AlexNet,
GoogleNet, and ResNet50 that are dependent upon DL and
estimate them for their potential in analyzing a database of
lesser GC diseases. Every image is improved, and the noise
was removed beforehand so it can be inputted into the DL
network. During this classifier step, pre-trained CNN tech-
niques are changed by transfer learning (TL) for performing
novel tasks. The Softmax function takes a deep feature vector
and categorizes the input images into 5 classes.

Sun et al. [15] intended to establish and validate a DL
radiomics method to estimate serosa invasion from GC.
Traditional hand-crafted and DL features can be removed in
the 3 stages of Computed tomography (CT) images and are
employed for building radiomics signatures using ML tech-
niques. Integrating the radiomics signature and CT finding,
a radiomics nomogram has been established using multi-
variable LR. Zhang et al. [16] designed a CT-based radiomic
method for predicting advanced GC (AGC) patients effec-
tively. Radiomic feature is extracted from the input CT
images and the ML model is utilized for the classification
process. Sakai et al. [17] presented a CNN-based automatic
recognition system for helping the initial analysis of GC
from endoscopic images. The authors executed TL utilizing
2 classes (normal and cancer) of image databases which are
detailed texture data on lesions developed in a smaller count
of annotated images.

III. THE PROPOSED MODEL
In this study, we have designed a novel GDDC-HRODL
system for GC detection and classification. The presented
GDDC-HRODL methodology exploits DL with a hyperpa-
rameter tuning process for GC classification. It follows a
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series of subprocesses namely contrast enhancement, Hybrid-
Net feature extractor, HRO-based hyperparameter tuning,
ALSTM classification, and ALO-based parameter tuning.
Fig. 1 exhibits the working flow of the GDDC-HRODL
approach.

A. CONTRAST ENHANCEMENT
The CLAHE (contrast limited adaptive histogram equaliza-
tion) is a novel way of enhancing the contrast in an image.
It is widely employed in medical imaging to improve the
visibility of structure in an image and optimize the diagnosis
quality of an image [18]. The fundamental concept behind
the CLAHE is to split the images into smaller regions, named
tiles, and separately employ histogram equalization to all
the tiles [18]. Histogram equalization is a process which
adjusts the intensity value of the pixel in the image whereby
the resultant images have a uniform distribution of intensity
value. The contrast limiting factor in the CLAHE prevents
the intensity value from being extremely stretched, causing
loss of detail and over-saturation in an image. This might
assist in preserving the local structure of an image and prevent
the ‘‘washed out’’ appearance that takes place with standard
histogram equalization. The CLAHE algorithm is effective
for an image that has a larger dynamic range or lower contrast,
like medical imaging. It is used for improving the visibility of
subtle features in the image, namely smaller vessels or abnor-
malities, and making them more obvious to the observer.

FIGURE 1. Working flow of GDDC-HRODL approach.

B. FEATURE EXTRACTION PROCESS
For the generation of feature vectors, the HybirdNet
model is used. HybridNet has encompassed two Autoen-
coder (AE) paths, the unsupervised path (Eu and Du) and the

discriminator path (Eu and Du) [19]. The encoders Ec and Eu
take the input image x and generate representation hc and hu,
whereas decoders Dc and Du take correspondingly hc and hu
as input for generating x̂c and x̂u partial reconstructions.
Lastly, the C classifier generates a class prediction using
discriminator features: ŷ = C(hc). Although the two paths
might have the same architecture. The discrimination path
extracts discriminatory features x̂c that must be crafted well
eventually to efficiently implement the classification tasks
and generate a deliberately partial reconstruction x̂. As a
result, the unsupervised path role is to be complementary to
the discriminatory branch by maintaining hu the data miss-
ing in hc. This technique could generate a complementary
reconstruction x̂c such that, while fusing x̂ and x̂, the ultimate
reconstruction x̂ is nearby to x.

hc = Ec(x) x̂ = Dc(hc) ŷ = C(hc)

hu = Eu(x) x̂ = Du(hu) x̂ = x̂c + x̂u (1)

It should be noted that the reconstruction model is
performed as regularised for the discriminatory encoder.
The major contribution and challenge of the study are
to develop a method to make sure that both paths
would execute in a desired manner. The two major prob-
lems that we address are the fact that the discriminator
branch needs to be focused on the discriminatory fea-
ture and that both branches want to be contributed and
co-operated towards the reconstruction. Using this frame-
work, two paths are worked individually: a reconstruction
path x̂ = x̂u = Du (Eu (x)) and a classification path
ŷ = C(Ec(x)) and x̂c = 0. Then, tackle these problems by
using the structural design of the encoder and decoder along
with the training procedure and appropriate loss. The Hybrid-
Net framework has two data paths with class prediction and
parts that need that incorporated. The study is tackling the
question of training these architectures effectively. It encom-
passes the term for classificationwithLcls; last reconstruction
with Lrec; intermediate reconstruction with Lrec−interb,l (for
branch b and layer l); and stability with �stability. Every term
can be weighted using the respective variable λ :

L = λcLcls + λrLrec +

∑
bϵ{c,u}

λrb,lLrec−interb,l + λs�stability

(2)

HybridNet is trained on the partially labelled datasets, viz.,
labelled pairs Dsup = {(x(k), y(k))}k=1...Ns and unlabelled
images Dunsup = {x(k)}k=1..Nu . All the batches are encom-
passed of n samples, separated into ns image-label pair from
Dsup and nu unlabelled image fromDunsup. The classification
term is exploited only on ns labelled instances of the batch
and averaged over them:

ℓcls = ℓCE
(
ŷ, y
)

= −

∑
i

yilogŷi,Lcls

=
1
ns

∑
k

ℓcls

(
ŷ, y(k)

)
(3)
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C. HYPERPARAMETER TUNING PROCESS
In this work, the hyperparameter tuning of HybirdNet archi-
tecture takes place with the use of the HRO algorithm. HRO is
a metaheuristic technique which mimics the breeding method
of three-line hybrid rice seeds [20]. In all the iterations,
the population of rice seeds are arranged by fitness from
greater to lesser and divided into three subpopulations. Based
on symmetry and self-equilibrium, every subpopulation is
intended as an equivalent number of individuals. The individ-
ual in the fitness level is chosen into the maintainer line, the
sterile line, and the restorer line. The HRO comprises three
phases: renewal, selfing, and hybridization.

1) HYBRIDIZATION
Hybridization was implemented to renew the rice seed gene
in the sterile line. Two types of rice seed populations were
introduced to recreate novel individuals that are chosen at
random in the maintainer and sterile line, correspondingly.
When the novel rice seeds are better than the existing ones, the
present rice seed would be replaced with the novel one. The
novel gene by hybridizing has been demonstrated as follows:

X knew(i) =
r1X ks,r + r2X km,r

r1 + r2
(4)

In Eq. (4), X knew(i) denotes the new k th genes of ith rice
seeds in the sterile line, X ks,r indicates the k th genes of the
randomly chosen individual from the sterile line, X km,r repre-
sents the k th genes of the randomly chosen individual from the
maintainer line, r1 and r2 are a randomly generated number
lies in [−1, 1].

Selfing behavior improves the gene sequences of rice seed
in the restorer line that making rice seed progressively get
closer to the better one, and the equation can be updated as
follows:

Xnew(i) = rand (0, 1) ·
(
Xbesi − Xj,r

)
+ Xi (5)

In Eq. (5),Xnew(i) denotes the newly produced individual by
selfing of the ith restorer, Xbest signifies the present optimum
solution and Xj,r indicates the jth randomly chosen individual
from the restorer line (i ̸= j). When the novel individuals are
superior to the older individuals, then older individuals can
be swapped with the current and new self-crossing number
(t) which is fixed as zero, or else ti = ti + 1.

2) RENEWAL
The presented phase is a reset process for rice seed from the
restorer line that hasn’t been upgraded for tmax successive
times, and the renewal approach has been demonstrated as
follows:

Xnew(i) = Xi + rand (0, 1) · (Rmax − Rmin) + Rmin (6)

In Eq. (6), Xnew(i) indicates the newly produced individual
by the renewal of ith restorer, Rmax and Rmin signify the
maximum and minimum limitations of the search space.

For binary coding, every individual in the population
can be characterized by the binary string where every
component is limited only to zero or one. Every candi-
date solution from the rice seed should be mapped to the
probability value which takes zero or one to resolve the
problem of band selection. Thus, a sigmoid function is
applied for achieving data transformation and is shown in the
following:

S (x) =
1

1 + e−x
(7)

X ki =

{
1, S(X ki ) > 0.5
0, else

(8)

From the expression, x indicates the real number, and xki
characterizes the k th genes of the ith novel rice seeds.

Algorithm 1 Pseudocode of HRO Algorithm
Input: the predetermined parameter of HR
Output: the fitness function value and global optimum
solution
Randomly initializing the rice seed population
Initializing ti = 0, k = 0
While (k<maximal amount of iterations)
Assess the fitness function of all the rice seed
Split the rice seed into 3 lines
For all the rice seeds in the sterile line
Choose respective rice seeds randomly at the sterile and
maintainer line
The novel gene can be attained using Eq. (4)
If the novel rice seeds are optimum
Upgrade the present rice seeds
End if
End for
For every rice seed at the restorer line
If ti < tmax
The new rice seed can be attained using Eq. (5)
If the new rice seeds are optimum
Upgrade the rice seeds

tj = 0
Else

tj = tj + 1
End if
Else
The rice seeds are renewed using Eq. (6)
End if
End for

k = k + 1
End whil

D. GC CLASSIFICATION USING OPTIMAL ALSTM MODEL
Finally, the proposed model exploits the ALSTM model for
GC classification. The LSTM is an NN-based recurrent neu-
ral network (RNN) that could efficiently address the issues
of gradient exploding and vanishing seen in conventional
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NNs [21]. Using the storage unit, the long-term timing data
has been stored for capturing the long-term dependency.
As per these features, LSTM-NN is widely used to handle
time series tasks. The storage unit of LSTM-NN preserves
3 gates at every time step, involving input, forget and output
gates. Because of the gating, the proposed model could rec-
ognize filtering and memory functions. The forgetting gate
integrates the ht−1 hidden layer of the preceding time step
with x t input key features of the existing time step. With
the sigmoid function, each input feature is ranged within
the range of zero and one, also the scaling values are used
for controlling the forgotten degree of the C t−1 cell state of
the preceding time step. The forget gate is expressed in the
following:

Ft = Sigmoid

 J∑
j=1

WFx
j x tj +

L∑
l=1

WFh
l ht−1

l + bF

 (9)

In Eq. (9), J and L denote the dimension of x t input feature
vectors and ht−1 hidden layers, correspondingly, W and b
indicate the weight matrix and bias in every gate. The input
gate integrates x t and ht−1 for generating novel candidate
value C̃t through the tanh activation function. Like forgetting
gates, the scaled values are utilized for controlling the degree
to which the candidate value is upgraded. The input gate can
be expressed by:

C̃t = tanh

 J∑
j=1

W C̃x
j x tj +

L∑
l=1

W C̃h
l ht−1

l + bc̃

 (10)

It = sigmoid

 J∑
j=1

W Ix
j x

t
j +

L∑
l=1

W Ih
l h

t−1
l + bI

 (11)

Next, the existing cell state Ct is upgraded using
Eq. (12):

Ct = Ft∗Ct−1 + It∗C̃t (12)

The output gate defines which part of the data is to be
transferred for the present Ctcell state. The output gate can
be formulated by:

Ot = sigmoid

 J∑
j=1

WOx
j x tj +

L∑
l=1

WOh
l ht−1

l + bO

 (13)

ht = Ot ∗ tanh (Ct) (14)

The primary objective of the attention module is to simu-
late human visual processes. For instance, once people notice
something, they tend to give greater consideration towards
certain data that could help judgment and disregard redundant
data. The attention module could be assumed as a weighted
summation that could assign respective weights as per the sig-
nificance of input features. Fig. 2 showcases the architecture
of ALSTM.

FIGURE 2. Structure of ALSTM.

The computation equation can be given in the following:

αm =sigmoid

(
L∑
l=1

W αh
l hml + bα

)
(15)

βm =
eαm

T∑
q=1

eαq
(16)

γ =

T∑
m=1

βmhm (17)

Now, T indicates the overall time step; hm shows the
vector of output feature; αm represents the results of the
first weighted computation through the fully connected (FC)
layer; W αh

p and bα represent the weight matrices and biases
of the FC layer, correspondingly; βm represent the final
weight allocated to the respective hm computed using the
softmax function, and γ denote the key feature of extrac-
tion. The LSTM-NN architecture contains the input vectors
x1, x2, . . . . . . , x t are key feature vectors. The LSTM archi-
tecture disposes of the input vector in the time step and
attains multiple hidden layers h1, h2, . . . . . . , ht . The atten-
tion model evaluates the attention weight βm through NN
with the softmax activation function. Next, the attention to
weight βm is allocated to the respective hidden layer hm.
Lastly, the key feature γ is extracted through summation.
The LSTM hyperparameters can be adjusted by the use of
the ALO algorithm. Seyedali Mirjalili establishes the ALO,
a unique population-based stochastic search approach which
stimulates ant lion hunting processes [22]. During the sand,
an ant lion larva excavates a cone-shaped hole. The 5 stages
of the ALO technique for hunting the prey such as catching
prey, building traps, re-building traps, and entrapping prey
in traps. The random walks (RW) begin after establishing
primary Ant places and antlions from the searching space at
random. The subsequent definition offers the mathematical
equation of these walks:

S(t) = [0, cumsum (2u (t1) − 1) , cumsum (2u (t2) − 1) ,

. . . cumsum (2u (tTmax) − 1) (18)
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whereas cumsum defines the entire cumulative sum of con-
secutive random stages that include the RWup to present time
t,Tmax is the maximal iteration count and u(t) denotes the
stochastic function determined as in Eq. (19):

u (t) =

{
1 if rand > 0.5
0 if rand ≤ 0.5

(19)

In which, rand implies the random number with uniform
distribution generated from the range of zero and one. The
RW of Anti nearly a given Aliontj has normalized utilizing
Eq. (20) for maintaining RW in the searching space.

S ti =
(S ti − ai) × (qi − pti )

(qti − ai)
+ pi (20)

In which qti refers to the maximal RW of ith Ant at the
t th iteration, pti signifies the minimal RW of ith Ant at the
t th iteration that refers to the dynamic boundary neighboring
the Alion, and ai implies the minimal RW of ith Ant. It is
mathematically determined in Eq. (21).

pti = Alion jt + pt

qti = Alion jt + qt (21)

If the Ant falls into the pit, it attempts to exit. The radius of
Ant’s RW has decreased adaptively by utilizing Eq. (22) for
modelling this performance mathematically.

pt =
pt

I

qt =
qt

I
(22)

whereas I denote the sliding ratio parameter which moni-
tors the exploitation or exploration rates and is determined
in Eq. (23):

I = 10g
t

Tmax
(23)

whereas g refers to the constant demonstrating the present
iteration Tmax signifies the iteration counts, (g = 2 if t >

0.1Tmax, g = 3 if t > 0.5Tmax, g = 4 if t > 0.75Tmax, g = 5
if t > 0.9Tmax, and g = 6 if t > 0.95Tmax). The constant g
is employed for adjusting the count of exploitation accuracy.
Prey is assumed that caught once an ant takes more suitable
than their equivalent antlion. For improving their capability
for hunting novel ants, the antlion needs to change their place
to that of caught ants. Eq. (24) defines this operation:

Alion
t
j

=


ati if f (Ant ti ) < f (Alion

t
j
)

Alion
t
j

otherwise
(24)

To do all the iterations, the Alion with maximal fitness
was allocated eliteAlion. The chosen process is then utilized,
whereas ‘‘Alion’’ was altered to ‘‘Ant’’ when the ‘‘Ant’’ gains

additional fitness. Eq. (25) was utilized for updating the ant
position.

Ant ti =
W t
A +W t

E

2
(25)

W t
E refers to the representation of chosen processes RW

nearby the chosen Alion. The ALO system is a higher possi-
bility of solving local better stagnation as it creates utilization
of RWs and roulette wheel. The ALO technique’s random
choice of ant lions, random movement of ants in their envi-
ronment, and adaptive reduction bounds on ant lions’ traps
make sure the exploitation of searching spaces. The ALO is
demonstrated in the subsequent procedure (l), per the above-
mentioned formula. The ALO algorithm derives a fitness
function to conquer better efficiency of the classification
and determine the positive integer to describe the superior
performance of candidate results. Here, the decline of the
classifier rate of errors can be regarded as a fitness function,
as follows.

fitness (xi) = Classifier Error Rate (xi)

=
number of misclassified samples

Tota lnumber of samples
∗ 100

(26)

IV. RESULTS AND DISCUSSION
In this section, the experimental validation of the
GDDC-HRODL approach is tested using the Kvasir
dataset [23]. Table 1 gives details on the dataset. It comprises
of interpret images by experts, containing classes includ-
ing endoscopic processes from the gastrointestinal tract and
anatomical landmarks. The database comprises 5000 images
which are enough for utilization in DL and TL. The database
is in RGB colour space and comprises images from resolution
in 720 × 576 up to 1920 × 1072 pixels. During this work,
the database comprises 5 diseases normal pylorus, ulcerative
colitis, dyed-lifted polyps, normal cecum, and polyps. Fig. 3
represents the sample images.

TABLE 1. Details of the dataset.

The confusion matrix attained by the GDDC-HRODL
model during the execution process is illustrated in Fig. 4. The
outcomes demonstrate that the GDDC-HRODL approach has
properly categorized all five class labels.

In Table 2 and Fig. 5, the overall classifier outcomes
of the GDDC-HRODL approach are briefly provided. The
results show that the GDDC-HRODLmodel obtains effectual
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FIGURE 3. Sample images.

FIGURE 4. Confusion matrices of GDDC-HRODL system (a) Entire
database, (b) TRS of 80% and (c) TSS of 20%.

outcomes under each class. On the entire dataset, the
GDDC-HRODL model obtains an average accuy of 99.49%,
sensy of 98.72%, specy of 99.68%, Fscore of 98.72%, and
AUCscore of 99.20%. Similarly, on 80% of the training
set (TRS), the GDDC-HRODL approach gains an average
accuy of 99.49%, sensy of 98.72%, specy of 99.68%, Fscore
of 98.73%, and AUCscore of 99.20%. Likewise, on 20% of the
testing set (TSS), the GDDC-HRODL technique attains an
average accuy of 99.48%, sensy of 98.75%, specy of 99.67%,
Fscore of 98.71%, and AUCscore of 99.21%.

TABLE 2. Classifier outcome of GDDC-HRODL system with distinct classes
and measures.

FIGURE 5. Average outcome of GDDC-HRODL system with distinct
zmeasures.

The training accuy (TACY) and validation accuy VACY of
the GDDC-HRODL algorithm are investigated on gastroin-
testinal disease detection performance in Fig. 6. The figure
pointed out that the GDDC-HRODL method has exposed
higher performance with maximal values of TACY and
VACY. The GDDC-HRODL technique has gained maximal
TACY outcomes.

The training loss (TLOS) and validation loss (VLOS) of the
GDDC-HRODL methodology are tested on gastrointestinal
disease detection performance in Fig. 7. The figure specified
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FIGURE 6. TACY and VACY outcome of GDDC-HRODL system.

FIGURE 7. TLOS and VLOS outcome of GDDC-HRODL system.

that the GDDC-HRODL algorithm has revealed optimum
performance with lesser values of TLOS and VLOS. It is
noticed that the GDDC-HRODL system has resulted in lesser
VLOS outcomes.

An evident precision-recall study of the GDDC-HRODL
approach in the test database is displayed in Fig. 8. The figure
implied that the GDDC-HRODL system has led to maximum
values of precision-recall values in distinct five classes.

FIGURE 8. Precision-recall outcome of GDDC-HRODL system.

FIGURE 9. ROC outcome of GDDC-HRODL system.

TABLE 3. Comparative outcome of GDDC-HRODL approach with recent
DL systems.

FIGURE 10. Comparative outcome of GDDC-HRODL approach with recent
DL systems.

A comprehensive ROC study of the GDDC-HRODL sys-
tem in the test database is shown in Fig. 9. The outcomes
exposed the GDDC-HRODL methodology has revealed its
capability in categorizing five several classes.

The experimental outcomes of the GDDC-HRODL tech-
nique are compared with recent DL approaches in Table 3
and Fig. 10 [14], [24], [25]. The obtained values indicated
that the AlexNet model reaches poor performance with the
least accuy of 96.43%, sensy of 97.64%, specy of 99.01%,
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and AUC of 98.59%. In addition, it is noticed that the DL and
ResNet-50 models obtain closer classification results with
accuy of 97.35% and 97.77% respectively.
At the same time, the augmented CNN model manages

to portray reasonable performance with anaccuy of 99%,
sensy of 98.68%, specy of 97.70%, and AUC of 96.05%.
However, the GDDC-HRODL model gains maximum per-
formance with anaccuy of 99.49%, sensy of 98.72%, specy
of 99.68%, and AUC of 99.20%. Furthermore, the pro-
posed model reaches a minimal CT value over other models.
These results highlighted the superior performance of the
GDDC-HRODL technique over recent DL methods.

V. CONCLUSION
In this study, we have designed a novel GDDC-HRODL
system for GC detection and classifier. The projected
GDDC-HRODL model primarily preprocessed the input
data to improve image quality. Next, the presented
GDDC-HRODL technique employs the HybridNet model
to produce feature vectors and the hyperparameter tuning
process takes place using the HRO algorithm. For GC clas-
sification purposes, the GDDC-HRODL technique uses the
ALSTM model and its hyperparameters can be selected
by the ALO algorithm. The experimental result investiga-
tion of the GDDC-HRODL system occurs on the medical
dataset. The comparative result analysis pointed out the better
performance of the GDDC-HRODL technique over other
models. In future, the performance of the proposed approach
is improvised by the ensemble learning process.
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